Greetings, and thank you for publishing with SAGE. We have prepared this page proof for your review. Please respond to each of the below queries by digitally marking this PDF using Adobe Reader.

Click “Comment” in the upper right corner of Adobe Reader to access the mark-up tools as follows:

For textual edits, please use the “Annotations” tools. Please refrain from using the two tools crossed out below, as data loss can occur when using these tools.

For formatting requests, questions, or other complicated changes, please insert a comment using “Drawing Markups.”

Detailed annotation guidelines can be viewed at: http://www.sagepub.com/repository/binaries/pdfs/AnnotationGuidelines.pdf.
Adobe Reader can be downloaded (free) at: http://www.adobe.com/products/reader.html.

<table>
<thead>
<tr>
<th>No.</th>
<th>Query</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Please confirm that all author information, including names, affiliations, sequence, and contact details, is correct.</td>
</tr>
<tr>
<td></td>
<td>Please review the entire document for typographical errors, mathematical errors, and any other necessary corrections; check headings, tables, and figures.</td>
</tr>
<tr>
<td></td>
<td>Please confirm that the Funding and Conflict of Interest statements are accurate.</td>
</tr>
<tr>
<td></td>
<td>Please ensure that you have obtained and enclosed all necessary permissions for the reproduction of artistic works, (e.g. illustrations, photographs, charts, maps, other visual material, etc.) not owned by yourself. Please refer to your publishing agreement for further information.</td>
</tr>
<tr>
<td></td>
<td>Please note that this proof represents your final opportunity to review your article prior to publication, so please do send all of your changes now.</td>
</tr>
<tr>
<td>AQ: 1</td>
<td>Please check Constant should this b constantly increasing</td>
</tr>
<tr>
<td>AQ: 2</td>
<td>Please provide Editor(s), conference dates, publisher and publication location</td>
</tr>
<tr>
<td>AQ: 3</td>
<td>Please provide Year and volume number</td>
</tr>
<tr>
<td>AQ: 4</td>
<td>Please provide Volume number</td>
</tr>
<tr>
<td>AQ: 5</td>
<td>Please provide Editor(s), conference dates, page numbers, publisher and publication location</td>
</tr>
<tr>
<td>AQ: 6</td>
<td>Please provide Page numbers</td>
</tr>
<tr>
<td>AQ: 7</td>
<td>Please provide Editor(s), conference location and dates, publisher and publication location</td>
</tr>
<tr>
<td>AQ: 8</td>
<td>Please provide Publication location</td>
</tr>
<tr>
<td>AQ: 9</td>
<td>2014 = volume 241, 2013 = volume 241, and page numbers overlap, please check</td>
</tr>
<tr>
<td>AQ: 10</td>
<td>Please provide Editor(s)</td>
</tr>
<tr>
<td>AQ: 11</td>
<td>Please check, Not cited in the text, delete or provide citation.</td>
</tr>
<tr>
<td>AQ: 12</td>
<td>Please check Not cited in the text, delete? If use, volume number</td>
</tr>
<tr>
<td>AQ: 13</td>
<td>Please check Pasking?</td>
</tr>
<tr>
<td>AQ: 14</td>
<td>Please check Standars?</td>
</tr>
<tr>
<td>AQ: 15</td>
<td>SMSs? Please define</td>
</tr>
<tr>
<td>AQ: 16</td>
<td>Please provide Figure 13 caption.</td>
</tr>
<tr>
<td>AQ: 17</td>
<td>Please provide Table 2 caption.</td>
</tr>
</tbody>
</table>
A novel approach to diagnostic and prognostic evaluations applied to railways: A real case study

Alberto Pliego Marugán and Fausto Pedro García Márquez

Abstract
This paper presents qualitative and quantitative analyses of the action of points, a critical component of railway networks. They allow diagnostic and prognostic evaluations of the points using health monitoring systems, i.e. they allow the state of the system at a desired moment to be evaluated and the forecasting of the future condition of the system. The main objective is to increase the reliability, availability, safety and maintainability of these systems. A novel approach for maintenance management based on fault tree analysis is proposed. A binary decision diagram (BDD) approach is proposed for the qualitative analysis of the fault trees. The BDD obtains a Boolean expression for the fault tree. An optimal ordering of events is required in order to obtain an efficient conversion from a fault tree to a BDD, with the AND method being used for this purpose. Each event is classified based on its importance to the fault tree. It is studied using the Birnbaum and Criticality importance measures, using the Boolean expressions in order to perform accurate diagnostics and valuable prognostics on the state of the system. The presented approach allows the failure probability of the system to be determined along with importance measures obtained by considering variable time increments, e.g. shorter periods at the beginning and end of the life cycle of an event. A real case study on a set of M63 points is presented. The results provide useful information that can be used to support operations and the planning of maintenance tasks. The approach creates a methodology to establish effective maintenance planning, as it is a flexible and simple method that takes into account a nonlinear system that leads to an optimal allocation of resources. Finally, the conditions for an optimized online decision-making process are achieved.

Keywords
Maintenance management, Birnbaum, criticality, diagnostics, prognostics, fault tree, binary decision diagrams, point machine

Introduction
A train can move from one track to another only at certain places and by using a mechanical device called a 'turnout'. The turnout has moving parts, called switches (US: blades), which steer a train in one of two directions, normal (straight through) or reverse. The locking devices for the switch blades are used to ensure the correct and safe operation of points.

The research performed on the operation of points is insufficient if one considers the terrible consequences of a failure of a set of points, for example, the accidents at Eschede in 1998, Potters Bar in 2002 and Grayrigg in 2007. The objective of automatic detection, failure analysis and diagnosis, or wear assessment, is the use of condition monitoring equipment to analyse the various operating profiles, some of which can considerably vary when switching from either normal to reverse or reverse to normal directions, especially if faulty.

The operating force profiles of these mechanisms under even normal, fault-free operation are not particularly repeatable. Even from hour to hour, and certainly day to day, changes in environmental conditions (such as humidity or temperature) will mean that the profiles will differ from operation to operation. From month to month, continuously varying amounts of wear in the components, all of which may at particular maintenance intervals be lubricated, reset or replaced, means that one profile cannot be expected to be the exactly the same as another one.

Corresponding author:
Fausto Pedro García Márquez, University of Castilla-La Mancha, ETSII Campus Universitario, s/n., Ciudad Real, 13004, Spain.
Email: faustoPedro.Garcia@uclm.es
Approximately 55% of the failures of railway infrastructure components on high-speed lines occur on signalling equipment and turnouts. The term signalling equipment covers signals, track circuits, interlocks, automatic train protection (ATP) or track-loop-based ATP and the traffic control centre. The annual cost of maintaining points is high compared with other infrastructure elements, about £3,400,000 per year for about 1000 km of railway. TC-TCR trade circuits, for example, £2,100,000 per year for the same track length. The expenditure on points can be broken down into £1,200,000 for clamp-lock-type (hydraulic) turnouts and £1,400,000 for electrically operated turnouts (data provided by a UK asset manager).

Most standard point machines (see Figure 1) contain a switch-actuating system and a locking mechanism that includes a hand-thrown lever and a selector lever to allow operation by power or hand. The mechanism is normally divided into three major subsystems:

- the motor unit, which may include a contactor control arrangement and a terminal area;
- a gearbox consisting of spur-gears and a worm reduction unit with overload clutch;
- the dual control mechanism as well as a controller subsystem with motor cut-off and detection contacts.

Generally, there are also mechanical linkages for the detection and locking of the points. The standard set of railway points is therefore a complex electromechanical device with many potential failure modes.

The circuit controller includes detection switches and a pair of snap-action switches to stop the machine at the end of its stroke and to stop the motor so that the mechanism is not subject to impacts. The detection switches have high-pressure wiping contacts made of silver/cadmium oxide or gold and they are operated by both the lockbox and the detection rod. The detection switches have additional contacts to allow mid-stroke short-circuiting of the detection relays to avoid wrong indications in the signal box or electronic interlocking.

This paper proposed a novel approach to identify the critical components of the point mechanisms online, based on the probability of a fault of each component over a time period and the creation of a fault tree of the mechanism. The study is based on a real case study performed by a consortium consisting of Sheffield University (UK), Castilla-La Mancha University (Spain) and Balfour Beatty Rail (UK).

Fault tree analysis and binary decision diagrams

A fault tree (FT) is used a graphical representation of the logical relationships between the main elements of
the point machines. The FT considered in this paper consists of the following events and logic gates:

- the top event is the most undesirable event and it is allocated to the highest level of the tree;
- the basic events \((e_i)\) are the basic faults and they are represented as a circle at the end of each fault;
- the intermediate events \((g_i)\) are represented in the FT by rectangles that act as logic gates and they are used to connect events;
 - AND gate: the coexistence of all input events to this gate are required to produce the output event;
 - OR gates: at least one of the input events is necessary at these gates to produce the output event.

The analysis of a complex system can result in thousands of combinations of events, or cut-sets (CSs), that can cause the failure of a system. The determination of these CSs can be a large and time-consuming process, even for modern high-speed computers (NP-hard problem) and thus approximation techniques have been introduced in order to solve the problem with an inevitable loss of accuracy. In this paper a binary decision diagram (BDD) is proposed to obtain the probability of the top event of the FT.

Figure 2 presents a FT composed of seven non-basis events and nine basic events. It shows that the event \(e_7\) is an important failure event as it is directly related with the system failure, i.e. if \(e_7\) occurs, a system failure will occur.

When the FT consists of a large number of events, there are various alternatives for a direct FT analysis. A direct analysis will be performed in this paper by use of a FT to BDD conversion.

BDDs were introduced by Lee and popularized by Akers, Moret and Bryant. It allows an analytical expression to be obtained that depends on the occurrence probability of every single basic event and the logical structure of the FT. Further information about BDDs can be found in Garcia and Escobar.

Figure 3 shows the structure of the BDD obtained from the FT shown in Figure 2, it depends on the ordering of the events, that is to say, each different event ordering results in a different BDD.

The paths that start from the top event to a terminal 1 vertex provide a state in which a failure will occur. These paths determine the CSs, in this case 14 CSs (Figure 3). The probability of the top event \(Q_{sys}\) can be calculated as a function of the probabilities of the events \((q_i)\) as follows

\[
Q_{sys} = CS_1 + CS_2 + \cdots + CS_i + \cdots + CS_n
= (q_7) + [(1 - (q_7) \times (q_1) \times (q_3)] + [(1 - (q_7)) \times (q_1) \times (1 - (q_3)) \times (q_4) + \cdots + CS_i + \cdots + [(1 - (q_7)) \times (1 - (q_1)) \times (1 - (q_2)) \times (q_8) \times (1 - (q_9)) \times (q_5) \times (q_5)]]
\]

Figure 2. An example of a FT.
The size of the BDD and the CPU runtime depend on the ordering of the variables. Different ranking methods can be used to reduce the number of CSs, and consequently, to reduce the CPU runtime.\(^\text{17,18}\) There is no direct method that can be used to create the minimum size of the BDD in all cases. The ordering method to rank the events that is used in this paper is the AND method, a heuristic approach that orders the variables based on the number of AND gates and the relations between them.\(^\text{19}\)

Diagnostic-based maintenance

Diagnostics concerns the evaluation of the state of a system at a certain time. It is performed in this paper using importance measures (IMs) to rank events and to show their relative importance to the top event probability. The IM methods used are the Birnbaum and Criticality approaches.\(^\text{16,20,21}\)

The Birnbaum IM provides a value for the relationship between the probability of a system failure and an event. It is defined as follows

\[
I_{i}^{\text{Birn}} = \frac{\partial Q_{\text{sys}}}{\partial q_{i}}
\]

where \(I_{i}^{\text{Birn}}\) is the Birnbaum IM value of event \(i\). It represents the probability that the system is in a critical state such that the occurrence of event \(i\) causes a system failure. \(Q_{\text{sys}}\) is the probability of the occurrence of the system failure and \(q_{i}\) is the probability of the occurrence of event \(i\).

Figure 3 shows the Birnbaum importance value obtained for each event using the probabilistic values given in Appendix 1, together with the FT described in Appendix 2. The FT was obtained from a previous research project performed by one of the current authors.\(^\text{5–7}\) There is no previous context in which to explain the data set calculated in this paper using a simulation approach, as the objective of this paper is to propose a novel methodology to analyse and optimize the prognostics, diagnostics and maintenance tasks. There is an important difference between the IMs of the events. It is recommended to use diagnostics tasks to identify events with a higher importance as this will lead to an increase in the accuracy of the diagnostics and, consequently, improved assignment of facilities to maintenance tasks, optimized costs, an increased reliability, etc.

The main disadvantage of using the Birnbaum IM approach is that it does not consider the probability of an event, i.e. it overstates the importance of events with a low probability of occurrence (called rare events).

Criticality IM takes into account the occurrence probability of events, defined as

\[
I_{i}^{\text{Crit}} = \frac{q_{i}}{Q_{\text{sys}}} \times \frac{\partial Q_{\text{sys}}}{\partial q_{i}} = \frac{q_{i}}{Q_{\text{sys}}} \times I_{i}^{\text{Birn}}
\]
where P_i^{cr} is the Criticality IM of event i. It represents the probability that event i is critical for the system and that the event occurs when the system has a failure. In addition, q_i is the probability assigned to event i and Q_{sys} is the probability of the occurrence of a system failure.

Figure 5 shows the Criticality IM of all the events using the input probabilistic values from Appendix 1 and the FT shown in Appendix 2.

The differences between Figures 4 and 5 are due to the probabilities of the occurrence of the events. In Figure 5, rare events are not taken to be major events. The rare events can be identified by evaluating the difference between the Birnbaum and Criticality IMs. The quantitative results of an analysis of the IM are only used to classify the events, and these are then used for prognostic evaluation and diagnosis of the system.

Prognostic-based maintenance

Prognostic-based maintenance allows the anticipation of the occurrence of a fault. The objective in this paper is to support the management of maintenance actions by providing the necessary information in order to schedule maintenance tasks.

The probability functions for each event are:

- Constant probability

 $q_i(t) = K$, where K is a constant, $K \in [0, 1]$;

- Exponential increasing probability

 $q_i(t) = 1 - e^{-\lambda t}$, $\gamma > 0$;
linear increasing probability
\[q_i(t) = mt, m > 0, \quad mt < 1 \]
\[q_i(t) = 1, m > 0, \quad mt \geq 1 \]

periodic probability
\[q_i(t) = 1 - e^{-\lambda(t-n\tau)}, n = 1, 2, 3..., \lambda > 0, \text{ and } \tau > 0 \]
determines the period.

Appendix 3 shows the values assigned to the parameters of the probability functions for each event listed in Appendix 1. Figure 6 plots the probability distribution of a fault for each event as a function of time. These data were randomly generated for each event in order to be able to perform simulations of the state of the system as a function of time, however, the probability functions were set by the authors after considering the engineering interpretation of each event. For example, the event e2 is considered to be a linear increasing probability of occurrence over time, as it is assumed that wear is constant, and e11 has a constant probability, i.e. oversized holes or undersized bolts always have the same size. These functions allow the probability of the failure system as a function of time to be calculated using a FT approach. It is important to note that in this paper, the probability function for each event is not optimal. The probability function of each event should be obtained by condition monitoring, statistical analysis, etc. The main purpose is to present an approach for analysing the Qsys by considering a stochastic system.

The fault probability of the top event will increase over time if maintenance actions are not performed, according to the data shown in Figure 6. An event with an occurrence probability assigned as being periodic is set to zero in each period: Figure 7 plots the probability function of the top event as a function of time; it displays a general rising trend. The reason why it is not always rising is due to the events with a periodic probability function. This probability was obtained for 50 samples. The curve in Figure 7 can be used to perform a prognostic evaluation, to fit the operations thresholds, etc.

The dynamic analysis proposed in this paper can facilitate the creation of effective maintenance planning based on the probability of a system failure over time. This means that the reliability of the system can be maintained.

This paper uses the IMs in order to classify events based on their relevance in determining the state of the top event at a certain time. Figure 8 shows the Birnbaum IMs calculated for all samples and all the events detailed in Appendix 2. It allows the critical events at each time point to be identified and these can be considered in the diagnostics and prognostics procedures. For example, the event e120 shows a low Birnbaum IM value compared with the event e59. The difference between them grows over time, i.e. the event e59 is more critical for system operation.

The most important information from this study is the ranking of the events as a function of time, this allows a diagnostic analysis of the state of the top event, e.g. it helps operators to optimize maintenance tasks and the relevant costs as they now know the critical events occurring at a particular point in time.

The methodology used in this paper allows the time increment to be a variable. This feature can be useful when the system needs to be studied in detail at specific time points.

Figure 9 shows the Criticality IM for all the events, considering the probability of an event at each point in time. Different trends can be observed, e.g. the event e59 initially presents a rising curve
Figure 7. The dynamic probability for system failure.

Figure 8. The dynamic Birnbaum IMs.

Figure 9. The dynamic Criticality IM.
that subsequently falls. However, the event e_{120} presents a constant trend. When an event is analysed, the probabilities of the remaining events are less important than is the case for the Birnbaum IM.

The Birnbaum and Criticality IMs are complementary; however, there is no conclusion about which of them is the better one. It will depend on whether the event has to be analysed using the topology of the tree, where the Birnbaum IM is used. The Criticality IM is recommended in cases where the event needs to be studied in terms of the probability of the event and the system, together with the topology. If rare events need to be analysed, the Criticality IM should be used.

Preventive maintenance strategy

The approach proposed in this paper provides quantitative results that facilitate diagnostic and prognostic tasks. The diagnostic tasks are performed by setting the condition of the system and identifying the critical components. The objective of prognostics is to determine the state of the system at a certain point in time.

The information provided by IMs (see Figures 4 and 5) is used in a diagnostic task. For the case of a system failure, the events that make a major contribution to the probability of a system failure can be identified. The data shown in Figure 5 allow the components to be classified based on their importance and a priority ranking of events to be established.

This approach leads to the development of dynamic preventive maintenance planning. The results provided by the dynamic analysis allow the tasks to be assigned based on the reliability of the system. The approach presented in this paper consists of the following steps:

1. Set a threshold that determines the maximum allowed level of unavailability.
2. Determine the cut-off point between the system failure probability and the established threshold.
3. Identify when a certain system failure probability is reached.
4. Determine the most important events at the critical cut-off point.
5. Assign maintenance tasks based on these events in order to maximize the reliability of the system.

Figure 10 shows the probability of a system failure as a function of time, where the unavailability threshold is represented by the horizontal dashed line, the cut-off point is marked with a circle and the failure probability (horizontal line) at a certain time is given by the vertical dashed line. It corresponds to the 13th sample in Figure 10.

Figure 11 presents a cross-section of Figure 9 at the 13th sample, where the most influential events are highlighted.

Table 1 classifies the events into three groups, A, B and C, based on their importance. This classification is not necessarily constant, i.e. the size of the groups depends on the amount of resources to be allocated and the reliability that is required to be obtained. This flexibility allows an optimized online decision-making.
process to be developed by automatically choosing the correct number of events. The nonlinearity of the system can lead to more events than necessary being chosen when a specific reduction in the system failure probability is required.

The occurrence probability of an event is reduced to zero when it requires a maintenance action. Figure 12 shows the probability of system failure as a function of time. This probability decreases depending on the components requiring repair. The number of events taken into account determines the period of time that the system will be below the threshold. This leads to the decision-making problem being solved dynamically as the criteria can change over time. Figure 12 was obtained using a variable time increment: from zero to 10, the time increment is five times bigger than the increment used from 10 to 23. This is an important advantage because the critical zone (dashed square) can be analysed in fine detail.

The reduction in the system failure probability obtained in the 14th sample by the event set A, B and C is 13.38, 24.06 and 38.15%, respectively (see Figure 12).

Conclusions

A novel quantitative FT analysis of a set of points was performed in order to set diagnostic and prognostic tasks. A FT was used in a real case study of a M63-type set of points; the logical interactions between main events or components were considered in detail. The values of the probability of the occurrence of an event were set following advice from area experts. Then a quantitative analysis was performed using a BDD. The AND method was used to rank the events. A BDD is an acyclic structure that allows the probability of failure of the points to be obtained by taking into account all the possible alternatives that could lead the system to fail. BDDs are used because

Figure 11. The dynamic Criticality IM.

Table 1. Classification of events based on their importance (see Figure 11).

<table>
<thead>
<tr>
<th>Group</th>
<th>Scope</th>
<th>Number of events</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3% more important events</td>
<td>5</td>
<td>e59, e36, e81, e71, e110</td>
</tr>
</tbody>
</table>
they provide an analytical expression of the system failure probability in a reasonable computation time, they consider the probabilities of basic events, and they allow dynamic simulations, e.g. the calculation of the IMs as a function of time. The flexibility of the approach allows a dynamic analysis with a variable time increment and thus a detailed study of a specific period of time, e.g. for any failure distribution that could be used, a shorter increment at beginning and end of the life cycle of the event.

The Criticality IM gives useful information for diagnosis tasks. It presents the probability of an event, stating if it is critical for the system and that the event occurs when the system has failed. The IM allows the diagnosis of the system.

The system failure probability over time was used to set maintenance strategies in order to keep the probability under a desired threshold. A dynamic analysis of the IMs was used to create a maintenance plan that contributes to improved decision-making by optimizing resources. A case study of this approach was presented, and a reduction of 13.86% was obtained by considering 3% of the events. The classification is flexible, i.e. the size of the groups of events depends on the resources to be allocated. This flexibility allows the development an optimized online decision-making process that considers the nonlinear nature of the system.

Funding

This work was financially supported by the Spanish Ministerio de Economía y Competitividad, under research grant DPI2012-31579.

References

Appendix 1

The events descriptions and occurrence probabilities

The events descriptions and occurrence probabilities are listed in Table 2.

<table>
<thead>
<tr>
<th>Event</th>
<th>Event description</th>
<th>Prob (%)</th>
<th>Event</th>
<th>Event description</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top M63</td>
<td>point failure</td>
<td></td>
<td>e102 7/8"</td>
<td>pin worn</td>
<td>50</td>
</tr>
<tr>
<td>g1</td>
<td>Civil & environmental</td>
<td></td>
<td>g102</td>
<td>Civil</td>
<td></td>
</tr>
<tr>
<td>g2</td>
<td>Civil</td>
<td></td>
<td>g103</td>
<td>Backdrive</td>
<td></td>
</tr>
<tr>
<td>g3</td>
<td>Vibration</td>
<td></td>
<td>g104</td>
<td>Bush wear</td>
<td>50</td>
</tr>
<tr>
<td>e1</td>
<td>Voiding</td>
<td>50</td>
<td>e105</td>
<td>Broken damaged roller stocks</td>
<td>25</td>
</tr>
<tr>
<td>e2</td>
<td>Damage/wear</td>
<td>50</td>
<td>e106</td>
<td>Broken stretcher</td>
<td>10</td>
</tr>
<tr>
<td>e3</td>
<td>Broken chog bolts</td>
<td>50</td>
<td>e107</td>
<td>Broken worn cranks</td>
<td>10</td>
</tr>
<tr>
<td>e4</td>
<td>Stud bolts fouling</td>
<td>10</td>
<td>g108</td>
<td>Rail clamp locks</td>
<td></td>
</tr>
<tr>
<td>e5</td>
<td>Broken base plates</td>
<td>50</td>
<td>g109</td>
<td>Rail clamp locks</td>
<td></td>
</tr>
<tr>
<td>e6</td>
<td>Fittings become loose</td>
<td>5</td>
<td>g110</td>
<td>Environment</td>
<td></td>
</tr>
<tr>
<td>g4</td>
<td>Track geometry</td>
<td></td>
<td>g111</td>
<td>Environment</td>
<td>1</td>
</tr>
<tr>
<td>e7</td>
<td>Cant</td>
<td>5</td>
<td>e112</td>
<td>Broken clutch springs. Broken clutch contact, spring mechanism</td>
<td>5</td>
</tr>
<tr>
<td>e8</td>
<td>Track complexity</td>
<td>50</td>
<td>e113</td>
<td>Diode block faulty direction</td>
<td>5</td>
</tr>
<tr>
<td>e9</td>
<td>Radius</td>
<td>10</td>
<td>e114</td>
<td>Clutch slip current set-up</td>
<td>5</td>
</tr>
<tr>
<td>g5</td>
<td>Condition of track</td>
<td></td>
<td>e115</td>
<td>Seized clutch</td>
<td>1</td>
</tr>
<tr>
<td>g6</td>
<td>Condition of track</td>
<td></td>
<td>g116</td>
<td>Environment</td>
<td>2</td>
</tr>
<tr>
<td>e10</td>
<td>Track gauge wide/road spread</td>
<td>10</td>
<td>e117</td>
<td>Diode plug not fully inserted</td>
<td>1</td>
</tr>
<tr>
<td>e11</td>
<td>Oversized holes/undersized bolts</td>
<td>5</td>
<td>e118</td>
<td>Worn clutch assembly</td>
<td>1</td>
</tr>
<tr>
<td>e12</td>
<td>Uneven switch rail contact on all chairs</td>
<td>25</td>
<td>e119</td>
<td>Clutch restraint screw coming out, should be a bolt</td>
<td>1</td>
</tr>
<tr>
<td>e13</td>
<td>Twist faults</td>
<td>1</td>
<td>g2</td>
<td>Civil</td>
<td></td>
</tr>
<tr>
<td>e14</td>
<td>Switch crippled</td>
<td>10</td>
<td>g3</td>
<td>Vibration</td>
<td></td>
</tr>
<tr>
<td>g7</td>
<td>Condition of track 2</td>
<td></td>
<td>e1</td>
<td>Voiding</td>
<td>50</td>
</tr>
<tr>
<td>e15</td>
<td>Stock rail moving</td>
<td>10</td>
<td>e2</td>
<td>Damage/wear</td>
<td>50</td>
</tr>
<tr>
<td>e16</td>
<td>Hogging</td>
<td>25</td>
<td>e3</td>
<td>Broken chog bolts</td>
<td>50</td>
</tr>
<tr>
<td>e17</td>
<td>Dry/rusty chairs</td>
<td>50</td>
<td>e4</td>
<td>Stud bolts fouling</td>
<td>10</td>
</tr>
<tr>
<td>e18</td>
<td>Missing components</td>
<td>5</td>
<td>e5</td>
<td>Broken base plates</td>
<td>50</td>
</tr>
<tr>
<td>e19</td>
<td>Yellow slide chair scoring</td>
<td>10</td>
<td>e6</td>
<td>Fittings becoming loose</td>
<td>5</td>
</tr>
<tr>
<td>g8</td>
<td>Condition of track 3</td>
<td></td>
<td>g4</td>
<td>Track geometry</td>
<td></td>
</tr>
<tr>
<td>e20</td>
<td>Sole plate wear</td>
<td>4</td>
<td>e7</td>
<td>Cant</td>
<td>5</td>
</tr>
<tr>
<td>e21</td>
<td>Movement loose fish plates</td>
<td>5</td>
<td>e8</td>
<td>Track complexity</td>
<td>50</td>
</tr>
<tr>
<td>e22</td>
<td>Wrong components fitted</td>
<td>1</td>
<td>e9</td>
<td>Radius</td>
<td>10</td>
</tr>
<tr>
<td>e23</td>
<td>Loose slide chairs</td>
<td>10</td>
<td>g5</td>
<td>Condition of track</td>
<td></td>
</tr>
<tr>
<td>g9</td>
<td>P-way working alone</td>
<td></td>
<td>g6</td>
<td>Condition of track</td>
<td></td>
</tr>
<tr>
<td>e24</td>
<td>Lift & pasking</td>
<td>10</td>
<td>e10</td>
<td>Track gauge wide/road spread</td>
<td>10</td>
</tr>
<tr>
<td>e25</td>
<td>Pulling in road</td>
<td>50</td>
<td>e11</td>
<td>Oversized holes/undersized bolts</td>
<td>5</td>
</tr>
<tr>
<td>e26</td>
<td>Tamper damage</td>
<td>25</td>
<td>e12</td>
<td>Uneven switch rail contact on all chairs</td>
<td>25</td>
</tr>
<tr>
<td>e27</td>
<td>Chair bolts fouling switches</td>
<td>10</td>
<td>e13</td>
<td>Twist faults</td>
<td>1</td>
</tr>
<tr>
<td>g10</td>
<td>Environment</td>
<td></td>
<td>e14</td>
<td>Switch crippled</td>
<td>10</td>
</tr>
<tr>
<td>g11</td>
<td>Environmental</td>
<td></td>
<td>g7</td>
<td>Condition of track 2</td>
<td></td>
</tr>
<tr>
<td>e28</td>
<td>Broken clutch springs. Broken clutch contact, spring mechanism</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e29</td>
<td>Diode block faulty directional</td>
<td>5</td>
<td>e15</td>
<td>Stock rail moving</td>
<td>10</td>
</tr>
<tr>
<td>e30</td>
<td>Clutch slip current set-up</td>
<td>5</td>
<td>e16</td>
<td>Hogging</td>
<td>25</td>
</tr>
<tr>
<td>e31</td>
<td>Seized clutch</td>
<td>1</td>
<td>e17</td>
<td>Dry/rusty chairs</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>e18</td>
<td>Missing components</td>
<td>5</td>
</tr>
<tr>
<td>Event</td>
<td>Event description</td>
<td>Prob (%)</td>
<td>Event</td>
<td>Event description</td>
<td>Prob (%)</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>----------</td>
<td>---------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>g12</td>
<td>Environment 2</td>
<td></td>
<td>e19</td>
<td>Yellow slide chair scoring</td>
<td>10</td>
</tr>
<tr>
<td>e32</td>
<td>Diode plug not fully inserted</td>
<td>1</td>
<td>g8</td>
<td>Condition of track</td>
<td></td>
</tr>
<tr>
<td>e33</td>
<td>Worn clutch assembly</td>
<td>1</td>
<td>e20</td>
<td>Sole plate wear</td>
<td>4</td>
</tr>
<tr>
<td>e34</td>
<td>Clutch restraint screw coming out should be a bolt</td>
<td></td>
<td>e21</td>
<td>Movement loose fish plates</td>
<td>5</td>
</tr>
<tr>
<td>g13</td>
<td>Uneven traffic patterns</td>
<td></td>
<td>e22</td>
<td>Wrong components fitted</td>
<td>1</td>
</tr>
<tr>
<td>g14</td>
<td>Uneven traffic patterns 1</td>
<td></td>
<td>e23</td>
<td>Loose slide chairs</td>
<td>10</td>
</tr>
<tr>
<td>e35</td>
<td>Lateral movement of track</td>
<td>5</td>
<td>g9</td>
<td>P-way working alone</td>
<td></td>
</tr>
<tr>
<td>e36</td>
<td>Infrequent operation mechanism</td>
<td>10</td>
<td>e24</td>
<td>Lift & pasking</td>
<td>10</td>
</tr>
<tr>
<td>e37</td>
<td>Flat tyre damage</td>
<td>1</td>
<td>e25</td>
<td>Pulling in road</td>
<td>50</td>
</tr>
<tr>
<td>g15</td>
<td>Uneven traffic patterns 2</td>
<td></td>
<td>e26</td>
<td>Tamper damage</td>
<td>25</td>
</tr>
<tr>
<td>e38</td>
<td>Stock rail burns</td>
<td>25</td>
<td>e27</td>
<td>Chair bolts fouling switches</td>
<td>10</td>
</tr>
<tr>
<td>e39</td>
<td>Grooved slides</td>
<td>5</td>
<td>g44</td>
<td>Uneven traffic patterns</td>
<td></td>
</tr>
<tr>
<td>e40</td>
<td>Switch creep</td>
<td>50</td>
<td>g45</td>
<td>Uneven traffic patterns 1</td>
<td></td>
</tr>
<tr>
<td>e41</td>
<td>Dry chairs uneven lubrication</td>
<td>25</td>
<td>e108</td>
<td>Stock rail burns</td>
<td>25</td>
</tr>
<tr>
<td>g16</td>
<td>Machines</td>
<td></td>
<td>e109</td>
<td>Grooved slides</td>
<td>5</td>
</tr>
<tr>
<td>g17</td>
<td>Machines 1</td>
<td></td>
<td>e110</td>
<td>Switch creep</td>
<td>50</td>
</tr>
<tr>
<td>g18</td>
<td>M63 drive</td>
<td></td>
<td>e111</td>
<td>Dry chairs uneven lubrication</td>
<td>25</td>
</tr>
<tr>
<td>g19</td>
<td>Drive external to machine</td>
<td>50</td>
<td>g46</td>
<td>Uneven traffic patterns 2</td>
<td></td>
</tr>
<tr>
<td>e42</td>
<td>Worn drive lug bolt</td>
<td>1</td>
<td>e112</td>
<td>Lateral movement of track</td>
<td>5</td>
</tr>
<tr>
<td>e43</td>
<td>Loose drive shoe</td>
<td>10</td>
<td>e113</td>
<td>Infrequent operation mechanism</td>
<td>10</td>
</tr>
<tr>
<td>e44</td>
<td>Machine loose</td>
<td>5</td>
<td>e114</td>
<td>Grooved slides</td>
<td>1</td>
</tr>
<tr>
<td>e45</td>
<td>Loose drive basket</td>
<td>10</td>
<td>g47</td>
<td>Rail clamp locks 2</td>
<td></td>
</tr>
<tr>
<td>e46</td>
<td>No clearance between stretcher & rail kicking</td>
<td></td>
<td>g48</td>
<td>Clamp lock</td>
<td></td>
</tr>
<tr>
<td>e47</td>
<td>Nuts run back on drive</td>
<td>10</td>
<td>g49</td>
<td>Pump unit</td>
<td></td>
</tr>
<tr>
<td>g20</td>
<td>Motor</td>
<td></td>
<td>g50</td>
<td>Pump unit 1</td>
<td></td>
</tr>
<tr>
<td>g21</td>
<td>Motor 1</td>
<td></td>
<td>e115</td>
<td>Defective pump</td>
<td>1</td>
</tr>
<tr>
<td>g22</td>
<td>Motor 11</td>
<td></td>
<td>e116</td>
<td>Vibration loosens 2BA nuts</td>
<td>1</td>
</tr>
<tr>
<td>e48</td>
<td>Motor defects</td>
<td>1</td>
<td>e117</td>
<td>Leaky tank</td>
<td>1</td>
</tr>
<tr>
<td>e49</td>
<td>Worn brushes</td>
<td>10</td>
<td>e118</td>
<td>Sticking valve</td>
<td>10</td>
</tr>
<tr>
<td>e50</td>
<td>Motor wiring plug high resistance</td>
<td>1</td>
<td>g51</td>
<td>Pump unit 2</td>
<td></td>
</tr>
<tr>
<td>e51</td>
<td>Dirty motor cam</td>
<td>5</td>
<td>e119</td>
<td>Worn brushes ‘HR’</td>
<td>25</td>
</tr>
<tr>
<td>e52</td>
<td>Lightly loaded brushes</td>
<td>1</td>
<td>e120</td>
<td>Frozen pump unit</td>
<td>1</td>
</tr>
<tr>
<td>g23</td>
<td>Snubbing</td>
<td>15</td>
<td>e121</td>
<td>Earthed motors</td>
<td>1</td>
</tr>
<tr>
<td>e53</td>
<td>Diode open-circuit</td>
<td>25</td>
<td>g52</td>
<td>Mechanics</td>
<td></td>
</tr>
<tr>
<td>e54</td>
<td>Snubbing resistor burnt out</td>
<td>50</td>
<td>g53</td>
<td>Mechanics 1</td>
<td></td>
</tr>
<tr>
<td>e55</td>
<td>Burnt snubbing contacts</td>
<td>25</td>
<td>e122</td>
<td>Loose fixed cam</td>
<td>1</td>
</tr>
<tr>
<td>e56</td>
<td>Motor brushes high resistance</td>
<td>25</td>
<td>e123</td>
<td>Burnt/worn damaged hoses/pin holes in hoses</td>
<td>25</td>
</tr>
<tr>
<td>g24</td>
<td>Motor 2</td>
<td></td>
<td>e124</td>
<td>Wrong lock arm fitted</td>
<td>1</td>
</tr>
<tr>
<td>g25</td>
<td>Motor 21</td>
<td></td>
<td>e125</td>
<td>Broken crimps/terminals</td>
<td>50</td>
</tr>
<tr>
<td>e57</td>
<td>Clutch</td>
<td>7.5</td>
<td>e126</td>
<td>Tie bar adjustment/too long/drilling wrong</td>
<td>10</td>
</tr>
<tr>
<td>e58</td>
<td>Sticky brushes 2</td>
<td>1</td>
<td>e127</td>
<td>Displaced ferrule in adapter block</td>
<td>1</td>
</tr>
<tr>
<td>e59</td>
<td>Broken OP spring braid</td>
<td>5</td>
<td>g54</td>
<td>Mechanics 2</td>
<td></td>
</tr>
<tr>
<td>e60</td>
<td>Earthed motor</td>
<td>1</td>
<td>e128</td>
<td>Leaky rams</td>
<td>10</td>
</tr>
<tr>
<td>g26</td>
<td>Motor 22</td>
<td></td>
<td>e129</td>
<td>Dirt, grease build-up on mechanisms</td>
<td>1</td>
</tr>
<tr>
<td>g27</td>
<td>Springs</td>
<td>15</td>
<td>e130</td>
<td>Centre thrust packing wrong</td>
<td>25</td>
</tr>
<tr>
<td>e61</td>
<td>Burnt springs</td>
<td>25</td>
<td>e131</td>
<td>Loose Allen screws</td>
<td>10</td>
</tr>
<tr>
<td>e62</td>
<td>Spring adjustment</td>
<td>50</td>
<td>e132</td>
<td>Switch assembly bushes worn</td>
<td>5</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>Event</th>
<th>Event description</th>
<th>Prob (%)</th>
<th>Event</th>
<th>Event description</th>
<th>Prob (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>e63</td>
<td>High-resistance 'H' piece</td>
<td>25</td>
<td>e133</td>
<td>Faulty micro-switches</td>
<td>25</td>
</tr>
<tr>
<td>g28</td>
<td>Cutout contact</td>
<td>15</td>
<td>g55</td>
<td>Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>e64</td>
<td>Seized crank handle contacts</td>
<td>5</td>
<td>e134</td>
<td>Tuning fork wear</td>
<td>25</td>
</tr>
<tr>
<td>e65</td>
<td>Operators not resetting cut out</td>
<td>50</td>
<td>e135</td>
<td>Point heater strip fouls body</td>
<td>1</td>
</tr>
<tr>
<td>e66</td>
<td>High resistance cut out contact</td>
<td>50</td>
<td>e136</td>
<td>Loose/no spiral fitted</td>
<td>1</td>
</tr>
<tr>
<td>g29</td>
<td>Drive internal to machine</td>
<td>1</td>
<td>e137</td>
<td>No adjustment for wear</td>
<td>5</td>
</tr>
<tr>
<td>g30</td>
<td>Drive internal to machine</td>
<td>1</td>
<td>e138</td>
<td>Lock sticking, mark I only</td>
<td>5</td>
</tr>
<tr>
<td>e67</td>
<td>Failure to drive insufficient throw</td>
<td>5</td>
<td>e139</td>
<td>'O' rings missing from rams</td>
<td>5</td>
</tr>
<tr>
<td>e68</td>
<td>Broken drive rod spring trailing points</td>
<td>1</td>
<td>g56</td>
<td>Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>e69</td>
<td>Broken/worn worm drive</td>
<td>1</td>
<td>e140</td>
<td>Worn or missing nibs, mark I only</td>
<td>1</td>
</tr>
<tr>
<td>e70</td>
<td>Crank handle operation sticking</td>
<td>1</td>
<td>e141</td>
<td>Loose body</td>
<td>25</td>
</tr>
<tr>
<td>g31</td>
<td>Drive internal to machine</td>
<td>1</td>
<td>e142</td>
<td>Open switch tappet adjustment</td>
<td>10</td>
</tr>
<tr>
<td>e71</td>
<td>Snubbing problems bolt breaks</td>
<td>5</td>
<td>e143</td>
<td>Poor cover seals</td>
<td>1</td>
</tr>
<tr>
<td>e72</td>
<td>No lift on push rod & push rod wear</td>
<td>1</td>
<td>e144</td>
<td>No lock wires in hoses 5.2.19</td>
<td>1</td>
</tr>
<tr>
<td>e73</td>
<td>Restrictive adjustment of lock manufacturer's design</td>
<td>1</td>
<td>e145</td>
<td>Loose cabling no glands</td>
<td>1</td>
</tr>
<tr>
<td>e74</td>
<td>Snubbing adjustment</td>
<td>5</td>
<td>g38</td>
<td>Backdrive</td>
<td></td>
</tr>
<tr>
<td>g32</td>
<td>M63 detection</td>
<td>1</td>
<td>g39</td>
<td>Backdrive</td>
<td>1</td>
</tr>
<tr>
<td>e75</td>
<td>Circuit controller springs</td>
<td>5</td>
<td>e94</td>
<td>Lack of 50 mm Flangeway</td>
<td>25</td>
</tr>
<tr>
<td>e76</td>
<td>4 foot lock detector arrangements</td>
<td>1</td>
<td>e95</td>
<td>Nuts run back</td>
<td>50</td>
</tr>
<tr>
<td>e77</td>
<td>Seized detection effects external fittings</td>
<td>1</td>
<td>e96</td>
<td>Obstructions weeds/growth</td>
<td>1</td>
</tr>
<tr>
<td>e78</td>
<td>No lift on push rod & push rod wear</td>
<td>1</td>
<td>e97</td>
<td>Obstruction ballast</td>
<td>25</td>
</tr>
<tr>
<td>g33</td>
<td>M63 lock</td>
<td>1</td>
<td>e98</td>
<td>Loose fittings</td>
<td>50</td>
</tr>
<tr>
<td>e79</td>
<td>Effects from temperature</td>
<td>25</td>
<td>g40</td>
<td>Backdrive</td>
<td>2</td>
</tr>
<tr>
<td>e80</td>
<td>Restrictive adjustment of lock manufacturer's design</td>
<td>1</td>
<td>e99</td>
<td>No escarpment on supplementary drive</td>
<td>50</td>
</tr>
<tr>
<td>e81</td>
<td>Lack of fine adjustment floating lock</td>
<td>1</td>
<td>e100</td>
<td>Shoes broken/loose</td>
<td>25</td>
</tr>
<tr>
<td>e82</td>
<td>Worn lock dog</td>
<td>1</td>
<td>e101</td>
<td>Unsupported channel rod</td>
<td>25</td>
</tr>
<tr>
<td>e83</td>
<td>Seized lock rod/nuts</td>
<td>5</td>
<td>e102</td>
<td>7/8" pin worn</td>
<td>50</td>
</tr>
<tr>
<td>e84</td>
<td>Lock blade binding on machine case</td>
<td>1</td>
<td>e103</td>
<td>Broken rollers</td>
<td>25</td>
</tr>
<tr>
<td>g34</td>
<td>Machines 2</td>
<td>1</td>
<td>g41</td>
<td>Backdrive</td>
<td>3</td>
</tr>
<tr>
<td>g35</td>
<td>Supplementary detection</td>
<td>1</td>
<td>e104</td>
<td>Bush wear</td>
<td>50</td>
</tr>
<tr>
<td>g36</td>
<td>Supplementary decision</td>
<td>1</td>
<td>e105</td>
<td>Broken damaged roller stocks</td>
<td>25</td>
</tr>
<tr>
<td>e85</td>
<td>Chaffed cable/wire missing/incorrectly fitted cable glands</td>
<td>1</td>
<td>e106</td>
<td>Broken stretcher</td>
<td>10</td>
</tr>
<tr>
<td>e86</td>
<td>Loose mounting plate</td>
<td>25</td>
<td>e107</td>
<td>Broken worn cranks</td>
<td>10</td>
</tr>
<tr>
<td>e87</td>
<td>Centre stud running loose</td>
<td>1</td>
<td>g57</td>
<td>S&T standars</td>
<td></td>
</tr>
<tr>
<td>e88</td>
<td>Faulty micro-switch</td>
<td>25</td>
<td>g58</td>
<td>S&T standars I</td>
<td></td>
</tr>
<tr>
<td>e89</td>
<td>Blocked drain holes/wear seal in lid</td>
<td>1</td>
<td>e146</td>
<td>4-port pump</td>
<td>10</td>
</tr>
<tr>
<td>g37</td>
<td>Supplementary detection 2</td>
<td>1</td>
<td>e147</td>
<td>Float & fixed lock convention</td>
<td>10</td>
</tr>
<tr>
<td>e90</td>
<td>BR detector wrong blades</td>
<td>1</td>
<td>e148</td>
<td>No differential N&R. Also F&B ports</td>
<td>10</td>
</tr>
<tr>
<td>e91</td>
<td>Loose/missing packers</td>
<td>5</td>
<td>e149</td>
<td>SMSs need to improve</td>
<td>10</td>
</tr>
<tr>
<td>e92</td>
<td>Lack of stroke inadequate maintenance</td>
<td>25</td>
<td>e150</td>
<td>Component design</td>
<td>10</td>
</tr>
<tr>
<td>e93</td>
<td>Tamped</td>
<td>1</td>
<td>e151</td>
<td>4-port pump unable to do correspondence</td>
<td>10</td>
</tr>
<tr>
<td>g38</td>
<td>Back drive</td>
<td>1</td>
<td>g59</td>
<td>Training</td>
<td></td>
</tr>
<tr>
<td>g39</td>
<td>Back drive I</td>
<td>1</td>
<td>g60</td>
<td>Training I</td>
<td></td>
</tr>
<tr>
<td>e94</td>
<td>Lack of 50 mm flangeway</td>
<td>25</td>
<td>e152</td>
<td>Poor maintenance</td>
<td>10</td>
</tr>
</tbody>
</table>
Appendix 2

FT for a M63 type set of points

The FT for a M63 type set of points is shown in Figure 13.

Event Table

<table>
<thead>
<tr>
<th>Event</th>
<th>Event description</th>
<th>Prob (%)</th>
<th>Event</th>
<th>Event description</th>
<th>Prob %</th>
</tr>
</thead>
<tbody>
<tr>
<td>e95</td>
<td>Nuts run back</td>
<td>50</td>
<td>e153</td>
<td>Difficulty fault finding on supplementary detectors</td>
<td>10</td>
</tr>
<tr>
<td>e96</td>
<td>Obstructions weeds/growth</td>
<td>1</td>
<td>e154</td>
<td>Equipment incorrectly fitted</td>
<td>10</td>
</tr>
<tr>
<td>e97</td>
<td>Obstruction ballast</td>
<td>25</td>
<td>e155</td>
<td>M63 machines special tools needed for set-up</td>
<td>10</td>
</tr>
<tr>
<td>e98</td>
<td>Loose fittings</td>
<td>50</td>
<td>g61</td>
<td>Training 2</td>
<td></td>
</tr>
<tr>
<td>e99</td>
<td>No escarpment on supplementary drive</td>
<td>50</td>
<td>e156</td>
<td>Equipment incorrectly maintained</td>
<td>10</td>
</tr>
<tr>
<td>e100</td>
<td>Shoes broken/loose</td>
<td>25</td>
<td>e157</td>
<td>‘O’ ring incorrectly fitted in supplementary detector on replacement of micro-switch</td>
<td>10</td>
</tr>
<tr>
<td>e101</td>
<td>Unsupported channel rod</td>
<td>25</td>
<td>e158</td>
<td>Difficulty in identifying ‘run through’</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>e159</td>
<td>RLC lock slide inaccessible</td>
<td>10</td>
</tr>
</tbody>
</table>

Figure 13. [Diagram]
Appendix 3

Parameters of the probability functions

The parameters of the probability functions are shown in Table 3.

Table 3. The parameters of the probability functions.

<table>
<thead>
<tr>
<th>Event</th>
<th>K</th>
<th></th>
<th>λ</th>
<th>m</th>
<th>θ</th>
<th>Event</th>
<th>K</th>
<th></th>
<th>λ</th>
<th>m</th>
<th>θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>e1</td>
<td>0.02</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>e81</td>
<td>0.07</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>e81</td>
<td>0.07</td>
</tr>
<tr>
<td>e2</td>
<td>0</td>
<td>0</td>
<td>0.03</td>
<td>0</td>
<td>e82</td>
<td>0</td>
<td>0.023</td>
<td>0</td>
<td>0</td>
<td>e82</td>
<td>0</td>
</tr>
<tr>
<td>e3</td>
<td>0</td>
<td>0.02</td>
<td>0</td>
<td>0</td>
<td>e83</td>
<td>0</td>
<td>0</td>
<td>0.01</td>
<td>0</td>
<td>e83</td>
<td>0</td>
</tr>
<tr>
<td>e4</td>
<td>0</td>
<td>0</td>
<td>0.08</td>
<td>0</td>
<td>e84</td>
<td>0.05</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>e84</td>
<td>0.05</td>
</tr>
<tr>
<td>e5</td>
<td>0</td>
<td>0.5</td>
<td>0</td>
<td>0.3</td>
<td>e85</td>
<td>0</td>
<td>0</td>
<td>0.02</td>
<td>0</td>
<td>e85</td>
<td>0</td>
</tr>
<tr>
<td>e6</td>
<td>0</td>
<td>0</td>
<td>0.01</td>
<td>0</td>
<td>e86</td>
<td>0</td>
<td>0</td>
<td>0.02</td>
<td>0</td>
<td>e86</td>
<td>0</td>
</tr>
<tr>
<td>e7</td>
<td>0.01</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>e87</td>
<td>0</td>
<td>0</td>
<td>0.03</td>
<td>0</td>
<td>e87</td>
<td>0</td>
</tr>
<tr>
<td>e8</td>
<td>0.05</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>e88</td>
<td>0.02</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>e88</td>
<td>0.02</td>
</tr>
<tr>
<td>e9</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>e89</td>
<td>0.02</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>e89</td>
<td>0.02</td>
</tr>
<tr>
<td>e10</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>e90</td>
<td>0.02</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>e90</td>
<td>0.02</td>
</tr>
<tr>
<td>e11</td>
<td>0.05</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>e91</td>
<td>0.03</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>e91</td>
<td>0.03</td>
</tr>
<tr>
<td>e12</td>
<td>0.01</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>e92</td>
<td>0.08</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>e92</td>
<td>0.08</td>
</tr>
<tr>
<td>e13</td>
<td>0</td>
<td>0</td>
<td>0.02</td>
<td>0</td>
<td>e93</td>
<td>0</td>
<td>0</td>
<td>0.04</td>
<td>0</td>
<td>e93</td>
<td>0</td>
</tr>
<tr>
<td>e14</td>
<td>0</td>
<td>0.03</td>
<td>0</td>
<td>0</td>
<td>e94</td>
<td>0.05</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>e94</td>
<td>0.05</td>
</tr>
<tr>
<td>e15</td>
<td>0.01</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>e95</td>
<td>0</td>
<td>0</td>
<td>0.05</td>
<td>0</td>
<td>e95</td>
<td>0</td>
</tr>
<tr>
<td>e16</td>
<td>0</td>
<td>0</td>
<td>0.05</td>
<td>0</td>
<td>e96</td>
<td>0.052</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>e96</td>
<td>0.052</td>
</tr>
<tr>
<td>e17</td>
<td>0</td>
<td>0.6</td>
<td>0</td>
<td>0.4</td>
<td>e97</td>
<td>0.02</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>e97</td>
<td>0.02</td>
</tr>
<tr>
<td>e18</td>
<td>0</td>
<td>0</td>
<td>0.04</td>
<td>0</td>
<td>e98</td>
<td>0</td>
<td>0.2</td>
<td>0</td>
<td>0.15</td>
<td>e98</td>
<td>0</td>
</tr>
<tr>
<td>e19</td>
<td>0.01</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>e99</td>
<td>0</td>
<td>0</td>
<td>0.05</td>
<td>0</td>
<td>e99</td>
<td>0</td>
</tr>
<tr>
<td>e20</td>
<td>0</td>
<td>0</td>
<td>0.021</td>
<td>0</td>
<td>e100</td>
<td>0</td>
<td>0</td>
<td>0.06</td>
<td>0</td>
<td>e100</td>
<td>0</td>
</tr>
<tr>
<td>e21</td>
<td>0</td>
<td>0</td>
<td>0.02</td>
<td>0</td>
<td>e101</td>
<td>0.04</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>e101</td>
<td>0.04</td>
</tr>
<tr>
<td>e22</td>
<td>0.005</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>e102</td>
<td>0.06</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>e102</td>
<td>0.06</td>
</tr>
<tr>
<td>e23</td>
<td>0</td>
<td>0</td>
<td>0.03</td>
<td>0</td>
<td>e103</td>
<td>0</td>
<td>0.23</td>
<td>0</td>
<td>0.22</td>
<td>e103</td>
<td>0</td>
</tr>
<tr>
<td>e24</td>
<td>0.04</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>e104</td>
<td>0.04</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>e104</td>
<td>0.04</td>
</tr>
<tr>
<td>e25</td>
<td>0.02</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>e105</td>
<td>0</td>
<td>0.4</td>
<td>0</td>
<td>0.15</td>
<td>e105</td>
<td>0</td>
</tr>
<tr>
<td>e26</td>
<td>0</td>
<td>0</td>
<td>0.041</td>
<td>0</td>
<td>e106</td>
<td>0</td>
<td>0.3</td>
<td>0</td>
<td>0.26</td>
<td>e106</td>
<td>0</td>
</tr>
<tr>
<td>e27</td>
<td>0</td>
<td>0</td>
<td>0.01</td>
<td>0</td>
<td>e107</td>
<td>0</td>
<td>0.5</td>
<td>0</td>
<td>0.4</td>
<td>e107</td>
<td>0</td>
</tr>
<tr>
<td>e28</td>
<td>0</td>
<td>0.01</td>
<td>0</td>
<td>0</td>
<td>e108</td>
<td>0.04</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>e108</td>
<td>0.04</td>
</tr>
<tr>
<td>e29</td>
<td>0</td>
<td>0</td>
<td>0.01</td>
<td>0</td>
<td>e109</td>
<td>0.04</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>e109</td>
<td>0.04</td>
</tr>
<tr>
<td>e30</td>
<td>0.05</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>e110</td>
<td>0</td>
<td>0.04</td>
<td>0</td>
<td>0</td>
<td>e110</td>
<td>0</td>
</tr>
<tr>
<td>e31</td>
<td>0</td>
<td>0</td>
<td>0.01</td>
<td>0</td>
<td>e111</td>
<td>0.04</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>e111</td>
<td>0.04</td>
</tr>
<tr>
<td>e32</td>
<td>0</td>
<td>0</td>
<td>0.02</td>
<td>0</td>
<td>e112</td>
<td>0.05</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>e112</td>
<td>0.05</td>
</tr>
<tr>
<td>e33</td>
<td>0</td>
<td>0.01</td>
<td>0</td>
<td>0</td>
<td>e113</td>
<td>0.021</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>e113</td>
<td>0.021</td>
</tr>
<tr>
<td>e34</td>
<td>0.05</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>e114</td>
<td>0.025</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>e114</td>
<td>0.025</td>
</tr>
<tr>
<td>e35</td>
<td>0.05</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>e115</td>
<td>0</td>
<td>0</td>
<td>0.05</td>
<td>0</td>
<td>e115</td>
<td>0</td>
</tr>
<tr>
<td>e36</td>
<td>0.06</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>e116</td>
<td>0.2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>e116</td>
<td>0.2</td>
</tr>
<tr>
<td>e37</td>
<td>0</td>
<td>0</td>
<td>0.03</td>
<td>0</td>
<td>e117</td>
<td>0</td>
<td>0</td>
<td>0.05</td>
<td>0</td>
<td>e117</td>
<td>0</td>
</tr>
<tr>
<td>e38</td>
<td>0.04</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>e118</td>
<td>0</td>
<td>0</td>
<td>0.063</td>
<td>0</td>
<td>e118</td>
<td>0</td>
</tr>
<tr>
<td>e39</td>
<td>0</td>
<td>0</td>
<td>0.04</td>
<td>0</td>
<td>e119</td>
<td>0</td>
<td>0.6</td>
<td>0</td>
<td>0.23</td>
<td>e119</td>
<td>0</td>
</tr>
<tr>
<td>e40</td>
<td>0</td>
<td>0</td>
<td>0.01</td>
<td>0</td>
<td>e120</td>
<td>0.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>e120</td>
<td>0.3</td>
</tr>
<tr>
<td>e41</td>
<td>0.025</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>e121</td>
<td>0.08</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>e121</td>
<td>0.08</td>
</tr>
<tr>
<td>e42</td>
<td>0</td>
<td>0</td>
<td>0.01</td>
<td>0</td>
<td>e122</td>
<td>0.09</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>e122</td>
<td>0.09</td>
</tr>
<tr>
<td>e43</td>
<td>0.01</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>e123</td>
<td>0</td>
<td>0</td>
<td>0.04</td>
<td>0</td>
<td>e123</td>
<td>0</td>
</tr>
<tr>
<td>e44</td>
<td>0</td>
<td>0.015</td>
<td>0</td>
<td>0</td>
<td>e124</td>
<td>0.047</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>e124</td>
<td>0.047</td>
</tr>
<tr>
<td>e45</td>
<td>0</td>
<td>0</td>
<td>0.012</td>
<td>0</td>
<td>e125</td>
<td>0</td>
<td>0.01</td>
<td>0</td>
<td>0</td>
<td>e125</td>
<td>0</td>
</tr>
</tbody>
</table>
(continued)
<table>
<thead>
<tr>
<th>Event</th>
<th>K</th>
<th>λ</th>
<th>m</th>
<th>θ</th>
<th>Event</th>
<th>K</th>
<th>λ</th>
<th>m</th>
<th>θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>e46</td>
<td>0.05</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>e126</td>
<td>0</td>
<td>0.03</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>e47</td>
<td>0.05</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>e127</td>
<td>0</td>
<td>0.05</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>e48</td>
<td>0.4</td>
<td>0</td>
<td>0.3</td>
<td>0</td>
<td>e128</td>
<td>0</td>
<td>0</td>
<td>0.02</td>
<td>0</td>
</tr>
<tr>
<td>e49</td>
<td>0</td>
<td>0.08</td>
<td>0</td>
<td>0</td>
<td>e129</td>
<td>0.041</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>e50</td>
<td>0.04</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>e130</td>
<td>0.04</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>e51</td>
<td>0.4</td>
<td>0</td>
<td>0.5</td>
<td>0</td>
<td>e131</td>
<td>0.05</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>e52</td>
<td>0.03</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>e132</td>
<td>0</td>
<td>0</td>
<td>0.02</td>
<td>0</td>
</tr>
<tr>
<td>e53</td>
<td>0.01</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>e133</td>
<td>0</td>
<td>0</td>
<td>0.02</td>
<td>0</td>
</tr>
<tr>
<td>e54</td>
<td>0.054</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>e134</td>
<td>0.06</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>e55</td>
<td>0.045</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>e135</td>
<td>0.06</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>e56</td>
<td>0.01</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>e136</td>
<td>0.2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>e57</td>
<td>0.04</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>e137</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>e58</td>
<td>0.02</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>e138</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>e59</td>
<td>0</td>
<td>0.07</td>
<td>0</td>
<td>0</td>
<td>e139</td>
<td>0.04</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>e60</td>
<td>0.35</td>
<td>0</td>
<td>0.15</td>
<td>0</td>
<td>e140</td>
<td>0.55</td>
<td>0</td>
<td>0.2</td>
<td>0</td>
</tr>
<tr>
<td>e61</td>
<td>0</td>
<td>0</td>
<td>0.01</td>
<td>0</td>
<td>e141</td>
<td>0</td>
<td>0</td>
<td>0.01</td>
<td>0</td>
</tr>
<tr>
<td>e62</td>
<td>0</td>
<td>0</td>
<td>0.04</td>
<td>0</td>
<td>e142</td>
<td>0.04</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>e63</td>
<td>0.02</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>e143</td>
<td>0.2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>e64</td>
<td>0.03</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>e144</td>
<td>0.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>e65</td>
<td>0.014</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>e145</td>
<td>0</td>
<td>0.06</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>e66</td>
<td>0.02</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>e146</td>
<td>0.01</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>e67</td>
<td>0.01</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>e147</td>
<td>0.01</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>e68</td>
<td>0</td>
<td>0.03</td>
<td>0</td>
<td>0</td>
<td>e148</td>
<td>0.01</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>e69</td>
<td>0</td>
<td>0</td>
<td>0.014</td>
<td>0</td>
<td>e149</td>
<td>0.01</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>e70</td>
<td>0.045</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>e150</td>
<td>0.01</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>e71</td>
<td>0.052</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>e151</td>
<td>0.01</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>e72</td>
<td>0</td>
<td>0</td>
<td>0.02</td>
<td>0</td>
<td>e152</td>
<td>0.01</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>e73</td>
<td>0.01</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>e153</td>
<td>0.01</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>e74</td>
<td>0.01</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>e154</td>
<td>0.01</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>e75</td>
<td>0</td>
<td>0</td>
<td>0.01</td>
<td>0</td>
<td>e155</td>
<td>0.01</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>e76</td>
<td>0.02</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>e156</td>
<td>0.01</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>e77</td>
<td>0.03</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>e157</td>
<td>0.01</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>e78</td>
<td>0.03</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>e158</td>
<td>0.01</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>e79</td>
<td>0</td>
<td>0</td>
<td>0.032</td>
<td>0</td>
<td>e159</td>
<td>0.01</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>e80</td>
<td>0.03</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>