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Abstract.  15 

The size and the complexity of photovoltaic solar power plants are increasing, and it requires an 16 

advanced and robust condition monitoring systems for ensuring their reliability. This paper 17 

proposes a novel method for faults detection in photovoltaic panels employing a thermographic 18 

camera embedded in an unmanned aerial vehicle. The large amount of data generated by these 19 

systems must be processed and analyzed. This paper presents a novel approach to identify panels 20 

to detect hot spots, and to set their locations. Two novels region-based convolutional neural 21 

networks are unified to generate a robust detection structure. The main contribution is the 22 

combination of thermography and telemetry data to provide a response of the panel condition 23 

monitoring. The data are acquired and then automatically processed, allowing fault detection 24 

during the inspection. A detailed description of the methodology is presented, including the 25 

different stages to build the neural networks, i.e. the training process, the acquisition and 26 

processing of data and the outcomes generation. A thermographic inspection of a real photovoltaic 27 

solar plant is done to validate the proposed methodology. The accuracy, the efficiency and the 28 

performance of the approach under different real scenarios are evaluated statistically obtaining 29 

satisfactory results.  30 

 31 
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1. Introduction  1 

Photovoltaic (PV) energy generation has been growing exponentially during the last decade. The 2 

global installed capacity has increased from 14 GWp in 2008 to more than 385 GWp in 2017 [1], 3 

i.e. a mean annual increase of 28% during the last ten years.  4 

The installed capacity increased due to two main reasons: the extent of modern PV solar power 5 

plants is larger than before [2], covering areas with thousands of square meters, and; modern PV 6 

solar panels are more efficient, increasing the energy production [3,4]. For example, in 2008, the 7 

world largest PV solar plant was “Olmedilla PV Park” (Spain), with a capacity of 60 MW spread 8 

over 285 ha [5], whereas in 2017, it is “Shakti Sthala” (India), 2,000 MWp spread over 5,261 ha 9 

[6]. The difference of installed capacity between both plants is more than 1,940 MWp, being the 10 

extension of the newer plant more than 18 times greater. 11 

Consequently, sophisticated systems require complex maintenance and operation (O&M) tasks 12 

[7,8], e.g. panel cleaning, lubrication, repairs and general inspections [9]. The O&M annually 13 

costs are estimated to be about 11.27 €/kWp in a ground installation [10], being the costs 14 

associated to planned inspection and monitoring around 1.47 €/kWp. Efficient methodologies and 15 

tools are needed to reduce the O&M costs and to improve the availability of the PV solar plants 16 

[11-13]. These approaches can facilitate both corrective and preventive maintenance [14-17]. 17 

This paper presents a method to process the data provided by an unmanned aerial vehicle (UAV) 18 

[18,19] fitted with a thermographic camera [20,21]. An 97% average increasing in inspection 19 

efficiency between aerial and to manual inspection time was found in reference [22] comparing, 20 

i.e. 1.07 €/kWp reduction. 21 

The thermographic camera captures the infrared energy emitted by the objects [11]. The UAV 22 

allows thermal data to be acquired from better locations [23,24]. Hereinafter, the system 23 

composed of the UAV and the IR camera will be named as IR-UAV system. This system provides 24 

two different types of data: the IR images captured by a thermographic camera are collected in a 25 

matrix that assigns a temperature value to each pixel; telemetry data are provided continuously 26 

by the UAV, e.g. Global Positioning System (GPS), coordinates, altitude, orientation, etc. The 27 

system can record large amount of data in few minutes, e.g. around 2 Gigabytes in ten minutes. 28 

This paper proposes an advanced method to analyse automatically these data. Figure 1 shows a 29 

basic scheme of the complete data acquisition system. 30 

 31 

Figure 1. Data acquisition and image composition: An UAV equipped with thermographic camera obtains 32 
images from solar modules; A temperature matrix is generated, and a processing algorithm is used to 33 

detect relative hot spots; The telemetry is added for hot spots localization.  34 

 35 
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The thermal images can be employed to detect relative hot regions, associated to some failures, 1 

e.g. damaged cells, short circuits and fire hazards, etc. [25]. The telemetry data can be used to 2 

locate these hot spots. An artificial neural network (ANN) based methodology is developed to 3 

recognize panels and detect faults. The results of the image processing together with the GPS 4 

position are presented in a final report. This information facilitates the maintenance management, 5 

since the hot spots and failures in the PV solar power plant can be mapped. 6 

The main contributions of this paper are: 7 

- The paper proposes a combination of thermography, GPS positioning and convolutional 8 

neural networks (CNN) for fault detection in PV solar panels. Several authors have employed 9 

some of these techniques but not all techniques together. For example, Acciani et al. proposed 10 

a generic analysis of PVs using thermography [26,27], concluding that dirt can be identified 11 

as dark regions in thermal images. J. Muñoz et al. studied the risk of hot spots, that can cause 12 

irreversible damage in modules, appearing in PV solar cells and also in resistive solder bonds 13 

[28]. M. Aghaei et al. studied the applications of UAVs in PV solar plants maintenance [29]. 14 

They performed two experiments: the UAV flew for 5 minutes and monitored some panels in 15 

a roof; the second flight was in a PV solar plant. This inspection method had some limitations 16 

due to is was a visual method and image processing was not included. However, they confirm 17 

that UAVs result an efficient, cheap and reliable inspection tool. Kim et al. developed a 18 

method for detecting failures automatically in PV modules. They employed an UAV equipped 19 

with thermographic camera [30]. They obtained the panel area with their own algorithm and 20 

created an intensity histogram for each panel [31]. The automatic detection method was a 21 

pattern recognition based on histograms and statistical characteristics between good and 22 

defective panels. Unlike the method presented in this paper, they did not employ telemetry or 23 

GPS data to determine the location of the faults.  24 

- The method allows to detect and located faults automatically. Literature shows similar 25 

techniques to locate faults. For example, Tsanakas et al. elaborated an advanced inspection 26 

system based in UAVs and thermal images [32]. They developed a technique with true 27 

orthophoto mapping, based on aerial triangulation and also GPS techniques. They concluded 28 

that GPS was more effective than aerial triangulation, especially in large areas. However, this 29 

method is not an automatic detection process. 30 

- This work employs artificial intelligence to detect faults in PV panels. Similar works can be 31 

found in the literature [33], however, they do not combine the region-based convolutional 32 

neural networks (R-CNN) and telemetry data. Thermography in PV solar panels has been 33 

developed on laboratories to study or identify hot spots, or cracked silicon wafers [28,34]. 34 

ANN based methods, in particular R-CNN, are often used to the object detection and 35 

classification in images [35], even real-time object detection [36]. Some authors use 36 

pretrained networks suitable to current object detection, e.g. AlexNet or GoogleNet [37]. 37 

However, they cannot detect relative hot regions since they are not a common object. This 38 

tool is also employed in the automotive sector to detect signals [38], vehicles or pedestrian 39 

[39]; in medicine to detect tumours [40] or face detection [41]; and in manufacturing industry 40 

for process automation [42]. Regarding the positioning system, a similar technique can be 41 

found in reference [43], where the positioning of the UAV is improved by integrating a 42 

GPS/INS/Vision sensors (INS: inertial navigation systems). However, this positioning system 43 

is not integrated in a R-CNN. 44 

- The method is validated and applied in real PV solar plants. Most of the works about 45 

thermography inspection of PV solar panels focus on the analysis of individual panels. In 46 

those works, different methods were applied to demonstrate the capabilities of thermography, 47 

for example, studying the efficiency of the panel [26], detecting relative hot regions in panels 48 

[44] or identifying general faults in PV modules [45]. However, the proposed method is 49 

employed in a real PV solar plant, where many panels can be analyzed together.  50 
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 1 

Therefore, the main contribution of this paper with respect to the literature is the development of 2 

an intelligent algorithm that detects and allocates automatically relative hot areas of solar panels. 3 

The algorithm is tested in a real PV solar farm.   4 

The paper is structured as follows: Section 2 describes the IR-UAV based data acquisition system. 5 

Section 3 explains the CNN and the R-CNN structure. Section 4 shows the method together with 6 

the training, data acquisition and processing stages. Section 5 validates the method in a real PV 7 

solar plant by comparing the outcomes of the method with the real dataset.  8 

 9 

2. Infrared cameras embedded in UAVs and PV solar panels 10 

Thermography is a non-destructive evaluation (NDE) technique [20,46-48]. Therefore, it allows 11 

to inspect components and materials without modifying their structural or physical integrity. It is 12 

based on the infrared radiation (IR) that objects emit [49].  13 

Thermographic inspections can provide the operating status of the PV panels using a 14 

thermographic pattern identification of relative hot areas. Further details about these patterns can 15 

be found in references [50] and [51]. This information can be used for detecting faults or abnormal 16 

performances. 17 

There are two types of IR thermography techniques: active techniques, which employ an external 18 

source that adds extra energy to the object, generating an internal heat flow and increasing the 19 

temperature, and; passive techniques, that measure the radiation from the matter without using 20 

any external heat source.  21 

The approach proposed in this paper employs radiation data collected by passive thermographic 22 

methods, i.e. the acquisition system only needs a camera without any power heat systems. The 23 

suitability IR-UAV system depends on the following aspects: 24 

UAV specifications: the UAV must be safe and stable. The most determining parameters are:  25 

- Power is the capacity in watts of the UAV. The power will determine variables such as the 26 

total admissible weight, the battery consumption and the power of DC motors.  27 

- Autonomy is the estimated flight time of the aircraft. It depends of, for example, the 28 

weight or the wind speed. 29 

- Weight depends on the type of UAV and the on-board equipment, e.g. camera, sensor or 30 

video transmitters. 31 

- Gimbal is the device that controls the movement of the camera. It usually has pan, tilt and 32 

roll movements. It is essential for controlling the camera.  33 

IR camera features: it must be able to take thermal and visual images and to provide telemetry 34 

and GPS data. The most important parameters of the camera are [52]: 35 

- Resolution corresponds to the density of pixels of the images. High-resolution cameras 36 

allow usually smaller areas to be scanned without losing the quality of the image. The 37 

available information depends on the resolution of the detector.  38 

- Focal length is de distance between the convergence point and the imaging sensor. It 39 

determines the angle of view and, therefore, the area recorded [53].  40 

- Temperature range is the difference between the maximum and the minimum 41 

temperatures that can be recorded by the IR camera.  42 
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- Emissivity is related to the energy that matter radiates to the exterior. The emissivity is 1 

adjusted in the camera depending on the object to analyse. Emissivity values could vary 2 

with the surface condition of the measured object, and also with temperature variation 3 

and wavelength. A variation in emissivity values will cause an alteration in the measure 4 

[51]. 5 

The hour of the day and the date are key variables for the experiments. The acquisition system 6 

has been designed considering that each PV solar plant has a different shape or design, either 7 

related to the configuration of panels or the conditions of the terrain in that are installed.    8 

Configuration of the plant and the panels: Figure 2 shows some configurations for PV solar 9 

trackers and panels. In case of ground installations, it is common to place the modules in a row 10 

as shown in Figure 2(d). If the panels are installed in PV solar trackers, they can be configured 11 

according to different patterns, see Figure 2(a, b, c).  12 

 13 

 

  

 

(a) (b) (c) (d) 

Figure 2. Different panel configuration: PV solar tracking with one or two axes (a), (b) and (c); 14 
ground installation (d). 15 

Orientation of the UAV and the IR camera. The images should be taken in perpendicular to 16 

the PV panel, where panels have square or rectangular contours in the image. The time and the 17 

date of the flight require to be considered to avoid reflections because they could cause confusions 18 

with relative hot region or other faults [54]. The altitude of the UAV determines the number of 19 

panels inspected, where duplicated information would appear in several frames. 20 

Reflections are a common problem in thermography inspections. It affects to the image resolution 21 

and the precision. Accurate measurements only will be possible when the image signal presents 22 

a high noise equivalent temperature-difference (NETD) [54]. In case of reflections, the approach 23 

could detect brightness instead of relative hot regions. 24 

Duplication of data. A panel or a set of panels may appear several times in different frames since 25 

several images are inputted into the approach. An algorithm to manage these duplications is 26 

needed before the results.  27 

An adequate combination of these factors allows high-quality thermographic inspections to be 28 

carried out.  29 

3. Convolutional neural networks 30 

ANN is an advanced and robust method based on biological neural networks. They are usually 31 

composed of the following elements: 32 

- Neurons are the processing units. There are three types of neurons grouped in layers: 33 

input neurons, output neurons and hidden neurons. The input layer receives the data, the 34 

hidden layers link the inputs and the outputs, and the output layer provides the outcomes 35 

of the ANN.  36 
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- Activation function defines the output of each neuron according to its inputs. The 1 

activation value can be continuous or discrete. 2 

- Connection between neurons is a certain value adjusted during the training stage and 3 

reflects the knowledge acquired by the net.  4 

ANNs learn to interpret the data by a training process. Then, the data can be classified according 5 

to the learned patterns [33]. However, the ANNs require a large computational cost for processing 6 

images. These images need a high number of connections between neurons and require large 7 

processing periods. This problem can be addressed by using CNNs. 8 

CNNs belong to the family of Deep Neural Networks, whose main characteristic is the use of 9 

multiple convolution layers [55]. Their structures are different from conventional ANNs such as 10 

perceptron [56]. CNNs have some layers only connected to a subset of neurons in the next layer, 11 

reaching a high processing speed. Figure 3 shows a comparison between ANN (left) and CNN 12 

(right). 13 

          14 

Figure 3. Comparison of ANNs and CNNs [57].  All the layers are fully connected to the 15 
neighbor layers in a typical ANN. The CNN include convolutional and pooling processes. 16 

CNNs usually consist of two stages: feature extraction and classification [58]. The first stage is 17 

composed of alternative layers of convolutional neurons and sampling reduction neurons. 18 

Distinctive features of the image, such as edges or textures, are extracted in this stage. The 19 

objective is to classify different regions by fully connected layers. 20 

Several authors have demonstrated the effectivity of a type of CNN for object detection and 21 

semantic segmentation (SDS), called R-CNNs. Hariharan et al. trained a two column R-CNN for 22 

traditional bounding box detection and for semantic segmentation [59]. Gkioxari et al. trained an 23 

R-CNN to detect people and to recognise their positions and actions. They joined several networks 24 

obtaining similar results to individual networks, but N-times faster [60]. Due to their efficiency 25 

for generic object detection, R-CNNs are proposed in this paper for PV solar panel and relative 26 

hot region detection. 27 

The structures of these networks are based on the following layers:  28 

Convolutional layers are sets of filters capable of learning by a training stage [61]. These filters 29 

are convoluted along the input image. The number of neurons (𝑁) is given by equation (1): 30 

𝑁 =
(𝑊−𝐹+2𝑃)

𝑆
 +1,         (1) 31 

where: 32 

- 𝑊 is the input volume.   33 

- 𝐹 is the spatial extent.  34 

- 𝑆 is the stride of the convolution. 35 

- 𝑃 is the zero padding on the border. 36 
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A zero-padding is used to ensure that the input and the output have the same size. A zero-padding 1 

is a process that pad the input volume with zeros around the border. To control the output volume, 2 

the zero-padding is used and the stride (𝑆) is set at 1. Then, the zero padding (𝑃) is defined by 3 

equation (2): 4 

𝑃 =
(𝐹−1)

2
 .         (2)  5 

An input size of  𝑊1 𝑥 𝐻1 𝑥 𝐷1 will generate an output size of 𝑊2 𝑥 𝐻2 𝑥 𝐷2. These parameters 6 

are defined by equation (3): 7 

𝑊2 =
(𝑊1−𝐹+2𝑃)

𝑆
+ 1; 𝐻2 =

(𝐻1−𝐹+2𝑃)

𝑆
+ 1; 𝐷2 = 𝐾;     (3) 8 

where 𝐾 is the number of filters of the convolutional layer.  9 

Pooling layer: is commonly inserted between different convolution layers. This layer is used for 10 

a progressive reduction of the spatial size of the representation. The number of parameters and 11 

the computational cost will be reduced. The pooling layer has a size of 𝑊2 𝑥 𝐻2 𝑥 𝐷2. The output 12 

will be a volume of dimensions 𝑊3 𝑥 𝐻3 𝑥 𝐷3, where: 13 

𝑊3 =
(𝑊2−𝐹)

𝑆
+ 1; 𝐻3 =

(𝐻2−𝐹)

𝑆
+ 1; 𝐷3 = 𝐷2;     (4) 14 

Rectified Linear Unit (ReLU) layer: it is a complementary step to the convolution operation. Some 15 

authors consider that it is a part of the convolutional layer. In this paper, it is considered as a 16 

separated layer because of the programming language employed [62]. This layer employs an 17 

activation function [63,64]. This function can be defined by equation (5).  18 

𝑓(𝑥) = {
𝑥,   𝑥 ≥ 0
0,    𝑥 < 0 

         (5) 19 

Fully-connected layer: the neurons are connected with all the activation functions of the previous 20 

layer. The input is pondered by a weight matrix and a bias vector is added. The objective of this 21 

layer is to classify the input image through the features obtained previously. This layer is usually 22 

followed by a SoftMax Layer.  23 

SoftMax layer [65]: It is used as a classifier. The probabilities of each class are calculated with a 24 

confidence level. The SoftMax model is often considered as a part of the fully connected layer. 25 

The advantage of using SoftMax is that the sum of the output vector is 1 and there are not negative 26 

values, therefore, each component can be considered the probability of each class. The same 27 

vector could be also obtained by employing the Sigmoid function when the number of output 28 

classes is 2. The SoftMax model is a generalization of the sigmoid function for multiclass 29 

prediction. The use of SoftMax would allow to the ANN to be improved in case that more classes, 30 

such as specific faults, need to be predicted. Each node of this layer receives the information from 31 

all the nodes of the previous layer. The total input of the SoftMax layer (𝑎𝑖) is given by equation 32 

(6). 33 

𝑎𝑖 = ∑ ℎ𝑘𝑀𝑘𝑖𝑘          (6) 34 

being: 35 

- ℎ is the activation function of the previous layer nodes. 36 

- 𝑀 is the weight connecting the previous layer to the SoftMax layer. 37 

For 𝑋 number of classes, this layer contains a total of 𝑋 nodes denoted as pi [66], where pi is a 38 

discrete probability function, so that ∑ 𝑝𝑖 = 1.𝑋
𝑖  The probability value assigned to each class is: 39 
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𝑝𝑖 =
𝑒𝑥𝑝(𝑎𝑖)

∑ 𝑒𝑥𝑝(𝑎𝑗)𝑋
𝑗

         , where 𝑖 = 1, … , 𝑋                                         (7) 1 

Finally, since 𝑝𝑖 is dependent on 𝑎𝑖, then the predicted class 𝑖 ̂ is given by: 2 

𝑖̂ = 𝑎𝑟𝑔 max
𝑖̂

( 𝑝𝑖)   or   𝑖̂ = 𝑎𝑟𝑔 max
𝑖̂

( 𝑎𝑖)                   (8) 3 

Figure 4 shows the operations carried out by each different layer of the R-CNN.  4 

 5 

Figure 4. Scheme of R-CNN functioning, being the region proposal step is a specific stage of the R-6 
CNN. 7 

The class prediction is the basis for the detection system. Figure 5 shows the scheme of the 8 

detection system proposed in this paper [36]. An image is selected and the regions of interest 9 

(ROI) are marked (Figure 5.2). This step is accurately developed by experts using specific 10 

labelling software, e.g. see reference [67], obtaining a database with the images ant the location 11 

of panels and relative hot regions in the image. Then, the images are computed by the R-CNN 12 

(Figure 5.3) that provides a final classification (Figure 5.4)). 13 

FEATURE EXTRACTION STAGE   

CLASIFICATION STAGE   

REGION PROPOSAL STAGE 

Convolution layer. 
The inputted image is filtered by 
convolution. This filter allows to 

highligh certain characteristic from 
the image 

Relu layer.
This filter allows to activate a 

characteristic from the image. Only 
the activated characterirstics 

continue. The rest of characteristic 
are blocked

Pooling.
The dataset is reduced by 

extracting the most significative 
pixel from different pieces of the 

image. 
Tipycal pooling are: 

-  Max. Pooling: the pixel with a 
maximum value is selected.  

- Average pooling: the average 
value of the pixels is calculated

Fully connected layer.
Receives the data from the 
previous layer. Each neuron 

process the inputs by assigning 
different weights to each inputs. 
These weights are adjusted in the 

training process.  

Softmax layer. 
The information received from the 
fully connected layer is converted 
into a number between [0,1]. Each 

neuron of this layer give the 
probability of an output class.

  

Output classification layer. 

The cross entropy loss of the input 
is evaluated. This layers allows to 

analice the probabilities and finally 
choose an output class.  

  

Input Image
An image is inputted 

into the R-CNN. A 
colour image is 

composed by three 
channels red, green 

and blue (RGB) 

Classified Outputs

Images are procesed 
and the detected 

objects are marked

Warped Regions  
The regions are warped into fixed 
size images and inputted into the 

CNN classificator

Region proposal function  
This function propose a vector of 
different rectangular bounding 
boxes. Around 2000 regions are 

created
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 1 

Figure 5. Scheme of object detection system based on region-based convolutional neural networks: 2 
An image is inputted (1); Several regions are proposed and evaluated (2); These regions are inputted in 3 

the CNN classifier (3); A final classification is provided (4).  4 

The success of the R-CNN depends on several variables, e.g. the applicability of the input 5 

database, the volume and the representativity.  6 

4. Novel Approach 7 

This section describes novel methodology for detecting and locating relative hot regions. The 8 

algorithm is divided into three main stages: a R-CNN based structure is created and trained by 9 

using real image of solar panels; the R-CNN is employed for processing new data from the IR-10 

UAV system, and; the results are summarized in a report, considering both telemetric and thermal 11 

information. Figure 6 shows the flowchart of the method. 12 

IMAGE 
DATABASE

TRAIN R-CNN PANEL 
DETECTOR

TRAIN R-CNN  
HOTSPOT 
DETECTOR

THERMOGRAPHIC 
IMAGE AND 
TELEMETRY

ORIENT DETECTION
AND ROTATE

R-CNN PANEL 
DETECTOR

R-CNN HOTSPOT
 DETECTOR

YES

YES

GPS AND TELEMETRY

NO

FRAME 
PREPARATION

NO

FINAL REPORT

PANEL ROI

PANEL
LABEL

BOUNDARY BOX

HOTSPOT ROI

HOT SPOT
LABEL

BOUNDARY BOX

HOTSPOT DETECTION

 13 

Figure 6. Flowchart of the proposed algorithm.  14 
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area of 
interest 

2. Extract region 
proposals 
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Panel? No. 

Hot spot? Yes. 
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a) Training process  1 

The first step is the generation of a database using images of a PV solar power plant. The training 2 

image set employed is based on 800 images, including 320 hotspots.  Different types of panels, 3 

shapes, sizes and orientations must be included. The training process has been done in this paper 4 

by selecting the individual frames and labeling the ROIs in them. Each ROI is a rectangular 5 

window defined by four points (𝑋, 𝑌, 𝐻, 𝑊), i.e. the top-left corner (𝑋, 𝑌), the height (𝐻) and 6 

weight (𝑊) [68]. Two types of ROIs will be considered in this paper: A Panel Set ROIs and 7 

Relative hot regions ROIs. The creation of the ROIs requires the definition of the labeling and the 8 

boundary box.  9 

The labeling stage is to determine the type of ROI. The boundary box will determine the area of 10 

the image that the ROI is covering. Figure 7 shows an example of the ROIs definition during the 11 

R-CNN training process.  12 

 13 

Figure 7. ROIs definition during the R-CNN training process. The labels are employed in the training 14 

process.  15 

The training images are ready to be inputted in the R-CNN when the ROIs have been defined. It 16 

is necessary to fix the training options before starting the training stage, including:  17 

- Initials weights and biases: these values are employed in the design of the Convolutional 18 

layer and the Fully Connected Layer. By default, they are a Gaussian distribution with a 19 

mean of 0 and a standard deviation of 0.01. The weights and biases are updated with the 20 

Stochastic Gradient Descent (SGD) algorithm  in order to minimize the loss function [69].  21 

- Initial learn rate: used for initial training. An initial learn rate of 10-6 has been used. A 22 

low learn rate leads a slow training process, but a high learn rate could provide inaccurate 23 

results. 24 

- Learn rate schedule: it allows the learn rate to be modified during the training stage. This 25 

learn rate is proportional to the called “Learn rate drop factor”. No learn rate has been 26 

required in this training. 27 

- Learn rate drop factor: used in case that the learn rate schedule is active.  28 
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- Learn rate drop period: is applied to the learn rate schedule and defines the period of 1 

epochs to apply previous factor.  2 

- Max epochs: 15 epochs have been found as the optimal. The number of epochs determines 3 

the number of times that the training algorithm is applied to the whole training dataset. 4 

The time required by the training process depends on this parameter.  5 

- Mini batch size: adjusts the batch size. With a batch size of 16, optimal results have been 6 

obtained. This batch is a subset of the training image set. The SGD algorithm uses the 7 

parameter mini batch size as a parameter to evaluate the gradient at each iteration. A 8 

gradient clipping stabilizes the higher training learning rates in case of exponential 9 

increasing of the gradient. 10 

The selection of both the batch size and the max epochs has been done by iterating the 11 

algorithm with different values. Figure 8 shows that a higher max epochs number reduces the 12 

error, however the computational time increase. Similar results can be found in reference [70]. 13 

It can be observed that the error become stable from 15 epoch.  14 

 15 

Figure 8. Max. Epoch vs Error during the R-CNN validation process for different batch sizes. The 16 
error decreases when the maximum number of epochs is higher.  17 

 18 

Figure 9 shows the computational time required by the algorithm to complete the image 19 

processing for different batch sizes and 15 max. epochs. In this case study, the computational cost 20 

decreases for higher batch sizes. Therefore, a batch size of 16 is selected instead of 8. These 21 

parameter selection leads to reduce the computational cost without an excessive loss of accuracy.  22 

 23 

Figure 9. Batch size vs. running time. In this case study, a reduction of running time is observed 24 
when the minimal batch size increases.   25 
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Table I shows a resume of the training options and structural parameters considered for the 1 

proposed R-CNN. 2 

Table I. Parameters of R-CNN 3 

Parameters Values 

Initial learning rate 10-6 

First convolutional layer filter size 5x5 

No. of filters in the first convolutional 32 

Second convolutional layer kernel size 5x5 

No. of filters in the second convolutional 32 

Third convolutional layer filter size 5x5 

No. of filters in the third convolutional 64 

Max. pooling layer kernel size 3 

No. of neurons in the fully connected layer 2 

No. of epoch 15 

Min batch size 16 

 4 

The convolutional layers are created after the training options. The method employs a R-CNN 5 

with 15 different layers including input, convolution, ReLU, pooling and output layers. Figure 10 6 

shows the architecture of the developed R-CNN, that is based on the architectures given in 7 

references [71], [72] and [73].  8 

 9 

Image Input Layer
Size: [32 32 3]

Convolution 2D 
layer

Filter Size: [5 5]

Max. Pooling 2D 
layer

Pool Size: [3 3]

ReLu Layer
Convolution 2D 

layer
Filter Size: [5 5]

ReLu Layer
Average Pooling 

layer
Pool Size: [3 3]

Convolution 2D 
layer

Filter Size: [5 5]

ReLu Layer
Average Pooling 

layer
Pool Size: [3 3]

 Fully Connected 
layer

Input Size: 576

Output Size: 64

ReLu Layer
 Fully Connected 

layer
Input Size: 64

Output Size: 2

SoftMax layer
Classification 
Output Layer

Output Size: 2

 10 

Figure 10. CNN architecture based on layers. 11 

The training process is a complex task that could take several hours, even days, depending on the 12 

number of images, boundary boxes and labels, and on the GPU or CPU characteristics. The 13 

training algorithm is according to reference [74]: a Region Proposal Network is pre-trained to 14 

generate a set of proposals; a new detection network is trained by using the proposals generated; 15 

the detector network is employed to initialize the RPN training, and; the convolutional layers 16 

shared by both networks are fixed and the fully connected layers are tuned. Consequently, the 17 

networks share the convolutional layers to create a unified structure. Once the R-CNN has been 18 

trained, it is ready to receive real images from the data acquisition system.  19 

 20 
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b) Data acquisition and processing 1 

The telemetry data provided by the IR-UAV system contain the altitude, orientation, GPS 2 

position, camera angle and vision angle. The data will be added to the final report if a relative hot 3 

region is detected. 4 

The R-CNN provides better results if the edges of the PV solar panels are perpendicular to the 5 

edges of the images because of the ROIs are square. Therefore, it is convenient to orientate the 6 

image to improve the detection task. For this purpose, a code has been developed using an edge 7 

detection algorithm. It is based on derivative approximation method [75], developed through the 8 

Sobel model. The bounds are considered to be the points where the gradient is maximum. The 9 

edges of the images are detected using this information, and the algorithm is able to find the 10 

predominant directions to rotate the image. Figure 11 shows, from left to right, the different steps 11 

of the image rotation process.  12 

   13 

Figure 11.  Input image (Left); Edge detection (Middle): This image shows an intermediate step 14 
in which the contours of the solar modules are detected; Rotated image (Right): the contours of the panels 15 

are parallel to the edge of the image. 16 

The detection algorithm is developed to assign a score to each boundary box and a confidence 17 

scores to each detected object. Only those results with a high confidence (more than 0.9) will be 18 

considered in this paper. Figure 12(a) shows an example of boundary boxes detection. The 19 

approach will search relative hot region only in the PV ROIs identified. Relative hot regions 20 

detected outside boundary boxes will be discarded since they can be generated by reflections, 21 

stones, or other external elements. The image is analysed with the R-CNN relative hot region 22 

detector. Figure 12(b) shows the outcome. 23 

                 24 

 

 

 
(a)  (b) 

 25 
Figure 12. Output of pretrained R-CNN (a) and result of relative hot region detection (b). 26 

 27 

The final stage of the approach is to associate the telemetry data and the outcomes in case that 28 

any relative hot region has been detected.  29 
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c) Relative hot region localization   1 

The approach outcomes and the telemetry data are joined to generate a final report. The GPS 2 

position is combined with the altitude, the UAV orientation, the camera angle and the focus angle. 3 

Figure 13 shows a basic scheme the area of interest together with the variables. The area of interest 4 

is the real portion of ground taken by IR camera in a specific frame. On the other side, the ROI is 5 

the region inside the area of interest that will be analyzed. 6 

 7 

Figure 13. Area of interest (red square): This area is considered as the total area captured in a frame. 8 
ROI (yellow square): contains the area that will be analysed. Camera and focus angles are shown by 9 

yellow and grey triangles respectively.  10 

The following parameters are considered for calculating the position of the damaged PV module 11 

(see Figure 14):  12 

- Altitude (z), Zenithal angle (𝜃𝑍𝐷) and Azimuthal angle (𝛹𝑍𝐷), provided by the telemetry 13 

system. 14 

- The field of view angle (ϒ) of the thermographic camera. 15 

- Location of the relative hot region within the IR image (𝑋ℎ , 𝑌ℎ). 16 

- Coordinates of the drone (𝑥𝐷 , 𝑦𝐷), provided by the GPS. 17 

This information is processed through trigonometric. The area of interest coordinates 18 

(𝑥𝑓1, 𝑥𝑓2, 𝑦𝑓1, 𝑦𝑓2) and the coordinates of the damaged panel (𝑥𝑃 , 𝑦𝑃) are obtained. Figure 14 19 

shows two perspectives to visualize the information provided by the GPS and the telemetry 20 

system together with the coordinates above mentioned.  21 

 22 

Figure 14. Different perspective of the location of panels with relative hot regions, and distances 23 
and angles employed for their localizations. 24 
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The following expressions are employed to obtain the coordinates in the ground according to 1 

Figure 14: 2 

𝑦𝑓1 = ℎ ·  𝑡𝑎𝑛(90 − 𝜃𝑍𝐷 − 0.5 ϒ) 3 

𝑦𝑓2 = ℎ ·  𝑡𝑎𝑛(𝜃𝑍𝐷 − 0.5 ϒ) 4 

𝑥𝑓1 =  𝑦𝑓1 · 𝑡𝑎𝑛(𝛹𝑍𝐷 − 0.5 ϒ) 5 

𝑥𝑓2 = 𝑦𝑓2 ·  𝑡𝑎𝑛(𝛹𝑍𝐷 − 90 − 0.5 ϒ) 6 

 7 

Therefore, the relative hot region location is given by: 8 

𝑥𝑃 = 𝑥𝑓1 + 𝑋ℎ 9 

𝑦𝑃 = 𝑦𝑓1 + 𝑌ℎ 10 

𝑥𝑃 and 𝑦𝑃 are set into GPS coordinates to show to the operators the allocation of the faults. 11 

Nowadays, any fault is usually manually checked by operators before starting any task. The GPS 12 

and the telemetry systems are subject to errors that depend of the system.  13 

 14 

d) Results 15 

The final report presents a table with two columns. The rows correspond to each fault detected. 16 

The first column contains the GPS coordinates of the area of interest. The second column defines 17 

the position of ROI. The results vary if the telemetry data are not accurate enough [76]. Figure 15 18 

shows an example of a final report. The four points (𝑋ℎ , 𝑌ℎ , 𝐻, 𝑊) define in which position of the 19 

image the relative hot region are detected, (𝑋ℎ , 𝑌ℎ) are the start point of the relative hot region, 20 

and (H, 𝑊) are the size in pixels of the boundary box. It is combined with the GPS telemetry 21 

specified in each frame to determine the final position. 22 

GPS Latitude/Longitude 𝑋ℎ/𝑌ℎ/𝐻/𝑊 

39.2127/-1.7629  492/231/90/33 
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 1 

 2 

 3 

Figure 15. Relative hot region and GPS location. Combination of IR image and telemetry. The 4 
final report shows a table with the GPS coordinates of hot spots. 5 

 6 

5. Case study and validation of the method 7 

The approach has been implemented and used for inspecting a real PV solar plant of 100 kWp. 8 

Figure 16 shows the main image processing and hotspot detection steps for one example thermal 9 

image of the solar park. Figure 16(a) contains a thermal image of a PV solar plant collected by 10 

the IR-UAV system. It has 640x534 pixels and a 32-bit color depth. The telemetry data, together 11 

with the emissivity and the acquisition date, are included at the bottom of each image. Figure 12 

16(b) shows the edge detection process used for rotating the image. Figure 16(c) shows the result 13 

of the rotation process. Figure 16(d) presents the outcome of the R-CNN panels detector. Figure 14 

16(e) shows the outcome of the R-CNN relative hot region detector. Finally, Figure 16(f) contains 15 

the relative hot regions labeled with the specific estimated location.   16 

   17 

   

(a) (b) (c) 

 

a b c 

a b c 
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(d) (e) (f) 

Figure 16. Real case study: (a) Thermal image (b) Contour detection. (c) Image rotated. (d) Panel 1 
detection. (e) Relative hot region detection. (f) Location of relative hotter regions. 2 

 3 

The R-CNN works with square ROIs. The ROI presents an error that depends of the training 4 

images, the orientation of the panels, the temperature of the edges, etc. They are trapezoidal 5 

because of the perspective of the images deforms panels. Therefore, the contour of the panels 6 

cannot be exactly marked by the panel ROIs. The relative hot area is always located inside a panel 7 

ROI, therefore, it is not considered an external hot element as anomaly in the panels. 8 

The locations of the relative hot regions are obtained by the telemetry data given by the camera 9 

into the image files. This information is detailed in Table II. A method has been developed to 10 

compare the results with the final report table to avoid the repetition of located relative hot 11 

regions. Only one is considered if there are several points with the same coordinates within a 12 

margin. 13 

 14 

Table II. Relative hot region locations 15 

GPS Latitude/Longitude 𝑋ℎ/𝑌ℎ/𝐻/𝑊 

38.703757/-4.119919 162/82/25/25 

38.703798/-4.120075 558/173/15/15 

38.703813/-4.120077 562/205/15/15 

38.703910/-4.120043 476/406/16/16 

 16 

PV panels that appears partially are not detected and, therefore, relative hot regions are not 17 

considered in these areas. An example of the panel detection is shown at the bottom of Figure 18 

16(d), where several panels are partially included in the image but not detected.  19 

A set of 100 thermographic images of the PV solar plant has been analyzed into the approach to 20 

validate the proposed methodology. Figure 17 shows an example of different images of the set.  21 
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 1 

Figure 17. Set of images considered for validation acquired from different angles and perspectives. 2 

The validation will be done according to the detection of PV solar panels and the faults by two 3 

confusion matrices. The images are divided into four types of areas, showed in Figure 18, 4 

regarding to the concordance between the estimation of the approach and the real case.  5 

Those panels that do not contain any relative hot regions are considered as good panels, otherwise, 6 

will be considered as conspicuous panels. Figure 18 shows the possible scenarios for the detection 7 

of relative hot regions.  8 

 9 

Figure 18. Output of R-CNN panel approach, considering the labels with the confidence percentage 10 
obtained by the detector. 11 

The images in Figure 17 are employed to validate the method, and the outcomes are analyzed 12 

according to the scenarios given in Figure 18. The statistical characterization of the approach is 13 

presented in ¡Error! No se encuentra el origen de la referencia.. Some standard terms are 14 

considered to quantify the performance of both the panel and the relative hot region detectors: 15 

accuracy (AC); the true positive rate (TP); false positive rate (FP); true negative rate (TN); the 16 

false negative rate (FN), and; precision (P).   17 
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 Table IIII. Validation metrics for the detection methods 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

The accuracy of the panel detector, i.e. the ratio of success in the outcomes, is more than 92.25%. 15 

The worst characteristic of the panel detector is the FN, in other words, there is an average of 11% 16 

of the panels that cannot be detected in a specific image. These misdetections are due to some 17 

panels do not appear completely in the image. However, the complete panels are detected with a 18 

higher accuracy. It must be highlighted that the approach has a precision of 94.52%.  19 

Regarding the relative hot region detector, the accuracy is more that 99%. Since the panel detector 20 

has a high false negative rate, this error is extended to the relative hot region detector, being the 21 

precision more than 91%.  22 

The equipment employed in the inspection are: 23 

- Drone DJI S900  24 

- IR Camera: WIRIS WORKSWELL 25 

- Flight controller: DJI A2  26 

- Gimbal system: Gremsy, T1 27 

The  specifications show that the GPS in the flight controller has ±0.5 m vertical error and ±1.5 28 

m horizontal error [77]. According to the gimbal specifications, the zenithal and azimuthal angles 29 

can have an error margin of 0.005º [78]. Considering a maximum altitude of 50 m, and a minimum 30 

zenithal angle of 30º, the maximum error introduced in the location is estimated to 1.8 m. The 31 

validation of the localization method has been done by using a thermal IR camera with a GPS. 32 

The validation process consisted in the manual checking of all the relative hot spots locations that 33 

were predicted by the proposed algorithm. This process is divided in three steps for each predicted 34 

hot spot: first, the location predicted by the algorithm is found using the manual GPS; second, the 35 

location of the nearest hotspot is registered, and; third, the distance between both locations is 36 

evaluated. The absolute distances obtained are shown in Figure 19. 37 
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 1 

Figure 19. Absolute distances between the predicted GPS coordinates and the real GPS coordinates 2 
of the detected hotspots. Each point indicates the error of the model for each predicted location.  3 

In this case study, an average error of 0.86 m has been achieved and all the errors were below to 4 

the estimated threshold of 1.8 m (minimal distance to classify a solar tracker). The solar trackers 5 

are longer than this threshold, and there is also space between them, therefore, the localization is 6 

done correctly. Due to the positioning error, this methodology does not guarantee the correct 7 

localization of the faulty PV panel, but the corresponding solar tracker is identified. This error is 8 

not a significative drawback, since all the detected anomalies must be checked manually before 9 

doing any repairment or replacement. Therefore, the coordinates of the affected PV trackers are 10 

enough to help the operators search for faulty panels.  11 

 12 

6. Conclusions 13 

This paper has presented a methodology for the detection of faults in photovoltaic solar panels 14 

employing data from a thermography camera embedded in an unmanned aerial vehicle. An 15 

autonomous and automatic panel and relative hot region detection approach has been designed 16 

based on region-based convolutional neural networks. Inspections by unmanned aerial vehicles 17 

based usually provide heterogenous images due to the altitude, the orientation, the recording 18 

angle, etc. The approach has been demonstrated to be robust and it is validated. The results show 19 

that the methodology is adequate for the automatic detection and localization of solar trackers and 20 

relative hot regions with and accuracy more than 99.02% and a precision of 91.67%. The PV set 21 

and the relative hot spots are located correctly considering the errors found in the experiments. 22 

An average error of 0.86 m has been calculated for the localization of relative hot spots. 23 

 24 
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