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Abstract

In order to integrate solar energy into the grid it is important to predict the
solar radiation accurately, where forecast errors can lead to significant costs.
Recently, the increasing statistical approaches that cope with this problem is
yielding a prolific literature. In general terms, the main research discussion
is centered on selecting the “best” forecasting technique in accuracy terms.
However, the need of the users of such forecasts require, apart from point
forecasts, information about the variability of such forecast to compute pre-
diction intervals. In this work, we will analyze kernel density estimation
approaches, volatility forecasting models and combination of both of them
in order to improve the prediction intervals performance. The results show
that an optimal combination in terms of prediction interval statistical tests
can achieve the desired confidence level with a lower average interval width.
Data from a facility located in Spain are used to illustrate our methodology.

Keywords: forecasting, solar irradiation, prediction intervals, volatility,
kernel density estimation.

1. Introduction

Solar power generation has been steadily increasing worldwide as a re-
sponse to environmental concerns. Unfortunately, the integration of solar
energy into the energy mix of a country brings new challenges. The main
problem is due to the variability of the solar energy, which is not available
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“on demand”. Therefore, reasonably accurate forecasts are required to make
this kind of energy economically viable. Depending on the objective, dif-
ferent forecasting horizons are needed, for instance, long-term forecasts are
useful for locating potential solar power plants, energy resource planning and
scheduling employs mid-term (up to 48 hours) solar forecasts, whereas intra-
day forecasts are required for load following and predispatch (Kleissl, 2013).
Kraas et al. (2013) economically quantified the impact of forecasting errors
in the Spanish electricity system for a concentrating solar power plant. In
Spain, forecasts of production have to be provided to the transmission sys-
tem operator (TSO). In case of deviations from the scheduled production,
the TSO applies a cost penalty. If the forecast is higher than the real pro-
duction, the TSO charges falling penalties, and conversely, charges rising
penalties for a production dispatch above the forecasted value. In that ref-
erence, forecasting improvement may significantly reduce penalty charges by
47.6% compared to the simple persistence forecasts.

In general terms, most of the published literature on solar energy fore-
casting is based on the application of different techniques in order to provide
point forecasts. Among the diverse techniques provided, the selection of the
best technique is usually based on choosing the one with the lowest forecast
error. Nevertheless, the need of the users of such forecast (or stakeholders)
require more information apart from the point forecast. In particular, they
require both uncertainty and variability forecasts (chapter 14, Kleissl (2013))
that they can be even more useful than typical point forecasts (Chu et al.,
2015). In this context, point forecasts and its associated uncertainty are
usually given as hourly-average time series, whereas irradiance variability or
ramp events are measured in an intra-hour time scale, for example, minutes.
Note that this difference between variability and uncertainty might not be
unanimous in other research disciplines out of the solar energy literature. For
instance, in supply chain applications, variability is commonly employed as
a measure of uncertainty. Nonetheless, in this work we follow the distinction
made in (chapter 14, Kleissl (2013)).

This work focuses on the uncertainty and their use to compute prediction
intervals. Essentially, prediction intervals require a forecast of the uncer-
tainty, usually measured as the standard deviation of the forecast error or
volatility in finance terms. Traditionally, forecast error is assumed to be
constant, independent and normally distributed. However, since the solar
irradiance time series involves very complex processes, it is expected that
those assumptions may be violated and thus, further improvements on the
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standard deviation forecasts should be proposed. Depending on which as-
sumptions we want to be relaxed, different approaches can be used. Al-
though a detailed literature review will be shown in the next section we can
summarize the following ideas. On the one hand, if we assume normality
but independence and constant standard deviation assumptions are relaxed,
then volatility models as generalised autoregressive conditional heteroskedas-
tic (GARCH) models coming from finance literature can be employed. On
the other hand, if we relax the normality hypothesis but we assume that er-
ror variability is constant and independent, then non-parametric approaches
as either histograms or kernel density estimation can be utilized. Finally, if
any of the aforementioned assumptions are expected to be fulfilled, then a
combination of volatility models and non-parametric approaches should be
employed.

The results show that such a combination provides a robust performance
by achieving a compromise between prediction interval coverage and average
interval width with respect to other techniques. Additionally, the combina-
tion can be optimized by maximizing the conditional coverage test developed
by Christoffersen (1998).

In order to illustrate the methodology employed, we are going to focus
on one-step-ahead uncertainty forecasts obtained from Global Horizontal Ir-
radiation (GHI) data that is crucial for photovoltaic generators. Note that
this study can be extended in a straightforward manner to analyse the Di-
rect Normal Irradiation (DNI) that is more relevant for Concentrated Solar
Power applications.

The rest of the paper is organised as follows: Section 2 reviews the lit-
erature on prediction intervals and it describes the models employed in this
article. Section 3 describes the case study dataset. Section 4 lays out the
experimental setup and the discussion of initial results. Section 5 defines a
new approach to compute prediction intervals based on combining previous
models, and finally, section 6 presents the concluding remarks.

2. Literature review

2.1. Estimation of prediction intervals

There are two principal streams to compute prediction intervals. In the
first place, a theoretical prediction interval can be calculated based on a
forecasting model that assumes to reproduce the data correctly and that the
forecast error follows a determined distribution (Chatfield, 2000). Since the
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model is assumed to be specified correctly, the forecasts are unbiased and
the forecast errors have zero mean and constant variance, which is function
of a certain forecasting horizon and the model parameters (see for example,
ARMA models (Box et al., 1994), State Space models (Harvey, 1989), Expo-
nential Smoothing models (Hyndman et al., 2008) ). In this sense, Gaussian
distribution is usually employed to facilitate the derivation of the theoretical
formulae. Therefore, a prediction interval can be defined by the lower (L̂t+h)
and upper limit (Ût+h) for a certain forecasting horizon h and a confidence
level 100α%, such as:[

L̂t+h, Ût+h

]
=
[
F̂t+h ± z(1−α)/2 · σ̂h

]
(1)

where F̂t+h is the point forecast at t + h. Note that we have information
available up to time t. z(1−α)/2 can be calculated from a standard normal
distribution table for a certain confidence level α and σ̂h is the theoretical
standard deviation determined by the forecasting horizon and the model
forecasting parameters as previously discussed.

Nonetheless, if either the model is misspecified or aforementioned assump-
tions about forecast errors are not valid, the theoretical prediction intervals
derived tend to be too narrow reducing its credibility. In other words, if the
confidence level is 90%, there are more than 10% of forecasts located out of
the prediction interval. In the particular case of solar irradiation forecast-
ing, it is reasonable to doubt about obtaining a forecasting model capable of
capturing the complex solar irradiation dynamics.

If theoretical formulae are not available, or there are doubts about the
validity of the “true” model, empirical approaches to compute prediction in-
tervals can be used as an useful alternative (Chatfield, 2000). Note that,
depending on the forecasting horizon deterministic approaches denoted by
Numerical Weather Prediction models are widely used to provide solar irra-
diation forecasts. As they do not rely on a statistical model, the only way to
compute prediction intervals for them is to use empirical approaches.

Empirical approaches can also be divided in two parts (Lee and Scholtes,
2014). The first option is to use empirical residual errors, also known as
in-sample errors. In this sense, the forecasting model is applied to the same
data employed for estimating its parameters to provide a sample of forecast
errors at different lead times. Then, on this in-sample errors data, various
non-parametric methods such as Chebyshev’s inequality (Gardner, 1988) or
kernel density estimators (Wu, 2012), and semi-parametric techniques such
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as quantile regression (Taylor and Bunn, 1999) can be employed to build the
prediction intervals. However, prediction intervals based on residuals errors
may also be narrow given that residuals errors usually are lower than out-
of-sample errors (Tashman, 2000). In order to overcome such a limitation,
empirical approaches are also developed on the basis of out-of-sample errors,
i.e., forecast errors obtained from the forecasting model applied on data that
have not been used in the fitting process. This kind of empirical approach
was initially suggested by Williams and Goodman (1971) and it has gained
popularity in diverse applications, particularly in those areas where data
requirements are not a limitation (Isengildina-Massa et al., 2011). In addi-
tion, Lee and Scholtes (2014) have explored the robustness of the empirical
approach from an asymptotic perspective.

Focusing on constructing empirical prediction intervals based on out-of-
sample forecast errors, we can employ parametric and non-parametric ap-
proaches. For instance, the p% forecast error quantile denoted by Q̂h(p) can
be estimated non-parametrically by means of the empirical distribution of
the generated forecast errors. Alternatively, Q̂h(p) can be parametrically de-
termined by assuming a forecast error distribution. For the sake of simplicity
if the distribution is assumed to be normal with finite mean µh and variance
σh, then Q̂h(p) = µ̂t+h + zpσ̂t+h. Note that, unlike to the theoretical way
to compute prediction intervals where the forecast errors had zero mean and
the variance depended on the forecasting model parameters, in the empirical
approach the sample mean and the sample variance are calculated as:

µ̂t+h =

∑t−1
i=t−n ε̂i+h

n
(2)

σ̂2
t+h =

∑t−1
i=t−n(ε̂i+h − µ̂i+h)2

n
(3)

Then, the parametric empirical prediction interval with the nominal 100α%
coverage is [

L̂t+h, Ût+h

]
= F̂t+h + µ̂t+h ± z(1−α)/2 · σ̂t+h (4)

It should be noted that equation (4) assumes that the forecast errors
are normally distributed but it also assumes that forecast errors mean and
variance are time constants. In this way, equation (2) and (3) can be seen
as forecasts of the mean and variance by means of moving averages of past
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forecast errors for a data window of size n. Although moving averages can
be used to forecast variables that fluctuates around a level, this option has
two important disadvantages, firstly, we have to determine the data window
size and, secondly, this technique gives the same weights to both the old and
recent past data. In order to overcome such limitations, this work suggests
to use volatility forecasts that, although they have been widely used in fi-
nance applications, to the best of our knowledge, this is the first time they
are used to compute prediction intervals of solar irradiation forecasts. Note
that, forecast errors mean is expected to fluctuate around zero in a slow man-
ner, nonetheless, the forecast errors variance is expected to change abruptly
as a consequence of clouds passing and thus, volatility forecasts capable of
handling time-varying variance may be a well-suited option.

In the remainder of the section, we will review the main terms in (4)
required to provide a prediction interval. In the first place, we will investi-
gate the point forecasting models found in the solar irradiation forecasting
literature to estimate F̂t+h. In the second place, we will explore the different
volatility forecasting models that can be employed to forecast σ̂t+h. Since
point forecasts are nearly unbiased, for the sake of simplicity µ̂t+h will be
assumed to be zero.

2.2. Point forecast

A literature review about forecasting models can be found in (Diagne
et al., 2013). If irradiance measurements are available and the forecasting
horizon is defined at short/mid-term, statistical forecasting models are typi-
cally applied (Reikard, 2009).

Given that the solar irradiation is non-stationary, exhibiting a seasonal
pattern due to the planetary motions. The different statistical approaches
may be categorized depending on how the seasonality is dealt with (Diagne
et al., 2013). In this sense, three main approaches can be found in the liter-
ature: i) remove the seasonality using a deterministic approach that makes
use of our understanding of solar geometry and modelling the remainder; ii)
remove the seasonality using statistical means and then modelling the re-
sulting stationary series; and iii) model the raw time series data with models
capable of dealing with the seasonality. Under the first category, models
can make use of the clearness index or the clear-sky index. The clearness
index is defined as the ratio of irradiance at ground level with respect to
extraterrestial irradiance. On the other hand, the clear-sky index is the ratio
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of irradiance at ground level to clear sky irradiance, which it is the global ir-
radiance in clear sky conditions computed by means of clear sky models that
use atmospheric conditions information. However, some authors criticize the
use of such indices given that they are mostly random and recommend the
use of irradiance data (Sfetsos and Coonick, 2000). Under the second cate-
gory various techniques such as Fourier series, high order polynomial models,
trigonometric function models, Gaussian models and time series decomposi-
tion have been employed to make the time series stationary, which is then
model as an autoregressive process or by using exponential smoothing models
without seasonal component (Boland, 1995; Dong et al., 2013; Al-Sadah et al.,
1990; Kaplanis, 2006; Baig et al., 1991; Yang et al., 2015). Under the third
category seasonality capable models are used, such as dynamic harmonic re-
gression and exponential smoothing with seasonal terms, and therefore the
need for the two-stage approach described before is no longer needed, thus
eliminating potential biases introduced by it (Trapero et al., 2015). In this
work we adhere to the third category of time series models, attempting to
avoid introducing errors coming from either the calculation of the indices or
from the decomposition of the time series, so that any observed errors are
solely due to the forecasting model fit and simplifying the interpretation of
our results.

2.2.1. ARIMA model

Box et al. (1994) propose a general framework based on a Seasonal Au-
toRegressive Integrated Moving Average (ARIMA) process of order (p, d, q)×
(P,D,Q)s to model stationary and nonstationary time series. The process
can be expressed by:

φ(B)Φ(Bs)(1−B)d(1−Bs)Dyt = θ(B)Θ(Bs)εt, (5)

where yt is an observable time series (solar irradiance). Typically, εt is a white
noise process having mean zero and constant variance1 σ2

ε . The backward
shift operator is denoted by Byt = yt−1. The non-seasonal Autoregressive
and Moving Average operators are defined by φ(B) and θ(B) polynomials
of order p and q respectively, and d denotes the order of differencing that is
required to make the time series stationary, such as:

1Note that, in this work we will relax the constant variance assumption allowing a
time-varying variance as it will be described later on.
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φ(B) = 1− φ1B − φ2B
2 − · · · − φpBp, (6)

θ(B) = 1− θ1B − θ2B2 − · · · − θqBq. (7)

The seasonal ARIMA part is represented by Φ(Bs) and Θ(Bs) polyno-
mials of order P and Q respectively and D denotes the order of seasonal
differencing, where s is the number of periods per season.

ARIMA models can be difficult to identify, in particular, when the process
is a mixture of AR and MA structures, (Makridakis et al., 1998). In order
to provide the same forecast errors for all the volatility forecasting models,
the same point forecast or conditional mean should also be provided. In this
work we propose an ARIMA(1, 0, 0) × (1, 1, 0)24. The reason to use this
model is twofold. Firstly, it has been previously analyzed in (Reikard, 2009).
Secondly, it yields reasonable results in our dataset.

2.3. Volatility models

2.3.1. Moving average

According to Boudoukh et al. (1997), a widely used approach to forecast
volatility over some prior window is to use a moving average, as it is expressed
in (3). Moving average has been typically used via the bollinger bands in
finance applications, within the technical analysis. In principle, the bollinger
bands are defined as:

[L̂Bt+1, Û
B
t+1] = [F̂t+1 − k · σ̂t+1, F̂t+1 + k · σ̂t+1] (8)

where [L̂Bt+1, Û
B
t+1] are the lower and upper limit at time t, F̂t+1 is the forecast

at time t+1 and σ̂t+1 is the volatility forecast at time t+1. It should be noted
that the bollinger bands follow an expression very similar to the prediction
intervals defined in (1), where the volatility forecast is given by a moving
average of the squared forecast error (9), selecting the order n and the value
of k in a quite ad-hoc manner.

σ̂2
t+1 =

∑t−1
i=t−n ε̂

2
i+1

n
(9)

However, this estimator has two disadvantages. On the one hand, if
volatility clusters, it makes sense to give more weights to recent data. On
the other hand, the choice of the length of the observation period (n) is
somewhat arbitrary.
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2.3.2. Single exponential smoothing

In order to overcome such limitations many practitioners prefer using
exponentially weighted moving averages, where the one-step-ahead variance
estimator can be expressed as the simple exponential smoothing recursive
form (Taylor, 2004), with smoothing parameter a. Typically, the smoothing
parameter is referred to α. Nonetheless, to avoid any confusion with the
confidence level (α) defined in (1), we have denoted it as a, whose values vary
between 0 and 1 (Ord and Fildes, 2012). Thus, the exponentially weighted
moving average expression is:

σ̂2
t+1 = aε̂2t + (1− a)σ̂2

t (10)

Equation (10) substantially reduces any storage problem, because it only
needs the most recent squared forecast error (ε̂2t ) and the most recent volatil-
ity forecast (σ̂2

t ). Unlike expression (9), the weights of old data decay expo-
nentially over time. In order to observe the exponential decay, it is convenient
to develop expression (10). If we substitute σ̂2

t with a comparable recursive
equation, we obtain:

σ̂2
t+1 = aε̂2t + (1− a)(aε̂2t−1 + (1− a)σ̂2

t−1)

σ̂2
t+1 = aε̂2t + a(1− a)ε̂2t−1 + (1− a)2σ̂2

t−1 (11)

If this substitution process is repeated by replacing σ̂2
t−1 as a function of

σ̂2
t−2, and so on, the result is:

σ̂2
t+1 = aε̂2t + a(1− a)ε̂2t−1 + a(1− a)2ε̂2t−2 + . . .+

a(1− a)t−1ε̂21 + (1− a)tσ̂2
1 (12)

Given that 0 < a < 1, the weights for all past squared errors decrease expo-
nentially, hence the name exponential smoothing. Additionally, the weights
sum is approximately one.

2.3.3. Generalized AutoRegressive Conditional Heteroskedasticity models

Looking back at expression (5), although the term εt in most of the solar
irradiance forecasting literature is assumed to be homoscedastic, in this work
we intend to include a changing variance. In this sense, the error term can
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be expressed as εt = σt · vt, where

σ2
t+1 = ω +

p∑
i=1

aiε
2
t−i+1 (13)

is the AutoRegressive Conditional Heteroscedasticity (ARCH) model intro-
duced by (Engle, 1982) for estimating and forecasting volatility and vt is an
independent and identically distributed (iid) process. ARCH models express
the conditional variance as a linear function of p lagged squared error terms.
Bollerslev (1986) proposed the Generalized AutoRegressive Conditional Het-
eroskedasticity GARCH models that represent a more parsimonious and less
restrictive version of the ARCH(p) models. Generally speaking, GARCH
models with respect to ARCH models bring similar advantages as expo-
nential smoothing with regards to moving average (Boudoukh et al., 1997).
GARCH models express the conditional variance of the forecast error (or
return) (εt) at time t, as a linear function of q lagged squared error terms
and p lagged conditional variance terms. For example, GARCH(1,1) model
is given by:

σ2
t+1 = ω + a1ε

2
t + β1σ

2
t (14)

It should be noted that exponential smoothing has the same formulation
as the integrated GARCH model (IGARCH) (Nelson, 1990), in which β1 =
1− a1, plus an additional restriction in which ω = 0.

3. Case study data

Solar irradiance data have been collected by the Spanish Institute for
Concentration Photovoltaics Systems (ISFOC), located in Ciudad Real in
the region of Castilla-La Mancha in Spain (at 38.67 ◦ N, 4.15 ◦ W, 687 m).
Minute-by-minute solar irradiance measurements have been recorded using
pyranometers and pyrheliometers, which comply with the international stan-
dards of Baseline Surface Radiation Network (BSRN) (McArthur, 2004).

Global Horizontal Irradiance (GHI) data have been provided. GHI is the
total solar radiation on a horizontal surface and it is calculated as the sum
of Direct Horizontal Irradiance, the Diffuse Horizontal Irradiance and the
Albedo. Diffuse irradiance refers to all the solar radiation scattered from
the sky. Albedo is the fraction of the incident solar radiation reflected and
scattered by the ground.
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From the original minute-by-minute data hourly series of solar irradiation
data (Wh/m2) are constructed for this study, aggregating ground-based solar
irradiance data (W/m2). The data span from January 2011 to December
2011, resulting in 8,760 hourly observations. Fig. 1 provides examples of
GHI data in winter and summer. For the provided dataset the mean and
standard deviation of GHI is approximately 200 Wh/m2 and 285 Wh/m2,
respectively.
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Figure 1: Examples of hourly solar irradiation for GHI in winter (upper plot) and in
summer (lower plot).

The time series are characterised by strong seasonality, caused by the day-
night cycle. The amplitude of the daily seasonality is changing over the year,
following the winter-summer cycle. This results in a complex seasonality that
does not fully fall under neither stochastic and deterministic conventional
definitions of seasonality. The observed seasonal profile changes in terms
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of amplitude and duration (sunrise and sunset) over time, a characteristic
that could characterise the seasonality as stochastic. However the way that
these changes occur are not random and are controlled by the planetary
motions, thus having deterministic elements. On top of this seasonality,
atmosphere conditions, such as cloud cover, cause additional variability to
the data, increasing the complexity of the data.

4. Experimental setup

The data (8,760 observations) have been split down in two parts of the
same size approximately. The first part (4,392 observations) has been used
to estimate the parameters of the ARIMA model (in-sample data) and the
GARCH parameters. Once the forecasts have been calculated, we have re-
moved the nights by eliminating observations with an elevation angle lower
than 15◦. Note that we have not removed the nights in the calculation of
the ARIMA-GARCH model in order to use the same model than (Reikard,
2009) with a fundamental period of 24 hours. The exponential smoothing
parameter has been estimated by considering the ARIMA point forecasts for
the in-sample data without nights. An example of the point forecasts vs.
the actual values is depicted in the upper plot in Figure 2. The one-step-
ahead forecast errors are shown in the lower plot of the same figure. During
the first observations, this figure shows that the forecasts are accurate and
the out-of-sample forecast error is close to zero, perhaps because the sky is
clear. Then, as a result of clouds passing, the forecast error increases. It is
interesting to note that the forecast error may also cluster. This fact is illus-
trated with ellipses in the figure, where cluster 1 indicates that the forecast
error is negative for almost the whole day (24 hours), conversely, the cluster
2 provides positive forecast errors. In other words, the presence of clusters
implies that the error is not purely random and it may have time correlation
that should be explored with volatility models.

The second part of the data (4,368 observations) has been reserved as out-
of-sample data. Here, we are only investigating the forecast errors one-step-
ahead. In that second part, we have reserved a sample of 100 observations to
initialize the kernel density estimate on out-of-sample errors. Then, the rest
of the sample is utilized by means of a rolling origin experiment (Tashman,
2000) to test the effectiveness of the different alternatives to compute the
prediction intervals.
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Figure 2: Upper panel, actual values (solid line) vs. forecast values (dashed line). Lower
panel, one-step-ahead forecast error
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4.1. Prediction interval alternatives

Once we have defined how to forecast the conditional mean and variance
of the variable under study, the next step is to use them efficiently to pro-
vide a prediction interval. In this sense, we can distinguish two alternatives
depending on the error distribution dynamics. Firstly, we assume that the
one-step-ahead forecast error distribution properties are approximately con-
stant, although unknown, and are estimated by a non-parametric approach
as the kernel density estimation. Secondly, the error distribution is assumed
to be normal (parametric hypothesis) and its variance has time-varying prop-
erties estimated by GARCH and SES models.

4.1.1. Non-parametric approach. Kernel density estimation

The first approach to compute prediction interval is based on the non-
parametric kernel density estimation. This technique represents the probabil-
ity density function (f(x)) of the forecast errors without the need of making
assumptions about the distribution of the data. Its formula for a series X at
a point x is given by:

f(x) =
1

Nh

N∑
j=1

K

(
x−Xj

h

)
(15)

where N is the sample size, K(·) is the kernel smoothing function that in-
tegrates to one and h is the bandwidth. In the present case study, kernel
density estimates were computed using the MATLAB library of statistical
functions. We have chosen the MATLAB default values, i.e., a normal kernel
smoothing function and an optimal bandwidth for estimating normal den-
sities. More details about density estimation can be found in (Silverman,
1986)

Once the kernel density is estimated the quantiles (Qk) can be computed
as well as the prediction intervals, such as:[

L̂1, Û1

]
=

[
F̂t+1 +Qk

(
1− α

2

)
, F̂t+1 +Qk

(
1 + α

2

)]
(16)

Since we are using a rolling origin experiment with the out-of-sample data
to compute the empirical quantiles, the shape of the kernel estimate can be
changing as observations are added. Figure 3 shows kernel density estimates
and histograms at the beginning of the out-of-sample data with a sample size
N=100 (upper panel) and at the end of the out-of-sample with a sample size
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N=100 (lower panel), since we keep a constant data window, i.e., each time
the newest observation is added, the oldest observation is removed. Note
that the kernel density estimates have been scaled to overlay the histograms.
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Figure 3: Forecast error kernel density estimates and histograms at the beginning of the
out-of-sample (Upper panel) and at the end (Lower panel)

4.1.2. Parametric approaches. GARCH and SES estimation.

In order to incorporate volatility forecasts, we assume that the forecast
errors are normally distributed with time-varying variance, such as:[

L̂i, Ûi

]
= F̂t+h +±z(1−α)/2 · σ̂i,t+1 (17)

where i = 2 if the time-varying standard deviation σ̂i,t+1 is given by the
square root of the GARCH(1,1) model in (14) and i = 3 if the estimation
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Parameter Value Standard Error

ARIMA
c 0.0014 0.003
φ1 0.0399 0.001
Φ24 -0.1071 0.0006

GARCH
ω 0.0014 0.003
a1 0.99 0.03
β1 6.8e-05 2.8e-05

SES a 0.623 –

Table 1: Parameter estimation ARIMA-GARCH and Single Exponential Smoothing.

of the standard deviation is based on the Single Exponential Smoothing2 in
(10).

4.2. Estimation of parameters

The ARIMA model proposed has been estimated together with the GARCH(1,1)
model by using maximum likelihood based on a t-distribution with the Econo-
metrics toolbox from MATLAB. Table 1 shows the estimates of the ARIMA-
GARCH model. Since the exponential smoothing does not rely on a statisti-
cal model, typical model optimization routines based on maximum-likelihood
cannot be used. Instead, literature recommends the minimisation of the sum
of in-sample one-step-ahead prediction errors. In fact, RiskMetrics (1996)
suggests the following minimisation:

min
∑
i

(ε̂2i − σ̂2
i )

2 (18)

where ε̂2i estimates the unobservable actual variance. The last row in Table
1 shows the parameter estimate of the single exponential smoothing model.
It is interesting to note that the estimated values of the GARCH(1,1) model
suggests the use of a IGARCH model, that is very similar to a single expo-
nential smoothing model with a parameter value close to 1.

4.3. Performance metrics

The error metrics employed to compare the point forecasting models are:
i) relative Mean Biased Error (rMBE); and ii) relative Root Mean Squared

2The use of Single Exponential Smoothing to volatility forecasting has also been em-
ployed by the package RiskMetrics (1996).
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Cond. Mean Cond. Variance
ARIMA GARCH(1,1) SES

rMBE(%) -0.02 2.68 -0.13
rRMSE(%) 31.55 171.0 98.8

Table 2: Conditional mean and variance forecasting accuracy for one-step-ahead horizon

Error (rMSE). The calculations are carried out as follows, let ε̂t be the fore-
cast error given by:

ε̂t = (yt − F̂t), t = 1, . . . , T (19)

where yt and F̂t stand for the actual value and the forecast, respectively, at
time t. T is the out-of-sample size. The rMBE and rMSE are defined such
as:

rMBE =

∑T
t=1 ε̂t/T

ȳ
· 100 (20)

rRMSE =

√∑T
t=1 ε̂

2
t/T

ȳ
· 100 (21)

Here, ȳ is the mean of the actual values in the hold-in sample.
Volatility forecasting accuracy can also be measured by utilising equations

(19)-(21), where yt is replaced by the actual variance proxy ε̂2t and F̂t by the
squared volatility forecast σ̂2

t provided by either the GARCH(1,1) model or
the single exponential smoothing.

4.4. Results

Table 2 shows the conditional mean and variance performance of the
models proposed. The first column in the table assesses the forecast error
of the point forecasting model (ARIMA). The results show that the ARIMA
provides a reasonable rRMSE. The ARIMA model proposed also provides
a small bias measured by the rMBE. On the other hand, the conditional
variance performance is shown in the second and third columns. Note that
the SES provides a more precise volatility forecast according to the rRMSE
with a nearly zero bias. The forecasting accuracy improvement of SES over
GARCH may be the result of removing the nights in the estimation process.
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Intuitively, we assume that a better volatility forecast would provide a
better prediction interval. In this part of the text, we are going to vali-
date such an assumption by comparing the prediction intervals performance
by means of the prediction interval coverage and the average interval width.
Prediction interval coverage is based on the expectation of the hit rate, which
indicates the proportion of times that a forecast is included within the pre-
diction interval. Hit rate can be calculated on the basis of the following
indicator:

It =

{
1 if yt ∈ [L̂t(α), Ût(α)]

0 if yt /∈ [L̂t(α), Ût(α)]
(22)

where [L̂t(α), Ût(α)] are the lower and upper limits of the prediction interval
for the actual value yt with a target coverage or confidence level α. Statisti-
cal tests to assess the conditional coverage were developed by Christoffersen
(1998). In this work we have used the implementation developed by (Hurlin
and Perignon, 2013) in MATLAB. The Christoffersen test for correct con-
ditional coverage is the combination of the tests for unconditional coverage
and independence. Additionally, it is also important to measure the preci-
sion of the prediction interval, i.e., how wide or narrow is the interval. To
do this, average interval width is calculated by dividing interval range by
its midpoint. In summary, an ideal prediction interval forecasting method
should possess a close prediction interval coverage with regards to the desired
confidence level and a low average interval width.

Table 3 shows the aforementioned prediction interval performance metrics
for the proposed methods. It is interesting to note that the non-parametric
kernel density estimation method provides a higher hit rate (third column)
with respect to the desired coverage (second column) than the parametric
approaches (GARCH and SES). Nonetheless, the non-parametric alternative
provides very wide prediction intervals as it can be verified by the average
interval width shown in the last column of the table.

It is also interesting to analyze the results regarding the p-values of the
Likelihood ratio tests for unconditional coverage (LRu), independence (LRi)
and conditional coverage (LRc) that can be found in the fourth, fifth and
sixth columns of the table, respectively. P-values lower than 0.05 mean that
the null hypothesis of unconditional coverage, independence and conditional
coverage, respectively, are rejected at the 5% significance level.

In the same table, we can observe that, although, the kernel density esti-
mation method provides a higher hit rate, it does not pass the unconditional
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coverage test. This may happen because it also does not pass the indepen-
dence test. Consequently, the conditional coverage is not passed neither.
However, the parametric GARCH and SES pass the independence test for
mostly all the desired coverage α, although given the low hit rate, the un-
conditional coverage test is not passed, and thus, the conditional coverage is
not passed.

5. Combination of prediction intervals

Since the non-parametric approach gives a higher hit rate and the para-
metric approaches, specially the SES approach, tend to be more independent,
another alternative is to combine both methods to compute a prediction
interval. Actually, Christoffersen (1998) pointed out that combining non-
parametric error distribution with time-varying variance estimators is likely
to present a favorable alternative. In this section we will test such an option.

Given that the non-parametric and SES were the methods with better
results, we can combine them to obtain the combined prediction interval
[L̂c, Ûc] in the following form:

L̂c = w · L̂1 + (1− w) · L̂3

Ûc = w · Û1 + (1− w) · Û3 (23)

where 0 < w < 1 is a constant that weights the importance of each technique
in the combined prediction interval. In other words, if w is close to 1 the
combined prediction interval will be similar to the prediction interval given by
the non-parametric kernel density estimate. A possible way to define w is to
maximize the conditional coverage Christoffersen test p-value. Following that
idea, a rolling origin experiment has been carried out, where the parameter
(w) has been recomputed each time a new observation was added. Figure 4
depicts the average optimal weight (w∗) in function of the desired coverage.
Interestingly, the typical 50%-50% combination would not be adequate and
according to the Christoffersen tests, when the desired coverage is low, we
should give more importance to the SES approach, nonetheless, if the desired
coverage increases, the weight of the non-parametric approach should be
bigger. Actually, such an increase follows an exponential growth.

Last row in Table 3 summarizes the performance of the combined pre-
diction intervals. Essentially, the hit rate is very close to the desired cov-
erage without implying very high interval width. Additionally, most of the
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Method α(%) Hit Rate (%) LRu LRi LRc Av. width

KERNEL

70 77.14 0.01 0.00 0.00 1.08
75 80.00 0.04 0.00 0.00 1.20
80 84.13 0.06 0.00 0.00 1.33
85 89.21 0.03 0.00 0.00 1.46
90 94.60 0.00 0.00 0.00 1.60
95 97.14 0.06 0.24 0.09 1.74

GARCH

70 47.94 0.00 0.25 0.00 0.59
75 51.43 0.00 0.04 0.00 0.64
80 57.46 0.00 0.39 0.00 0.69
85 62.54 0.00 0.23 0.00 0.74
90 67.94 0.00 0.28 0.00 0.80
95 73.97 0.00 0.22 0.00 0.88

SES

70 63.17 0.01 0.21 0.01 0.75
75 69.84 0.04 0.39 0.07 0.81
80 73.02 0.00 0.16 0.00 0.86
85 78.10 0.00 0.55 0.00 0.93
90 83.81 0.00 0.77 0.00 1.00
95 87.94 0.00 0.75 0.00 1.09

COMBINED

70 69.52 0.82 0.02 0.07 0.78
75 74.60 0.85 0.03 0.08 0.85
80 78.41 0.47 0.09 0.18 0.92
85 83.49 0.44 0.09 0.17 0.99
90 89.84 0.91 0.66 0.90 1.15
95 95.24 0.86 0.74 0.93 1.32

Table 3: Efficiency of prediction intervals depending on the method.
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Christoffersen tests are successfully passed, making the combined prediction
intervals the most reliable approach among the methods investigated.
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Figure 4: Relationship between optimal weigth (w∗) and desired coverage (α)

6. Conclusions

Forecasts of solar irradiation are required to incorporate the electricity
generated into the grid. Recently, a large variety of approaches have prolif-
erated so as to provide point forecasts. Nonetheless, the literature about the
uncertainty associated to such forecasts is scarce. This work examines the
aforementioned uncertainty through prediction intervals computed by means
of non-parametric kernel density estimates and parametric approaches based
on volatility forecasting models. The results show that the out-of-sample
non-parametric approach is indicated to provide a high prediction interval
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coverage but it also yields a high average interval width. Additionally, its
main limitation is its lack of independence, i.e., actual observations out of the
prediction intervals tend to cluster together. In order to overcome that limi-
tation parametric techniques capable of estimating time-varying variances as
GARCH or Single Exponential Smoothing applied to forecast errors are sug-
gested. These techniques pass the independence test but they offer a predic-
tion interval coverage excessively low. This work proposes a novel approach
based on the simple combination of the non-parametric and parametric ap-
proaches. The results of the combined approach show a good compromise
between coverage (unconditional and conditional) and average interval width,
where the combination weight is obtained by maximizing the Christoffersen
conditional coverage test p-value.

Further research should extend the results provided here in the following
directions. Firstly, the forecasting horizon should be expanded. Here, we
have just considered one-step-ahead as an starting point. However, further
forecasting horizons would require potential seasonal correlations and thus,
seasonal GARCH models or exponential smoothing versions able to deal with
seasonality should be explored. Secondly, since Numerical Weather Predic-
tion models can predict climate variables like cloud cover, this information
may be incorporated to enhance the variability forecasts by means of, for
example, adaptive exponential smoothing models, where the parameters are
not constant but they depend on a key variable like the cloud cover. An
idea in that direction has been investigated by Chu et al. (2015), where they
take advantage of sky images to predict cloud cover and use it to enhance
intra-hour prediction intervals calculation. Finally, it would be interesting
to corroborate the results of this paper by computing solar irradiation pre-
diction intervals from other geographic locations, as well as, for other key
variables as the Direct Normal Irradiation, which is a crucial variable for
concentrating solar power plants.
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