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Abstract

Time series analysis has remained as an extremely active research area for decades, receiving a great deal of attention
from very different domains like econometrics, statistics, engineering, mathematics, medicine and social sciences.
To say nothing about its importance in real-world applications in a wide variety of industrial and business scenarios.
However, as hardware becomes ubiquitous, the amounts of data collected is more and more overwhelming, bringing
us all the so-called big data era. It is in this context where automatic time series analysis deserves especial attention
as a mean of making sense of such enormous databases.

Nevertheless, the automatic identification of the appropriate data modelling techniques stands in the middle as a
compulsory stage of any big data implementation. Research on model selection and combination points out the ben-
efits of such techniques in terms of forecast accuracy and reliability. This study proposes a novel ensemble approach
for automatic time series forecasting as a part of a big data implementation. Given a set of alternative models, a Sup-
port Vector Machine (SVM) is trained at each forecasting origin to select the best model, according to the computed
features and the past performance. The feature space embeds information of the time series itself as well as responses
and parameters of the alternative models. This approach will help to reduce the risk of misusing modelling techniques
when dealing with big datasets, and at the same time will provide a mechanism to assert the appropriateness of the
underlying models used to analyse such data. The effects of the proposed approach are explored empirically using a
set of representative forecasting methods and a dataset of 229 weekly demand series from a leading household and
personal care UK manufacturer. Findings suggest that the proposed approach results in more robust predictions with
lower mean forecasting error and biases than base forecasts.

Keywords: Decision support system, ensemble learning, support vector machines, time series analysis, model
selection.

1. Introduction1

Companies have traditionally adopted business intel-2

ligence solutions to support decision making on a con-3

sistent daily basis, bringing data from different sources4

into a common data infrastructure. However, the primal5

focus was mainly the creation of reporting tools (Dav-6

enport and Harris, 2007). In recent years, the so called7

business analytics (BA) introduced a new approach in8

this domain by leveraging on the latest progress on9

both computer science (e.g. data mining algorithms)10

and hardware technology (e.g. cloud computing, in-11

memory technology), making possible the integration12
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of data sources and business operation on a higher stage13

of abstraction (Sheikh, 2013).14

Although the complexity involved in a real imple-15

mentation is even higher in a company-wide scope, or-16

ganizations will maximize value from BA by integrating17

those models and tools into a broader architecture that18

ultimately unify data, operations and business. This ap-19

proach will enable the “consistent source of truth” (Dav-20

enport, 2006) throughout the organization, as well as a21

more seamlessly and productive use of data by the staff.22

Nevertheless, research on BA has primarily focused23

on either solving the technical issues implied (Plattner,24

2009) (Lenzerini et al., 2003)(e.g. data warehousing and25

IT infrastructure) or optimizing the final user-level pro-26

ductivity from the business perspective (Barone et al.,27

2010b) (Jeston and Nelis, 2008) (Taylor, 2011) (Barone28

et al., 2010a). In spite of that, the automatic identifica-29
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tion of the appropriate data modelling techniques stands30

in the middle as a compulsory stage of any BA imple-31

mentation.32

In this sense, forecasting models are of strategic33

nature given that they gear business decisions rang-34

ing from inventory scheduling to strategic management35

(Petropoulos et al., 2014). Focusing on a supply chain36

context, automatic model selection is a necessity due37

to the high number of products whose demand should38

be forecast (Fildes and Petropoulos, 2015). Forecasting39

and operational research literature has faced the prob-40

lem with different approaches. A first approach could be41

aggregate selection, where a single source of forecasts42

is chosen for all the time series (Fildes, 1989), instead of43

individual selection, where the particular method appro-44

priate for each series is selected. However, aggregate se-45

lection cannot distinguish the individual characteristics46

of each time series (such as trend and/or seasonality)47

and, in general terms, individual selection outperforms48

aggregate selection, although with an associated higher49

complexity level and computational burden (Fildes and50

Petropoulos, 2015).51

Regarding individual selection, different criteria to52

choose the most adequate model can be found in the53

literature. For instance, information criteria like Akaike54

Information Criteria (AIC) or Schwarz’s Bayesian Cri-55

teria (SBC) are typically used. These information cri-56

teria produce a value that represents the compromise57

between goodness of fit and the number of parameters.58

Billah et al. (2006) compare different information crite-59

ria to select the most appropriate exponential smooth-60

ing model on simulated data and a subset of the time61

series from the M3 competition database, where the62

AIC slightly outperformed the rest of information cri-63

teria considered.64

The identification of the best forecasting model has65

also been addressed depending on the time series fea-66

tures. Initially, Pegels (1969) presented nine possible67

exponential smoothing methods in graphical form tak-68

ing into account all combinations of trend and cyclical69

effects in additive and multiplicative form. Collopy and70

Armstrong (1992) developed a rule-based selection pro-71

cedure model (RBF) based on a set of 99 rules for select-72

ing and combining between methods based on 18 time73

series features. In order to automatize this procedure,74

Adya et al. (2001) developed and automated heuristics75

to detect six features that had previously been judgmen-76

tally identified in RBF by means of simple statistics77

achieving a similar forecasting accuracy performance.78

Petropoulos et al. (2014) analysed via regression anal-79

ysis the main determinants of forecasting accuracy in-80

volving 14 popular forecasting methods (and combina-81

tions of them), seven time series features and the fore-82

casting horizon as a strategic decision. Wang et al.83

(2015) propose a rather different approach for long-term84

forecasting based on dynamic time warping of infor-85

mation granules. Instead, Yu et al. (2016) focus on86

finding an empiric decomposition (intrinsic mode func-87

tions) to aggregate the individually forecast components88

later into an ensemble result as the final prediction. An89

alternative for selecting among forecasts is the perfor-90

mance evaluation of the methods in a hold-out sample91

(Fildes and Petropoulos, 2015; Poler and Mula, 2011),92

where forecasts are computed for single or multiple ori-93

gins (cross-validation) usually via a rolling-origin pro-94

cess (Tashman, 2000)95

Finally, another option is to explore combination pro-96

cedures (Clemen, 1989). In fact, Fildes and Petropou-97

los (2015) concluded that combination could outper-98

form individual or aggregate selection for non-trended99

data. Different combination operators (mode, median100

and mean) to compute neural network ensembles are an-101

alyzed by Kourentzes et al. (2014), where the mode is102

found to provide the most accurate forecasts.103

Apart from forecasting models considering time se-104

ries, it should be noted the automatic identification al-105

gorithms developed for causal models. For instance,106

marketing analytics models to forecast sales under the107

presence of promotions have been analyzed by Trapero108

et al. (2015). Additionally, models capable of incorpo-109

rating data from other companies in a supply chain col-110

laboration context with information sharing have been111

explored by Trapero et al. (2012).112

In addition to traditional time series modelling tech-113

niques, Artificial Intelligence (AI) algorithms have114

proved to be quite effective as a mean to build higher115

level methodologies to face big data challenges in an116

effective way, gearing upon both traditional and AI low-117

level techniques. An initial attempt has been carried out118

by Garcia et al. (2012), where multiple time series have119

been classified according to its ACF and PACF values120

to reduce the number of forecasting ARIMA models to121

be designed. However, the forecasting implications of122

that procedure in terms of out-of-sample accuracy was123

not described. Li and Hu (2012) propose a combination124

of ARIMA models using fuzzy logic rules and particle125

swarm optimization. Another efforts focus on building126

hybrid models incorporating AI models as an intrinsic127

component. In a different context, Wang et al. (2013)128

describe a successful application of SVM in a multiple129

classifier ensemble, where a bunch of one-class SVM130

classifiers are trained on different sub-features vectors.131

An additional approach consists on finding homoge-132

neous groups of time series, and model each group sep-133
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arately. For example, Lu and Kao (2016) focus on clus-134

tering the time series to model each cluster via extreme135

learning machine. Other approaches tend to give more136

importance to the hints coming from the application do-137

main, using models that allow embedding such meta138

information. An example of this is given by Homaie-139

Shandizi et al. (2016) who use decision trees to predict140

monthly pilot reserve hours.141

In this work we aim at building an Automatic Fore-142

casting Decision Support System for the 229 Stock143

Keeping Units (SKU) of a leading household and per-144

sonal care UK manufacturer. The data is highly volatile145

and with small serial correlation. The system consists146

of fitting a set of models coming from the Exponen-147

tial Smoothing and ARIMA family of models with dif-148

ferent levels of complexity. The key issue is that the149

model selection is not based only on information crite-150

ria, Schwarz’s (SBC), but it is rather more sophisticated151

by adding a number of additional features with the aid of152

a multi-class SVM. Initially, potential features found in153

the literature like SBC statistics, ACF and PACF values,154

unit root tests, etc., were evaluated and only 19 were155

kept. Then, the SVM is trained to select the most ad-156

equate alternative from a set of models, including Ex-157

ponential Smoothing and ARIMA models with different158

levels of complexity. The results show that the proposed159

approach improves the out-of-sample forecasting accu-160

racy with respect to single or combined models.161

The key contributions of this paper are as follows:162

i) propose a novel ensemble approach for time series163

forecasting based on SVM classification, ii) compare164

base and ensemble forecast error characteristics out-165

of-sample, iii) investigate the effects of the ensemble166

on forecasting errors, as measured in terms of median,167

mean, bias and variance.168

The rest of the paper is organized as follows: Section169

2 introduces the forecasting models and the use of the170

SVM for automatic model selection. Section 3 presents171

an empirical evaluation of the approach in a demand172

planning case study with real data. Section 4 analyses173

the results followed by some final considerations and174

afterthoughts.175

2. Methods176

2.1. Forecasting models177

Let zt be the mean-corrected output demand data178

sampled at a weekly rate, at a white noise sequence (i.e.179

serially uncorrelated with zero mean and constant vari-180

ance), θi a set of parameters to estimate and B the back-181

shift operator in the sense that Blzt = zt−l. Then, taking182

into account the fact that no seasonality is present in the183

data, the forecasting models considered in this paper are184

the following:185

M1 : zt = at (1)186

M2 : zt = (1 + θ1B + θ2B2)at (2)187

M3 (ETS): (1 − B)zt = (1 + θ1B)at (3)188

M4 : (1 − B)zt = (1 + θ1B + θ2B2)at (4)189

Mean : Mean of forecasts M1 to M4 (5)190

Median : Median of forecasts M1 to M4 (6)191

Model M1 is white noise, model M2 is a MA(2),192

model M3 is an IMA(1,1) that is actually treated as a193

Simple Exponential Smoothing model or a ETS(A,N,N)194

in (Hyndman et al., 2008) nomenclature (where E, T, S,195

A and N stand for Error, Trend, Seasonal, Additive and196

None, respectively), M4 is an IMA(1,2), and Mean and197

Median are combination methods. In essence, two sta-198

tionary, three non-stationary models and two combina-199

tions of models are considered.200

It is important to note that some models are nested201

versions of others. For example, model M1 is a para-202

metrically efficient version of the rest of models if θ1 =203

0 and θ2 = 0 in model M2, θ1 = −1 in M3, or θ1 = −1204

and θ2 = 0 in M4. Similarly, ETS model M3 is a par-205

ticular version of M4 with θ2 = 0. Finally, models M2206

and M4 are not nested with any other models because207

of the difference operator.208

These sort of constraints have been taken into account209

in the estimation procedure, since when approximate210

constraints are found the models preferred are the most211

parsimonious ones. This is particularly important when212

dealing with estimated roots close to unity. Specifically,213

when θ1 < −0.992 in model M3, the model is switched214

to M1 for forecasting purposes. Similarly, if any root in215

the MA polynomial of model M4 is smaller than −0.992216

the model is switched to a MA(1), that is not any of the217

models considered above. No unit roots where detected218

when estimating model M2.219

For the 229 SKU time series considered, at least one220

of the models M1 to M4 above is correct in statistical221

terms in the sense that one of them filters out all the222

serial correlation present in the data. Figure 1 shows223

the minimum for the four models M1-M4 of the Ljung-224

Box Q statistic to test the absence of serial correlation225

for eight lags, approximately two months of data (Ljung226

and Box, 1978). Bearing in mind that the maximum227

number of parameters is two, a conservative value for228

degrees of freedom to perform the test is 6.229
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Figure 1: Minimum Ljung-Box Q statistic for each product

The critical values for the Q test at confidences lev-230

els of 90%, 95% and 99% on a Chi-Squared distribution231

with 6 degrees of freedom are 10.64, 12.59 and 16.81,232

respectively, marked by dotted, dashed and solid hori-233

zontal lines in Figure 1. Therefore, most of the values234

are well below the 90% confidence limit. This means235

that, depending on the level of confidence, for 93.89%,236

97.82% and 100% of the SKU series at least one of the237

models is correctly specified, in the sense of not leaving238

significant serial correlation below the confidence limits239

mentioned before. This means that the models fulfill the240

rule of being a sufficient representation of the data at the241

same time of preserving parsimony.242

2.2. Support vector machines243

The support vector machine classifier is basically a244

binary classifier algorithm that looks for an optimal hy-245

perplane as a decision function in a high-dimensional246

feature space (Shawe-Taylor and Cristianini, 2004).247

Consider the training data set {xk, yk}, where xk ∈ Rn
248

are the training examples and yk ∈ {−1, 1} the class249

labels. The training examples are firstly mapped into250

another space, referred to as the feature space, eventu-251

ally of a much higher dimension than Rn, via the map-252

ping function Φ. Then a decision function of the form253

f (x) = 〈w,Φ(x)〉 + b in the feature space in computed254

by maximizing the distance between the set of points255

Φ(xk) to the hyperplane parameterized by (w,b) while256

being consistent on the training set. The class label of x257

is obtained by considering the sign of f (x). In the non-258

separable case, the misclassified examples are quadrat-259

ically penalized scaling by a constant C, the cost pa-260

rameter, and the optimization problem takes the form261

minw,ξ

1
2
‖w‖2 + C

m∑
k=1

ξ2
k under the constraint yk f (xk) ≥262

1 − ξ2
k , ∀k. Using Lagrangian theory, the optimal vec-263

tor w is known to have the form w =
∑m

k=1 α
∗
kykΦ(xk)264

where α∗k is the solution of the following quadratic opti-265

mization problem:266

max
α

W(α) =

m∑
k=1

αk−
1
2

m∑
k,l

αkαlykyl

(
K(xk, xl) +

1
C
δk,l

)
(7)267

subject to
∑m

K=1 ykαk = 0 and αk ≥ 0,∀k, where δk,l is the268

Kronecker symbol and K(xk, xl) = 〈Φ(xk),Φ(xl)〉 is the269

Kernel matrix of the training examples. The extension270

for the case of multiclass-classification with j levels, j >271

2, could be done by the “one-against-one” approach in272

which j( j − 1)/2 binary classifiers are trained; then the273

appropriate class is found by a voting scheme Meyer274

et al. (2015).275

The function K is also known as the kernel function,276

which computes inner products in the feature space di-277

rectly from the inputs x. It is supposed to capture the278

appropriate similarity measure between the arguments,279

while being computationaly much less expensive than280

explicitely computing the mapping Φ and inner prod-281

uct. Although the design of kernel functions is a very282

active research area, there are some popular kernels that283

have been tested in a variety of domains and applica-284

tions with good results. The polynomial kernel is de-285

fined as K(x, z) = p(〈x, z〉) where p(·) is any polynomial286

with positive coefficients. In many cases it also refers287

to the special case Kd(x, z) = (〈x, z〉 + R)d where R and288

d are parameters. Gaussian kernels (also known as Ra-289

dial Basis Functions kernels) are the most widely used290

kernels and have been studied in many different appli-291

cations. It is defined by292

K(x, z) = exp
(
−
‖x − z‖2

2σ2

)
(8)293

where σ is a parameter that controls the flexibility of294

the kernel. In this study gaussian kernels are exten-295

sively used, and the parameter σ is estimated via cross-296

validation as explained in Section 2.3.297

Though it was extended to regression problems since298

its early days Müller et al. (1997), SVM were origi-299

nally designed as a classification algorithm Cortes and300

Vapnik (1995) and have been extensively exploited in a301

huge variety of classification contexts, e.g. hand-written302

digit recognition, genomic DNA Furey et al. (2000), text303

classification Joachims (2002), sentiment analysis Pang304

et al. (2002). But surprisingly SVM have not been ap-305

plied to the problem of model selection in the context of306

multiple forecasting models. This paper constitutes an307

contribution in the area of possible applications of SVM308

in this scenario.309
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2.3. Feature selection and extraction310

Reliable results in SVM and other data driven mod-311

elling techniques are considerable conditioned to the312

quality of the data available for training. Apart from313

the correctness of the data itself, there are some other314

aspects regarding the dimensionality of the dataset. In315

fact, it is well known that as the number of variables in-316

creases, the amount of data required to provide a reliable317

analysis grows exponentially Hira and Gillies (2015).318

Many feature selection (removing variables that are ir-319

relevant) and feature extraction (applying some trans-320

formations to the existing variables to get a new one)321

techniques have been discussed to reduce the dimen-322

sionality of the data Kira and Rendell (1992), to say323

nothing about some other approaches based on linear324

transformation and covariance analysis like PCA and325

LDA Cao et al. (2003) Duin and Loog (2004). For the326

experiments carried out in this work, the initial dataset327

contained 14885 records (65 origins and 229 products),328

and 39 features including SBC and Q statistics, ACF329

and PACF, fitted parameters for each model (if any),330

gaussianity and heterokedasticity tests over residuals,331

unit tests, relative differences and ranking of the alter-332

native models. After a process of feature selection and333

extraction via cross-validation, the number of variables334

was reduced to 19 resulting in a matrixW of dimension335

14885 × 19. The final features are:336

• Four (4) last SKU values available at time t.337

• Relative (6) differences among the predictions pro-338

vided by the alternative forecasting methods (M1339

to M4).340

• Four (4) predictions provided by the alternative341

forecasting methods (M1 to M4).342

• Parameters (5) used by the forecasting methods.343

The vector of labelsLi is formed as a categorical vari-344

able indicating the model with lower forecasting error at345

horizons t + i for 1 ≤ i ≤ 4. For horizons t + 2, t + 3 and346

t + 4 the model with lower forecasting error is selected347

as the one that minimizes the total sum of squared errors348

in all the spanned weeks t + 1, · · · , t + i.349

For each week k, with 4 < k < 65, a SVM with a350

radial basis function kernel (RBF) is trained using the351

training set Wtrain and the corresponding vector of la-352

bels Li for each forecasting horizon. Wtrain is form as353

a partition of matrix W including up to four weeks of354

history (h = 4), i.e., gathering records for weeks k − 4355

to k − 1. Similar considerations were done in shaping356

vector Li. Different values for h were also empirically357
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Figure 2: Example of some SKU from the dataset

tested, resulting in h = 4 as the optimal for the current358

dataset. For optimizing the σ and cost parameters a 5-359

fold cross-validation was performed.360

3. Case study361

The evaluation of the models proposed is carried out362

on a set of 229 demand series from a leading household363

and personal care UK manufacturer. For each product,364

there are 173 weekly sales observations, from which365

101 observations are used as in-sample and the rest are366

reserved for out-of-sample evaluation. Therefore, a set367

of 69 forecast rounds of 4 weeks ahead were carried out368

for each product. Figure 2 shows some examples of the369

time series in the dataset, where the shaded area shows370

the out-of-sample period. Neither seasonality is visible371

in the sample SKUs by eye inspection, nor any strong372

correlation pattern.373

A rolling forecasting experiment is carried out by ex-374

panding the in-sample span one week at a time. All fore-375

casting models are fitted in the in-sample partition using376

the available data up to time T with 101 ≤ T ≤ 169, and377

tested in the out-of-sample partition using observations378

T+1, · · · ,T+4. The out-of-sample forecasting errors are379

therefore calculated for the four forecasting horizons on380

each of the 229 products. We measure the forecast error381

using scaled mean squared error (sMSE) and scaled me-382

dian squared error (sMdSE) that come from computing383

the scaled error (sE) and scaled squared error (sSE) of384

5



the lead time forecast according to the following formu-385

lae:386

sET+l =

∑l
j=1 zT+ j −

∑l
j=1 ẑT+ j

1
T
∑T

i=1 zi
, (9)387

sS ET+l =
(
∑l

j=1 zT+ j −
∑l

j=1 ẑT+ j)2

1
T
∑T

i=1 zi
, (10)388

where the denominator is the mean of the time series,389

ẑT+ j stands for the forecast at time T + j and l = 1, 2, 3, 4.390

Using these metrics has the advantage of allowing zero391

values at some periods of the series, and makes the392

results scale independent and therefore we can sum-393

marize them across products and forecasting horizons.394

Scaled absolute errors were also calculated in addition395

to squared errors in (10), but results were very similar396

and are not reported. Such results are available from the397

authors.398

Models are estimated by Exact Maximum Likelihood399

using the ECOTOOL toolbox written in MATLAB (Pe-400

dregal and Trapero, 2012), except M3 that was han-401

dled in SSpace (Pedregal and Taylor, 2012). SVM402

were treated by using the R package e1071 Meyer et al.403

(2015).404

4. Results and discussion405

One key issue in this study is the agnostic point of406

view, by which we assume that there is not necessarily407

a stochastic process that underlies the actual data, espe-408

cially for this case study, where there is little correlation409

structure in the data. Being this true, one might expect410

that the best model in forecating terms changes with the411

forecast origin and/or horizon.412

Some evidence emerges in the in-sample properties413

of the models. For example, computing the SBC for all414

the SKUs with 101 observations and the full sample we415

see a different model selection in 37% of the time series416

(Table 1). Detailed information about model selection is417

shown in the first two columns of Table 1, where SBC418

tends to select models with higher number of parameters419

and unit roots as the sample size increases. For the small420

sample size, in 55% of the cases the simplest model M1421

is chosen, i.e. for more than half of the SKUs the best422

model is that there is no model! Such proportion is re-423

duced with the full sample, but still M1 is the best model424

according to SBC in 39.30% of the cases, followed by425

the Exponential Smoothing with 29.26% of the cases.426

The third column of Table 1 also shows the best mod-427

els that would have been selected with the full sam-428

ple based on a pure forecasting criterion used with the429

Table 1: Percentage of SKU for which each model is best accord-
ing to SBC on different data-partitions and the out-of-sample forecast
performance

SBC(101) SBC(173) Out-of-sample
M1 55.46% 39.30% 17.03%
M2 14.41% 9.61% 16.16%
M3 13.97% 29.26% 34.93%
M4 16.16% 21.83% 31.88%
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Figure 3: Proportion of time origins at which the best model is best
for all SKU

forecasting results obtained between samples 101 and430

173. The disagreement with the SBCs selection are of431

69% and 44% of the SKUs for the small and full sam-432

ple sizes, respectively. Taken the information in Table433

1 altogether, it shows evidence of the little correlation434

structure seen in the data, that tends to become more435

important with longer time series.436

Figure 3 shows, for each SKU, the proportion of437

times out of 69 forecasting origins in the rolling exper-438

iment that the best model is actually best according to439

the forecasting errors. For example, a 50% for a single440

SKU in that figure means that the best model was best in441

35 of the forecasting origins. Only in 4 SKUs the win-442

ner model was best in more that 60% of the forecasting443

origins and only in 28 SKUs the proportion where su-444

perior to 50%. This means that, even when a model is445

best minimizing the forecasting error for a single SKU,446

rarely it is the best at more than 50% of the forecasting447

origins.448

In order to get a deeper insight into the complexity449

of the problem, Figure 4 shows a single SKU, where it450

may be seen that, taken up to observation 101 it may451

be considered stationary and therefore either M1 or M2452

may be appropriate candidates. However, the fact that a453

trend appears afterwards implies that such model might454

not be optimal any more.455

Such intuitions are supported by Table 2, which456

shows the SBC for all models with samples up to 101457

and full sample, in addition to the sMSEs. The pre-458
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ferred model according to SBC in the small sample is459

M1, with a Q(8) statistic of 3.72 indicating that there is460

no correlation left on the residuals. This model is the461

worst for the full sample. Additionally, the best model462

for the full sample switches to M4 (Q(8) is 9.54), while463

the forecasting criterion suggests that M4 is the best,464

with little margin over M3. Interestingly, the model that465

is the best considering all forecasting origins is model466

M4 with just 53% of the time.467

This evidence is complemented with Figure 5, which468

shows the best model according to its forecasting per-469

formance for each forecast origin in the out-of-sample470

span for the same SKU. At the very beginning the best471

models tended to be M2 or M3. But afterwards, as the472

trend becomes more prominent, the best model switches473

to M4 most of the time, though not always.474

The previous evidence shows that there is not best475

model outperforming the rest for all SKUs, all forecast-476

ing origins and all forecasting horizons. Moreover, even477

Table 2: SBC for all models in two different data-partitions and sMSE
for out-of-sample for SKU in Figure 4

SBC(101) SBC(173) sMSE
M1 1.52 3.31 0.053
M2 1.61 2.89 0.038
M3 1.59 2.26 0.013
M4 1.64 2.19 0.012

for a single SKU there is not consistent best model along478

time. At this point the SVM-based ensemble approach479

is introduced in order to test the hypothesis that there is480

some pattern that would allow to improve the forecast481

accuracy over all models and possible combinations of482

them. In this sense, the proposed approach might be483

considered a sophisticated combination method in itself.484

Table 3 shows the scaled mean (median) squared er-485

rors for all forecasting models and methods, including486

a Naı̈ve model that serves as a benchmark. The last487

row corresponds to the errors generated by selecting the488

best possible model for every forecasting-step out of the489

models set considered.490

Several facts emerge from Table 3. Firstly, taken as491

a whole, all models outperform the Naı̈ve by a wide492

margin, implying that all models capture, at least at493

some part of the experiment, the correlation structure494

of the data. Secondly, for individual models M1 to M4495

the best is consistently the Exponential Smoothing M3496

model, with an advantage that grows with the forecast-497

ing horizon. Thirdly, combinations of methods (mean498

and median) do not manage to outperform the Expo-499

nential Smoothing and both provide virtually the same500

results. Finally, and most importantly, the SVM-based501

ensemble approach is the overall best for all forecast-502

ing horizons with errors that fall between the Expo-503

nential Smoothing and the baseline minimum forecast-504

ing errors. Once more, the advantages of the proposed505

method are appreciated more clearly for higher forecast506

horizons.507

The power of the proposed approach is considerably508

enhanced when the bias is considered, based on the sEt509

measurements in equation (9), see Table 4. All biases510

are small bearing in mind that the highest bias in the ta-511

ble is 0.124 and the normalization imposed on the data512

implies a mean of 1. Conclusions about bias is quite dif-513

ferent depending on whether we rely on SME or sMdE,514

but due to the robustness of the median it is safer to515

use the sMdE values in parenthesis. In essence, the bias516

replicate what was seen in squared errors, the models517

with the smallest squared errors are at the same time the518

models with the smallest bias. The best is the SVM-519
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Table 3: Forecast accuracy for out-of-sample sets in sMSE (sMdSE).
Out t+1 Out t+2 Out t+3 Out t+4

Naive 0.184 (0.041) 0.558 (0.128) 1.114 (0.266) 1.856 (0.437)
M1 0.115 (0.032) 0.278 (0.075) 0.486 (0.134) 0.743 (0.195)
M2 0.109 (0.030) 0.255 (0.072) 0.447 (0.130) 0.689 (0.192)
M3 0.100 (0.026) 0.221 (0.054) 0.363 (0.087) 0.533 (0.123)
M4 0.102 (0.027) 0.230 (0.059) 0.380 (0.096) 0.555 (0.139)

mean 0.101 (0.027) 0.226 (0.060) 0.374 (0.101) 0.549 (0.150)
median 0.101 (0.027) 0.225 (0.059) 0.373 (0.101) 0.549 (0.150)

SVM-based ensemble 0.099 (0.026) 0.212 (0.052) 0.334 (0.081) 0.471 (0.110)
Baseline 0.071 (0.011) 0.149 (0.022) 0.234 (0.034) 0.327 (0.049)

Table 4: Forecast bias multiplied by 102 for out-of-sample sets in sME (sMdE).
Out t+1 Out t+2 Out t+3 Out t+4

Naı̈ve 0.352 (0.000) 0.857 (0.000) 1.010 (7.335) 1.167 (12.447)
M1 0.317 (-4.690) 0.785 (-5.252) 0.903 (-6.199) 1.024 (-7.295)
M2 -0.242 (-4.598) -0.345 (-5.185) -0.208 (-5.336) -0.068 (-7.914)
M3 -1.259 (-4.006) -2.367 (-3.909) -3.826 (-3.101) -5.282 (-3.627)
M4 -2.041 (-4.508) -4.230 (-4.693) -6.769 (-5.004) -9.307 (-5.672)

mean -0.807 (-4.474) -1.539 (-4.853) -2.475 (-5.546) -3.408 (-6.134)
median -0.832 (-4.589) -1.715 (-5.068) -2.669 (-5.094) -3.614 (-6.241)

SVM-based ensemble 0.309 (-3.013) 0.155 (-2.403) -0.610 (-1.310) -2.365 (-2.652)
Baseline 0.002 (-1.246) -0.713 (-1.123) -1.961 (-0.939) -3.193 (-1.635)

based ensemble, followed by the Exponential Smooth-520

ing, then model M4 and combinations of models.521

The SVM-based ensemble approach is allowed to se-522

lect among the different forecasting models at each fore-523

cast origin, and therefore, it is rather more flexible to524

adapt to stochastic or structural changes in the SKUs.525

This fact explains why SVM-based ensemble outper-526

form all the considered alternatives in forecast accuracy.527

5. Conclusions528

This study proposes a novel SVM-based ensemble529

approach for automatic time series forecasting. Since530

forecasting models shape business decisions at different531

levels within companies, this paper aims at enhancing532

the power of forecasting techniques by proposing a new533

approach blending standard criteria, like the Schwartz534

Bayesian Criterion (SBC), with AI techniques, SVM in535

particular, in a context of supply chain forecasting.536

The procedure consists of selecting the best forecast537

available from a menu of choices at each point in time538

by means of a SVM trained in a feature space that em-539

beds the most recent information, forecasts, the relative540

performance and parameters of the models involved. As541

far as the authors are concerned, this is the first time542

SVM are used in this context in this particular way.543

The approach is empirically applied to a leading544

household and personal care UK manufacturer with 229545

weekly Stock Keeping Units (SKU) to forecast, with a546

horizon of 1 to 4 weeks ahead. Findings suggest that:547

i) Exponential Smoothing techniques are very good in548

this context both in terms of forecast accuracy and min-549

imization of bias, maybe a reason why this is the tech-550

nique most used in industry and business; ii) simple551

combination of forecasts (like mean and median) do not552

help much in this regard; iii) SVM classification tech-553

niques certainly manage to improve the forecasting re-554

sults, both in terms of errors and bias.555
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