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Abstract 9 

The photovoltaic solar energy industry is expanding, and there is therefore a need to 10 

increase and improve its maintainability, operating costs, availability, reliability, safety, 11 

life cycle, etc. The aim of this article is to design, develop and check a new condition 12 

monitoring system to detect dust in solar photovoltaic panels. The condition monitoring 13 

system uses a radiometric sensor connected to an Arduino platform. This novel approach 14 

is based on emissivity analysis produced over a surface and characterized with a low 15 

emissivity value when dust appears. A thermographic camera is also employed to validate 16 

the results provided by the radiometric sensor. The system is designed to be embedded in 17 

an unmanned aerial vehicle. Radiometric data is sent and analysed, Internet of Things is 18 

employed, and thermograms are stored for further processing. Several scenarios with a 19 

real solar panel are used in the experiments, in which the angles and distances of the 20 

sensors and surface conditions are studied. An analysis of the radiometric sensor provides 21 

accuracy results, and the presence of dust is identified in all scenarios. 22 

Key Words: Radiometric Sensor, Infrared Thermography, Solar Photovoltaic Energy, 23 

Condition Monitoring System, Remotely Piloted Aircraft, Non-Destructive Testing. 24 

  25 
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1 Introduction   1 

The use of renewable energies is rising and there is greater world energy demand [1]. 2 

They are based on endless resources, e.g. the sun, wind, or any resource with 3 

sustainability. One of the most significant types of renewable energy is solar energy 4 

which involves the use of photovoltaic (PV) panels, and which are in continuous 5 

development and expansion [2]. The most significant growth  of solar energy has been 6 

seen in Asia, mainly in China and Japan, with 15.2 and 11 GW respectively, followed by 7 

the United States [3]. The European market is also rising, mainly in United Kingdom, 8 

Germany and France [4].  9 

PV farms are usually located in areas with certain climatic conditions, e.g. high solar 10 

radiation. Costs, maintenance tasks and downtimes need to be reduced, and productivity 11 

increased in order to achieve competitiveness in the energy market [5,6].  12 

Supervisory Control and Data Acquisition (SCADA) is employed in most companies 13 

that manage maintenance polices [7]. Advance analytics is employed to process the 14 

dataset [6,8], e.g. in fault detection and diagnosis [9,10]. SCADA monitors, for example, 15 

electrical variables of the PV power generation system [11], but it does not monitor the 16 

PV panel surface. New condition monitoring systems (CMS) are used to inspect 17 

superficial defects of the PV panels [12].   18 

Fault detection algorithms are employed to monitor the condition of PV panels [13]: 19 

pattern recognition based in electric output is considered in reference [14]. Combined 20 

artificial neural network and analytical based methods are employed for automatic fault 21 

detection and diagnosis for PV systems by Jiang, and Maskell (2015) [15], where 22 

Karatepe and Hiyama (2011) [16] employed neural networks, etc. Jaffery et al. (2017) 23 

[17] used Fuzzy logic systems to predict failures. Spataru et al. (2013) [18] utilized pattern 24 

recognition by temperature and irradiance to show power output and predict power losses 25 

in the short term. Zorrilla-Casanova et al. (2011) [19] employed signal processing in 26 

temperature, humidity, power output and wind speed signals. Aix-layer detection 27 

algorithm is used by Dhimish et al. (2017) [20] to detect failures and study the power 28 

output of the modules. Finally, statistical approaches can be found in references [21,22]. 29 

Traditional maintenance polices, e.g. visual inspection, are unviable in terms of cost 30 

and operating time. Therefore, it is necessary to design and develop new monitoring 31 

systems [23,24]. Defects in solar panels show patterns that directly affect surface 32 
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temperature [25]. It is an important parameter that must be measured to detect and identify 1 

the main failures, for example: hot spots browning; snail trails: cracked cells; burned; cell 2 

or module broken; broken interconnects; solder bond failures; dirty points, etc. [26]. 3 

Faults need to be detected as early as possible to ensure the performance and reliability 4 

of PV systems [23].  5 

New CMSs embedded in an unmanned aerial vehicle (UAV), employing 6 

thermographic sensors, are now used in maintenance tasks [27]. This system is a non-7 

destructive testing (NDT) that is able to perform measurements without interfering in the 8 

integrity of systems [28-30]. These techniques are carried out in the predictive 9 

maintenance of different industrial areas, reducing costs associated with manual 10 

inspections and maintenance periods [31,32]. Infrared thermography is now one of the 11 

most NDT techniques used in UAVs [33,34].  12 

Thermography allows the visualization of the surface temperature by capturing 13 

variations of infrared radiation. The radiated energy, measured by a thermographic 14 

camera, is converted into temperature values with detectors or thermal sensors that 15 

compare measured radiation with fixed values, depending on the camera, that assign color 16 

palettes to each temperature value [35]. Currently, this technique is used due to its 17 

technical advantages [36].  18 

Thermography in PV panels has been studied in detail in laboratories [37], in 19 

which cracked silicon wafers, hot spots, etc have been analyzed. [38,39]. However, PV 20 

thermography inspection presents difficulties in data processing and interpretation. 21 

Advanced algorithms are required to analyse thermograms to detect panels and identify 22 

faults [40]. 23 

UAVs are vehicles powered by one or more engines, capable of maintaining a 24 

controlled and self-sustaining flight level [26]. These systems are built with stabilization 25 

systems to transport different sensors. UAVs have multiple advantages, e.g. speed, safety, 26 

costs and a large angle of vision [41]. UAVs have been adapted for different applications 27 

due to their high technical conditions. They are mainly used for photography, 28 

thermography, safety and rescue. They are also used in renewable energies, specifically 29 

to analyze blades of wind turbines and PV panels [42,43]. The combination of drones and 30 

infrared thermography allows maintenance tasks to be optimized [23], achieving 31 

significant economic and operational advantages [44]. The main advantages of aerial 32 
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thermography/radiometry using drones are: the ability to reach difficult access areas to 1 

obtain real data, reduce operational risks, increase operator safety, and reduce data 2 

collection time. It demonstrates greater reliability compared to conventional methods and 3 

is cost saving, at a rate of approximately 40% compared to conventional methods [45]. 4 

Dirt, dust, ice or other elements deposited on the panel, as well as shadows and 5 

adverse weather conditions, cause a loss of energy production [46]. Dirt on the PV panels 6 

and changes to the incidence solar radiation angle might cause a significant loss in annual 7 

energy production of 5%, that can reach 15% in periods without rain - see Figure 1. The 8 

study was carried out in four monocrystalline silicon modules with three different types 9 

of glass, using flat and texture glass [47].  10 

 11 

Figure 1: Estimated monthly average values for dirt losses [47] 12 

 13 

García et al. (2011) [48] analyzed the soiling and the angle of incidence (AOI) to 14 

measure optical losses in a vertical-axis tracked solar plant in Spain. They concluded that 15 

optical losses vary from 1 to 8% in tracking surfaces, and 8 to 22% in horizontal ones, 16 

with greater percentages in dry periods. Kimber et al. (2006) [49] studied the soiling in 17 

rural, suburban and urban scenarios in EEUU. The results showed that the soiling rate is 18 

greater in the desert, and the correlation between rain and efficiency of the modules is 19 

higher. Aron and Littmann (2013) [50] considered the energy lost due to soiling, 20 

compared the voltage of two modules, one of which was periodically cleaned, and 21 

concluded that the soiling rate varies from 1 to 11.5%, indicating that it greatly depends 22 

on the environment. Similar research studies can be found in [51-54]. Acciani et al. 23 
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proposed a generic analysis of PVs that use thermography, concluding that dirt can be 1 

identified as dark regions in thermal images [55]. 2 

A large number of studies have been conducted in order to mitigate the dirt on the PV 3 

panels. In a Malaysian case study, Jamil et al. (2017) [56] presented a review of mitigation 4 

methods that perform degradation of photovoltaic power systems. In EEUU, Mazumder 5 

et al. (2015) [57] showed the environmental degradation of the optical surface of PV 6 

modules and solar mirrors by soiling and high RH and mitigation methods for minimizing 7 

energy yield losses. Moharram et al. (2013) [58] studied the influence of cleaning by 8 

using water and surfactants on the performance of photovoltaic panels in Egypt. Aly et 9 

al. (2015) [59] analyzed a novel dry cleaning machine for photovoltaic and solar panels 10 

in Saudi Arabia and Qatar, where similar work in Italy was undertaken by Tucci et al. 11 

(2002) [60]. Li et al. (2016) demonstrated a fast and robust mapping with low-cost Kinect 12 

V2 for a photovoltaic panel cleaning robot. The study was carried out in China and Italy. 13 

Alshehri et al. (2015) undertook a review of dust mitigation in the desert that involved 14 

the cleaning mechanisms of solar panels in arid regions. Finally, Jones et al. (2016) 15 

described the optimized cleaning cost and schedule based on observed soiling conditions 16 

for photovoltaic plants in central Saudi Arabia. 17 

The PV field could not receive a uniform irradiation in panels or single cells, working 18 

at the same temperature. Therefore, mismatches among different parts of the array may 19 

arise. This effect has been studied in literature, e.g. [61,62]. Petrone et al. (2007) [63] 20 

proposed a model based in Lambert W-function that is able to describe the behavior of 21 

matched as well as mismatched PV fields. Chouder and Silvestre (2009) [64] considered 22 

a novel procedure to study the power losses mainly due to mismatch effects, extracting 23 

the main PV module and PV array parameters from I-V characteristics. The method 24 

allows a good estimation of the mismatch effect on the total PV system power losses. 25 

This paper proposes a new CMS using a radiometer sensor and embedded in an UAV 26 

according to Figure 2, to detect dust on PV panels.  27 
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 1 

Figure 2: CMS diagram 2 

 3 

Radiometry is employed to obtain the measurement of electromagnetic radiation. 4 

Invisible radiation to the human eye is measured quantitatively using sensors and/or 5 

detectors that convert part of the radiation into electrical signals [65]. These sensors 6 

capture the infrared energy emitted by objects through a detector, and it is transformed 7 

into an electrical signal to obtain the temperature value using a thermocouple or 8 

photodiode [66]. These devices present important advantages in comparison with 9 

thermographic cameras, e.g., lower cost, reduced weight and form, easy to transport and 10 

fast data processing, etc. [67]. The measurements are more reliable when environmental 11 

conditions (humidity and air temperature, distance to the object, reflected temperature, 12 

incident radiation, etc.) and surface characteristics, e.g. emissivity, are known [68]. In 13 

addition, it is necessary to consider the field of view (FOV) of the sensor (Figure 3), the 14 

perpendicular distance to the target or surface to be measured, and the angle of the sensor 15 

with respect to the vertical, due to its influence on the shape and area of the target surface. 16 

Figure 3 shows the influence of orientation in FOV. FOV depends of the angle of 17 

measurement, where values greater than 20º will produce extended ellipse.  18 
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 1 

Figure 3: Variation of the target area as a function of FOV, altitude and angle [69]  2 

 3 

The main contribution of this paper is to design, develop and test a new CMS to 4 

detect dust in PV panels. The CMS is embedded in a UAV. The CMS employs a 5 

radiometric sensor, and the results are validated by a thermographic camera. The 6 

approach is based on the emissivity that is produced over a surface, characterized with a 7 

low emissivity value when dust appears. Several scenarios were conducted using real 8 

solar PV panels. 9 

 10 

2 Materials and Methods 11 

The CMS proposed in this paper is based on a radiometric sensor and a data 12 

acquisition wireless system embedded in a UAV (Figure 4). The sensor measures the 13 

infrared signal, and an Arduino board transforms it into a suitable thermal value by 14 

electronic circuits. Arduino sends it to a wireless platform where the data is analyzed. The 15 

DJI S900 UAV is employed in this paper. 16 
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 1 

Figure 4: Infrared acquisition system diagram. 2 

 3 

The radiometer sensor type is a SI-111 model with a germanium lens. The 4 

specifications of the sensor are detailed in Table 1. 5 

Table 1: Technical characteristics. 6 

Input Power 
2.5 V excitation for 

thermistor 

Target Output 

Signal: 

60 µV per ºC difference 

from sensor body 

Absolute 

Accuracy 

±0.2 ºC; -10 to 65ºC 

±0.5 ºC; -40 to 70ºC 

Body Temperature 

Output Signal 
0 to 2500 mV 

Uniformity: 
±0.1 ºC; -10 to 65ºC 

±0.3 ºC; -40 to 70ºC 
Optics Germanium lens 

Repeatability: 
±0.05 ºC; -10 to 65ºC 

±0.1 ºC; -40 to 70ºC 
Wavelength Range 8 to 14 µm 

Response Time: 
Less than 1 second to 

changes  
Field of View 22º half angle 

Operating 

Environment: 

Highly water resistant, designed for continuous outdoor use. Operating range is -55 

to 80ºC, 0 to 100% RH 

 7 

The sensor is connected to an Arduino DUE board with 32-bits. The Arduino provides 8 

the power to the sensor, collects the signal of the sensor, transforms it to temperature 9 

measurement by the Wi-Fi Shield module, and it is then sent to an online platform. The 10 

Arduino needs specific limiting and amplifier circuits for the signals, indicated in 11 

Figure 5. The sensor excitation power supply must be equal to or greater than 2.5V. The 12 
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LM137 monolithic regulator is used to adapt the 5V power supply of the Arduino to the 1 

required voltage. The sensor model has a thermal sensitivity of 20 µV per ºC. However, 2 

the Arduino DUE has a maximum of 12 bits, and the maximum voltage of its analogue 3 

inputs and outputs is 3.3V, therefore, its resolution is 40 times higher. The thermopile 4 

output differential signal is amplified with a voltage amplifier circuit to be read by 5 

Arduino. The analogue device AD-620 type is used.  6 

 
 

a b 
Figure 5: and Amplifier circuit (a) and Voltage limiter circuit (b). 7 

 8 

A thermography camera Workswell WIRIS type is used to validate the results. The 9 

camera is a thermal imaging system developed for use in UAVs. This model is light 10 

weight and it is equipped with an infrared (thermographic) camera and a visible spectrum 11 

camera. The analysis of thermograms is carried out by Corel Player software [44]. 12 

The PV panel used is TSM-170D, by the manufacturer Trina Solar (Figure 6). It is 13 

used in the industry, and it has been analyzed and compared with other models in 14 

reference [70].  15 
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 1 

Figure 6: PV panels used in the tests. 2 

 3 

Table 2 shows the main parameters of the TSM-170D PV panel. 4 

Table 2: Technical characteristics of the TSM-170D module. 5 

Parameters TSM-170D 

Maximum Power 170 W 

Voltage in Open Circuit 43.60 V 

Short Circuit Current 5.25 A 

Voltage in Maximum Power 35.8 V 

Current in Maximum Power 4.76 A 

Maximum Voltage of the System 700 V 

Range of temperatures -40ºC, +90 ºC 

Dimension of the module 1581x809x40 mm 

Cell Type Monocrystalline 

Number of cells/ 

Cell Dimension 

72 cells/ 

125x125 mm 

 6 

ThingSpeak platform is employed to record and analyse the signal from the 7 

radiometric sensor. It is an Internet of Things (IoT) platform that provides an application 8 

programming interface to collect, store and visualize all the data obtained from a sensor 9 

online. Its operation is based on channels. Figure 7 shows the interface of this platform. 10 
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 1 

Figure 7: ThingSpeak interface. 2 

 3 

3 Case Study and experiments 4 

Three scenarios with different distances and angles have been set up to determine the 5 

accuracy and effectiveness of the sensor in different case studies. Finally, two scenarios 6 

are studied to analyze the influence of calibration and angles, where the CMS is embedded 7 

in a UAV.  8 

The PV module used converts 6-20% of solar radiation into electrical energy, 9 

depending on the environment conditions: the influence of humidity on PV performance 10 

is directly related to the irradiation flux due to water droplets, a change in direction of 11 

solar radiation, and if the exposition is for a long time, humidity causes delamination [71]. 12 

The wind velocity produces a cooling in the cell temperature, obtaining a better efficiency 13 

[72]. The most important condition is the operation temperature, where several studies 14 

show predictive models and analyse the correlations with the temperature of the PV 15 

module [73-75]. Skoplaki and Palyvos conclude that the operating temperature is a key 16 

factor to understand the behavior of the PV panel [76]. Therefore, the environment 17 

conditions have been controlled in the experiments to minimize their influence on the 18 

measurements.  19 

The results from the radiometer sensor are validated with the thermal images. The 20 

radiometer sensor provides the temperature of the sensor body and the target temperature, 21 
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i.e. the temperature of the measured surface. The variables that determine the shape and 1 

area measured by the sensor are the FOV, the sensor angle (ϕ), the height (h) to the panel 2 

and the measurement angle (), defined as the angle formed by the sensor with the 3 

perpendicular to the surface to be measured (Figure 3). The data collected from the sensor 4 

and camera are synchronized. The data not synchronized is discarded in order to avoid 5 

incorrect measurements. Figure 8(c) shows the LED marker system adapted to the sensor. 6 

It is used so that the FOV can be seen online. Figure 8(a) shows the CMS in the DJI S900 7 

UAV with the panel and the LED marker system Figure 8(c). Figure 8(b) shows the 8 

Arduino board and electronic circuits.  9 

 

 
b 

 
A c 

Figure 8: PV panel, DJI S900 and CMS (a), Arduino and electronic system (b) and the laser marker (c)  10 

 11 

The sensor has been used without calibration because the main objective is to analyse 12 

patterns rather than real temperatures. The results are also validated using the sensor 13 

calibrated. 10 synchronized measurements of the sensor and the thermographic camera 14 

are taken. 3 and 4 areas, called Zi, of the PV panel are studied regarding to the following 15 

scenarios 16 

Case study 1 considers 3 scenarios. Figure 9 shows each diagram of the scenarios and 17 

pictures: 18 

• Scenario 1.1: It is set by the panel in horizontal position, supported on the 19 

ground, where  = 0º, Figure 9(b). In Z3 small surface of dust is induced, 20 

where Z1 and Z2 are free of dust. 21 

• Scenario 1.2: The panel is 70º regarding the vertical, where  = 10º, see Figure 22 

9(d). In Z3 a small film of dust is induced. Z1 and Z2 are free of dust. 23 
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• Scenario 1.3: It analyzes the dirt over the panel by depositing sand in a third 1 

of the area marked as yellow in Figure 9(e), the panel is 10º regarding the 2 

vertical and  = 10º. This scenario considers 4 zones instead of 3. Z1 is free of 3 

dust, similar to Z1 in scenarios 1.1 and 1.2. Z2 indicates dust in one border, 4 

Z2 has 75% free of dust and 25% with dust, and Z3 is full of dust. 5 

 
 

 

 
a  b 

Scenario 1.1 

 

 

 

 
c  d 

Scenario 1.2 

 

 

 

 
e  f 

Scenario 1.3 
Figure 9: Case study 1 formed by 3 different scenarios. Diagram (top) and real equipment (bottom). 6 

 7 

Case study 2 shows the sensor calibrated and not calibrated, both embedded in the 8 

UAV. Two scenarios are analysed: 9 

• Scenario 2.1: The PV panel is in a horizontal position, supported on the 10 

ground, where  = 0º. The panel is partially covered with dust. 11 
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• Scenario 2.2: The PV panel is in panel in a horizontal position, supported on 1 

the ground, where  = 60º. The room temperature is lower than in case study 2 

1. 3 

 4 

4 Results 5 

The measurements were recorded at the same time and weather conditions for case 6 

study 1, with sunny days. Figure 10 shows the experiments for Scenario 1.1, where the 7 

three zones Zi in Figure 9 are analyzed. Table 3 shows the temperatures given by the 8 

radiometer sensor in Z1, Z2 and Z3. The panel is set in a horizontal position and  = 0º. 9 

The temperature given by the radiometer sensor are different regarding Zi, the maximum 10 

difference being in Z3, where the dust is. The results are validated by the thermography 11 

analysis shown in Figure 10. The temperatures in Z1 and Z2 are almost the same, see 12 

Table 3, and the difference is mainly due to the area that is analyzed. 13 

 14 

 
Z1 Z2 Z3 

Figure10: Thermograms in Scenario 1.1 and Z1, Z2 and Z3. 15 

 16 

The temperatures are not the same between the radiometer and the thermography, the 17 

difference being in most of the experiments around 5 ºC, because the sensor is not 18 

calibrated. The results show that accuracy is not critical for pattern recognition to detect 19 

dust on the PV panels. The sensor has not been calibrated intentionally because the main 20 

objective is to apply pattern recognition. Therefore, it is not necessary to know the real 21 

temperature on the PV panel. The calibration error is a systematic error applied in each 22 

measurement, i.e. the value of variation is almost constant in all cases [77].  23 

 24 

 25 
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Table 3: Temperatures with Radiometer sensor and thermographic camera in Scenario 1.1 Z1, Z2 and Z3 1 

 SI-111 (ºC) WIRIS 640 (ºC) Variation T (ºC) Relative variation (%) 

Z1 60.9 66.5 -5.59 -8.4 

Z2 61.0 67.0 -5.96 -8.8 

Z3 56.6 62.0 -5.35 -8.6 

 2 

Figure 11 shows the body and target temperatures given by the radiometric sensor for 3 

Scenario 1.1 over the time period and Z1, Z2 and Z3. It can be observed that the target 4 

temperature decreases in Z3, and in Z1 and Z2 are similar, being almost constant in each 5 

zone over the time period. The body temperature does not vary in each zone and over the 6 

time period. 7 

 8 

Figure 11. Target and body Temperatures given by the radiometric sensor for Scenario 1.1 over time 9 
periods and Z1, Z2 and Z3 10 

 11 

Figure 12 indicates the thermographic results for Scenario 1.2, where the panel is set 12 

with an inclination of 70º regarding the vertical, and  = 10º. Table 4 shows the 13 

temperatures given by the radiometer sensor Z1, Z2 and Z3. The results are similar to the 14 

results found in Scenario 1.1, where Z1 and Z2 show the same temperature by the 15 

radiometer sensor, and for Z3 a lower temperature is observed. These temperatures are 16 

higher that the temperatures found in Scenario 1.1. The same results are found in the 17 

thermography analysis. The differences are in the temperatures between the radiometer 18 

and thermography analysis in Scenario 1.2 and lower in Scenario 1.1. However, the 19 

relative variation is almost constant, but is a little less for Z3. 20 
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Z1 Z2 Z3 

Figure 12: Thermograms in Scenario 1.3 and Z1, Z2 and Z3.  1 

 2 

Table 4: Temperatures with Radiometer sensor and thermographic camera in Scenario 1.2 and Z1, Z2 and 3 
Z3  4 

 SI-111 (ºC) WIRIS 640 (ºC) Variation T (ºC) Relative variation (%) 

Z1 61.1 66.5 -5.4 -8.8 

Z2 61.0 66.0 -4.9 -8.1 

Z3 58.2 62.3 -4.0 -6.9 

 5 

 6 

Figure 13. Target and body Temperatures given by the radiometric sensor for Scenario 1.2 over time 7 
periods and Z1, Z2 and Z3 8 

 9 

Figure 14 and Table 5 shows the camera and sensor results for Scenario 1.3. The panel 10 

is set to 10º regarding to the vertical, and  = 10º. This scenario considers 4 zones because 11 

the dust area is higher than in Scenarios 1.1 and 1.3. Z1 and Z2 show higher temperatures 12 

in the measurements given by the thermography and radiometer analysis due to the fact 13 

that there is no dust. Z2 shows lower temperatures in both analyses because the border 14 
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indicates dust. The temperature is lower in Z3, where 25% of the area has dust, and a 1 

lower temperature is found in Z4, where the area studied is full of dust.  2 

 
Z1 Z2 Z3 Z4 

Figure 14: Thermograms in Scenario 1.3 and Z1, Z2, Z3 and Z4. 3 

Table 5: Temperatures with Radiometer sensor and thermographic camera in Scenario 1.3 and Z1, Z2, Z3 4 
and Z4 5 

 SI-111 (ºC) WIRIS 640 (ºC) Variation T (ºC) Relative variation (%) 

Z1 61.8 68.0 -6.2 -9.1 

Z2 59.8 65.6 -5.8 -8.8 

Z3 58.1 64.0 -5.9 -9.2 

Z4 56.1 62.1 -6.0 -9.7 

 6 

Figure 15 shows the body and target temperatures given by the radiometric sensor for 7 

Scenario 1.3 over the time periods and Z1, Z2, Z3 and Z4. The target temperature 8 

decreases in Z3 and Z4. The temperatures in Z1 and Z2 are similar, but the temperature 9 

is a bit lower in Z2. The same result is shown in the thermography analysis. It is due to a 10 

real variation in the temperature on the PV panels, which is almost constant in each zone 11 

over the time period. The body temperature variation over the time period does not vary 12 

in each zone. 13 

 14 

Figure 15. Target and body Temperatures given by the radiometric sensor for Scenario 1.3 over the time 15 
period and Z1, Z2 and Z3 16 
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 1 

The results in Z1 in each scenario are almost the same, and the same in Z2 in Scenarios 2 

1.1 and 1.2. It shows that the measurements given by the radiometer and thermography 3 

analysis are the same considering different inclinations of the sensors and the panel. The 4 

temperatures found in Z3 in Scenarios 1.1 and 1.2 are lower than in Z1 and Z2, but they 5 

differ by 2ºC with the radiometer sensor. The same conclusions are reached in the 6 

thermographic analysis. It is observed that the temperature analysis obtained by the 7 

radiometer sensor in Z4 of Scenario 1.3 is lower than in Z3 in Scenarios 1.1 and 1.2, 8 

because the area with dust is greater, and the same conclusion is reached when a 9 

thermography analysis is tested. 10 

The thermography analysis demonstrated coherence and uniformity in the 11 

measurements. The measurement accuracy is determined by the average relative variation 12 

in each experiment. Scenario 1.2 provides the highest degree of accuracy, the worst being 13 

in Scenario 1.3. The accuracy in this case depends clearly on the orientation of the 14 

radiometer sensor regarding the panel.  15 

The experiments in all scenarios show that the radiometer sensor can detect dust on 16 

the panel surface, considering different positions of the panel and the sensor, and areas 17 

with of dust. The results found are also validated by the thermographic analysis.  18 

Validation of the results with the sensor embedded in the drone and the sensor 19 

calibrated/non-calibrated 20 

The results provided by the radiometric sensor not calibrated have been validated by 21 

the calibrated sensor and embedded in an AUV in the laboratory. The calibrated sensor 22 

provides the same results as those with the thermographic camera. The weather conditions 23 

were modified since the temperatures on the surfaces are lower. Table 6 shows the results 24 

with the panel at 70º regarding the vertical, being  = 0º and 60º. A stable correlation is 25 

shown between the dataset.  26 

Table 6. Radiometer senor calibrated and not calibrated embedded in a UAV, with  = 0º and 60º. 27 

EXPERIMENT AT 0ᵒ EXPERIMENT AT 60ᵒ 

Not Calibrated Calibrated Not Calibrated Calibrated 

21.82 24.16 22.13 24.19 

18.39 20.59 17.90 20.05 
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Figures 16-18 show the temperatures of the sensor not calibrated considering different 1 

weather conditions. The weather conditions have been set according to the illuminance, 2 

measuring luminous flux per unit area on the PV surface. It was measured by the MT-3 

912 light meter, with measures luminosity from 0 to 200000 Lux, with high accuracy of 4 

±3% rdg ± 8 dgts (10000 Lux). The experiments were also done with the sensor 5 

calibrated, and the conclusions where the same to the results found previously. Therefore, 6 

only the measures given by the sensor not calibrated are showed in order to clarify the 7 

analysis. 8 

Figure 16 presents temperatures for the scenarios with [59.6, 47, 23.2] klx and the 9 

surface clean. It shows that the temperature obtained rises when the illuminance increases. 10 

  11 

Figure 16. Temperatures with [59.6,47,23] klx and the surface clean 12 

 13 

Figure 17 shows the temperatures with [59.6, 47, 23] klx and the surface is 100% 14 

dirty, i.e. the surface covered by dust. The temperatures for each illuminance are lowers 15 

that the temperatures given in Figure 17 due the dust on the PV surface. It also shows that 16 

the temperature increases regarding to the luminous flux per unit area (the same 17 

conclusion if the PV is clean, Figure 16). 18 
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 1 

Figure 17. Temperatures with [59.6,47,23] klx and the surface dirty 2 

 3 

Figure18 presents the temperatures obtained by the sensor not calibrated with 4 

[59.6,47,23] klx and the PV surface 50% dirty and 50% clean, higher than the 5 

temperatures when the PV surface is 100% dirty (Figure 17), but lower than the 6 

temperatures when the PV is clean (Figure 16). It validates the results obtained in the 7 

laboratory for these weather conditions. In every scenario considered, when the luminous 8 

emittance on the PV panel increases, the temperature measured rises.  9 

 10 

 11 

Figure 18. Temperatures with [59.6,47,23] klx and the surface 50% dirty and 50% clean. 12 
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5 Conclusions 1 

This paper presents a new CMS employing a radiometer sensor connected to an 2 

Arduino board and embedded in an unmanned aerial vehicle. The objective is to detect 3 

dust in PV panels. A thermographic camera is used to validate the results in all the 4 

scenarios. 5 

Three scenarios were analysed in order to consider different positions between the 6 

radiometer sensor and the panel.  7 

The temperatures given by the new system are lower than the real one due to the fact 8 

that the sensor is not calibrated. The main objective is to detect and identify the surface 9 

condition of the panels by pattern recognition, i.e. if the surface indicates dust or not.  10 

The results in cases where the area of the panel is free of dust in every scenario are 11 

almost the same. The temperatures decrease when the surfaces indicate dust, being the 12 

same conclusion in every scenario. The temperature also decreases when the area with 13 

dust is greater. 14 

The results were validated for each experiment with the thermographic analysis, and 15 

the same conclusions were reached. Finally, the sensor not calibrated is analysed together 16 

with a calibrated sensor, doing measurements with the sensor embedded in the unmanned 17 

automatic vehicle and with different weather conditions. 18 

 19 
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