ARQUEOLOGÍA Y GEOFÍSICA APLICADA. EXPLORACIÓN Y CARACTERIZACIÓN DE YACIMIENTOS ARQUEOLÓGICOS DE LA PROVINCIA DE CIUDAD REAL MEDIANTE MÉTODOS GEOFÍSICOS COMBINADOS

TESIS DOCTORAL

Autor
José Luis Sánchez Sánchez

Directores
Dr. Jorge Onrubia Pintado
Dr. Jesús Sánchez Vizcaíno
Dra. María Encarnación Cámara Moral

Noviembre, 2016
ÍNDICE

AGRADECIMIENTOS .. 7

INTRODUCCIÓN ... 9

PRIMERA PARTE: GENERALIDADES Y METODOLOGÍA .. 13

CAPÍTULO 1. GEOFÍSICA APLICADA Y ARQUEOLOGÍA 15
 1.1. Aproximación histórica .. 18
 1.2. Los métodos geofísicos .. 22
 1.2.1. Métodos sísmicos .. 22
 1.2.2. Métodos magnéticos .. 24
 1.2.3. Métodos gravimétricos .. 25
 1.2.4. Métodos eléctricos ... 26
 1.2.5. Métodos electromagnéticos .. 27

CAPÍTULO 2. MÉTODOS Y EQUIPOS GEOFÍSICOS UTILIZADOS 29
 2.1. Métodos ... 29
 2.1.1. El método eléctrico ... 31
 2.1.1.1. Fundamentos del método .. 31
 2.1.1.2. Limitaciones del método .. 34
 2.1.1.3. Modos de empleo. Técnicas .. 36
 2.1.2. El método electromagnético ... 37
 2.1.2.1. Fundamentos del método .. 38
 2.1.2.2. Limitaciones del método .. 39
 2.1.2.3. Modos de empleo. Técnicas .. 40
2.2. Equipos..43
 2.2.1. Tomografía eléctrica...43
 2.2.2. Georradar...48
 2.2.3. NanoTEM ..51

CAPÍTULO 3. ORGANIZACIÓN Y SECUENCIACIÓN DEL TRABAJO DE CAMPO ...55
 3.1. Reconocimiento del terreno..55
 3.2. Los trabajos de campo...59
 3.2.1. Fases de investigación..60

CAPÍTULO 4. CONSIDERACIONES GENERALES SOBRE LA INTERPRETACIÓN DE LOS RESULTADOS ..65
 4.1. Radargramas. Anomalías tipo I..69
 4.2. Radargramas. Anomalías tipo II ..70
 4.3. Radargramas. Anomalías tipo III..71

SEGUNDA PARTE: ESTUDIOS DE CASO ..73

CAPÍTULO 5. YACIMIENTO DEL CERRO DE LAS CABEZAS75
 5.1. Contexto geográfico e histórico..75
 5.2. Definición de las áreas de estudio...80
 5.3. Georradar ...83
 5.4. Tomografía eléctrica ...85
 5.5. Resultados e interpretación...87
 5.5.1. Georradar..87
 5.5.1.1. Zona A ..88
CAPÍTULO 6. MONUMENTO HISTÓRICO-ARTÍSTICO NACIONAL DE LAS VIRTUDES

6.1. Contexto geográfico e histórico ... 153
6.2. Definición de las áreas de estudio .. 158
6.3. Georradar .. 163
6.4. Tomografía eléctrica ... 167
6.5. NanoTEM .. 169
6.6. Resultados e interpretación ... 170
 6.6.1. Georradar ... 170
 6.6.1.1. Zona A .. 170
 6.6.1.2. Zona B .. 172
6.6.1.3. Zona C .. 179
6.6.1.4. Zona D .. 181
6.6.1.5. Zona E .. 183
6.6.1.6. Zona F .. 184
6.6.1.7. Zona G .. 186
6.6.2. Tomografía eléctrica ... 189
 6.6.2.1. Zonas A-B .. 189
 6.6.2.2. Zona F ... 195
 6.6.2.3. Zona G ... 195
6.6.3. NanoTEM ... 202
6.7. Discusión y contraste de resultados .. 204
 6.7.1. Zona B .. 205
 6.7.2. Zona C .. 220
 6.7.3. Zona G .. 223

CAPÍTULO 7. CONJUNTO ARQUEOLÓGICO CASTILLO DE LA ESTRELLA

7.1. Contexto geográfico e histórico .. 237
7.2. Definición de las áreas de estudio ... 242
7.3. Georadar .. 246
7.4. Tomografía eléctrica .. 249
7.5. Resultados e interpretación ... 253
 7.5.1. Georadar ... 253
 7.5.1.1. Zona A ... 254
<table>
<thead>
<tr>
<th>Sección</th>
<th>Páginas</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5.1.2. Zona B</td>
<td>262</td>
</tr>
<tr>
<td>7.5.1.3. Zona C</td>
<td>268</td>
</tr>
<tr>
<td>7.5.1.4. Zona D</td>
<td>274</td>
</tr>
<tr>
<td>7.5.2. Tomografía eléctrica</td>
<td>277</td>
</tr>
<tr>
<td>7.5.2.1. Zona A</td>
<td>278</td>
</tr>
<tr>
<td>7.5.2.2. Zona B</td>
<td>283</td>
</tr>
<tr>
<td>7.5.2.3. Zona C</td>
<td>289</td>
</tr>
<tr>
<td>7.5.2.4. Zona D</td>
<td>290</td>
</tr>
<tr>
<td>7.6. Discusión y contraste de resultados</td>
<td>294</td>
</tr>
<tr>
<td>7.6.1. Zona A</td>
<td>295</td>
</tr>
<tr>
<td>7.6.2. Zona C</td>
<td>304</td>
</tr>
<tr>
<td>7.6.3. Zona D</td>
<td>313</td>
</tr>
</tbody>
</table>

CAPÍTULO 8. YACIMIENTO DE PIÉDROLA

<table>
<thead>
<tr>
<th>Sección</th>
<th>Páginas</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1. Contexto geográfico e histórico</td>
<td>319</td>
</tr>
<tr>
<td>8.2. Definición de las áreas de estudio</td>
<td>324</td>
</tr>
<tr>
<td>8.3. Georadar</td>
<td>326</td>
</tr>
<tr>
<td>8.4. Tomografía eléctrica</td>
<td>328</td>
</tr>
<tr>
<td>8.5. Resultados e interpretación</td>
<td>330</td>
</tr>
<tr>
<td>8.5.1. Georadar</td>
<td>330</td>
</tr>
<tr>
<td>8.5.1.1. Zona A</td>
<td>330</td>
</tr>
<tr>
<td>8.5.2. Tomografía eléctrica</td>
<td>338</td>
</tr>
<tr>
<td>8.5.2.1. Zona A</td>
<td>339</td>
</tr>
<tr>
<td>8.6. Discusión y contraste de resultados</td>
<td>346</td>
</tr>
</tbody>
</table>
CAPÍTULO 9. PARQUE ARQUEOLÓGICO DE ALARCOS

9.1. Contexto geográfico e histórico

9.2. Definición de las áreas de estudio

9.3. Georradar

9.4. Tomografía eléctrica

9.5. Resultados e interpretación

9.5.1. Georradar

9.5.2. Tomografía eléctrica

9.6. Discusión y contraste de resultados

CONCLUSIONES

BIBLIOGRAFÍA

Índice de figuras
AGRADECIMIENTOS

En primer lugar, a mis estimados Directores el Dr. Jorge Onrubia Pintado, el Dr. Jesús Sánchez Vizcaíno y la Dra. María Encarnación Cámara Moral, les agradezco de corazón su confianza, consejos, correcciones y apoyo.

Con todo mi afecto a mi familia por sus constantes muestras de comprensión y ánimo.

A Óscar Merlo por su asesoramiento, generosidad y paciencia infinita.

A todas las personas que me han ayudado durante la investigación por compartir conmigo sus conocimientos y amistad en todo momento: Víctor López-Menchero, Antonio de Juan, Rosario García Huerta, David Gallego, Jesús Molero, David Rodríguez, Javier Díaz, Miguel Ángel Hervás, Eduardo Lillo, Ángel Marchante, Tomás Torres, Antonio Gómez, Diego Lucendo, Rubén Lot García y Antonio Aponte.

Por último, me emociona y enorgullece agradecer a mi esposa Carmen y a mis hijas Inés y Blanca su apoyo, dulzura y cariño para afrontar con coraje y determinación la presente investigación.
INTRODUCCIÓN

La geofísica es una ciencia aplicada que usa los principios de la física para estudiar la configuración y propiedades de los materiales del subsuelo a partir de medidas de algunas magnitudes físicas, como la resistividad eléctrica, la susceptibilidad magnética, etc. Estas mediciones se realizan generalmente en la superficie de la zona de investigación.

Fundamentalmente, la geofísica se aplica para usos de ingeniería civil y de geología debido a que permite estudiar cimentaciones, firmes y desprendimientos de tierras, definir zonas de alta peligrosidad sísmica, y localizar yacimientos minerales, cavidades o aguas subterráneas. En investigaciones arqueológicas, constituye una importante herramienta auxiliar, contrastada en múltiples ocasiones y empleada habitualmente para la localización de estructuras y objetos y para la caracterización de la composición estratigráfica antes del inicio una excavación. Al tratarse de un método no destructivo facilita la planificación del trabajo en cuanto a tiempo y costes, a través de la evaluación del potencial del yacimiento arqueológico.

La experiencia adquirida como arqueólogo profesional en el campo de la gestión patrimonial y de la investigación en proyectos de obra civil y minería en los que se desarrollaron trabajos de control y excavación arqueológica, me ha llevado a estar convencido de la necesidad de un cambio en la metodología y en el planteamiento de los mismos. Cambio que pasa, entre otras cosas, por la realización de estudios geofísicos integrados. Porque este tipo de investigaciones permiten realizar interpretaciones previas que disminuyen el nivel de incertidumbre en cuanto a los modelos arqueológicos del subsuelo, siendo la destrucción del registro arqueológico mínima.

Los estudios que realizan los miembros del Laboratorio de Arqueología, Patrimonio y Tecnologías emergentes de la Universidad de Castilla-La Mancha en el Castillo de la Estrella de Montiel, en el Monumento Histórico-Artístico Nacional de Las Virtudes, sito en el término municipal de Santa Cruz de Mudela, en el Parque Arqueológico de Alarcos en Ciudad Real o en el paraje de Piérdrola, sito en Alcázar de San Juan, así como las intervenciones arqueológicas que se desarrollan en la actualidad en el yacimiento del Cerro de las Cabezas de Valdepeñas, todos de la provincia de Ciudad Real, han ofrecido la posibilidad de aplicar los métodos geofísicos en la investigación.
en estos enclaves históricos. Para ello se han utilizado las técnicas del georradar, la tomografía eléctrica y el nanoTEM, éste último de manera experimental, puesto que no hay constancia de que se haya empleado hasta ahora para el análisis de restos arqueológicos.

Sobre la base de estas premisas, con la presente tesis se trata de impulsar el uso de la geofísica aplicada a los estudios y trabajos arqueológicos, puesto que es manifiesta la necesidad de optimizar conocimientos y recursos en el campo de la investigación arqueológica.

Con la intervención arqueológica efectuada en estos conjuntos patrimoniales, se pretendía alcanzar los siguientes objetivos:

1. Integrar varios métodos geofísicos como herramienta auxiliar en el marco de la planificación, ejecución y documentación de trabajos relacionados con el Patrimonio Histórico.

2. Estudiar la eficacia y las carencias de los métodos geofísicos aplicados en zonas de trabajo con características similares a las descritas en los yacimientos arqueológicos.

3. Experimentar con el método electromagnético del nanoTEM, técnica geofísica pionera en el campo de la investigación patrimonial.

4. Obtener una caracterización estratigráfica del subsuelo en las zonas de exploración seleccionadas, para determinar su valor patrimonial en previsión de futuras obras o actuaciones.

5. Elaborar e interpretar los mapas de anomalías generadas a partir de las lecturas observadas en los radargramas y en las secciones de tomografía.

6. Determinar y representar gráficamente mediante los programas informáticos de inversión pertenecientes a los equipos de prospección geofísica, la profundidad a la que se encuentran los elementos detectados, así como su orientación y dimensiones, con el empleo de imágenes 2D y 3D.
7. Comprobar mediante excavación arqueológica en las zonas de investigación la validez de los registros obtenidos y su interpretación.

8. Colaborar, con los datos obtenidos, en la planificación de las investigaciones científicas de excavación arqueológica que en el futuro se puedan acometer en estas zonas.

En resumen, con la presente investigación se ha tratado de integrar varios métodos geofísicos en las zonas de exploración seleccionadas de los distintos enclaves, para comprobar si existen restos constructivos o secuencias estratigráficas de subsuelo con valor patrimonial y arqueológico. También se ha procedido al procesamiento de todos los datos obtenidos, y a su documentación gráfica, con el fin de apoyar y reforzar los trabajos de investigación venideros que se realicen en dichas áreas.

Para finalizar esta introducción, se pasa a exponer una síntesis de los temas tratados en cada capítulo y de los trabajos realizados para lograr los objetivos expuestos.

La presente memoria se ha estructurado en dos partes separadas. La primera se corresponde con los cuatro primeros capítulos. Contiene una aproximación a los conceptos teóricos necesarios para entender el funcionamiento de los métodos geofísicos empleados en trabajos arqueológicos, y una descripción de los métodos y equipos utilizados para la adquisición de datos en la presente investigación. También se incluye la metodología de trabajo empleada, así como una definición y clasificación de los registros obtenidos.

En el capítulo 1 se realiza una aproximación a la geofísica aplicada, a su uso en otras disciplinas científicas y a su puesta en valor como herramienta auxiliar para la investigación arqueológica. También se hace un repaso a la historia del uso de los métodos geofísicos aplicados tanto a la arqueología, como al análisis del Patrimonio Histórico-Artístico, y se explica el estado actual y desarrollo de las prospecciones geofísicas a nivel nacional y de Castilla-La Mancha. Posteriormente, se efectúa una revisión de los procedimientos y métodos geofísicos empleados en la actualidad en el campo de la investigación arqueológica, exponiendo ventajas, inconvenientes y el tipo de estudios en que se pueden aplicar.
En el capítulo 2 se desarrolla de forma teórica una descripción en detalle de los métodos empleados en la presente investigación. Se exponen los fundamentos teóricos de los métodos eléctrico y electromagnético, las técnicas desarrolladas para su aplicación y las principales limitaciones en su manejo. También se describen pormenorizadamente los equipos utilizados en el trabajo de campo (georadar, tomografía eléctrica y nanoTEM), así como sus componentes, accesorios, características y especificaciones.

En el capítulo 3, tomando como ejemplo los estudios realizados, se detallan, a modo de proceso estructurado, las labores previas que sirven como preparación a un trabajo de exploración geofísica en el campo de la investigación arqueológica. En una segunda parte del capítulo, se describen las fases de la investigación, con un repaso a la metodología empleada para la toma y adquisición de datos, y a los procedimientos pormenorizados de trabajo en cada zona de exploración con cada una de las técnicas geofísicas aplicadas.

En el capítulo 4, se precisan los fenómenos que afectan a la interpretación de la tomografía eléctrica. Además se definen y clasifican los radargramas obtenidos en la presente investigación.

La segunda parte se compone de los capítulos 5, 6, 7, 8 y 9. En estos capítulos se presenta el contexto histórico y geográfico de las áreas de estudio y una descripción de los distintos parajes arqueológicos. Así mismo se describen y se sitúan las zonas seleccionadas para la prospección dentro de los conjuntos patrimoniales del Cerro de las Cabezas, Las Virtudes, Castillo de la Estrella, Piédrola y Alarcos. Se presentan los resultados obtenidos mediante el uso del georadar, de la tomografía eléctrica y del nanoTEM. Para ello, en cada zona de trabajo se muestran mapas con los distintos tipos de anomalías detectados y se analizan desde una perspectiva de interpretación arqueológica. También se muestran los radargramas y las secciones eléctricas más significativas, y se describen los pormenores del uso de bloques 3D. Además, se realiza un análisis integrado de los registros geofísicos a partir de la comparativa con los datos obtenidos mediante la excavación arqueológica de las diferentes zonas de investigación.

Finalmente, se presentan las conclusiones, se resumen los resultados y se indican futuras líneas de investigación y trabajo.
PRIMERA PARTE: GENERALIDADES Y METODOLOGÍA
CAPÍTULO 1. GEOFÍSICA APLICADA Y ARQUEOLOGÍA

La geofísica es la ciencia que se encarga del estudio de la composición y estructura actual, interna y externa, de la Tierra así como de su evolución en el transcurso del tiempo.

La geofísica puede dividirse en dos partes: la geofísica pura, que investiga las características magnéticas, eléctricas, sismológicas y gravimétricas terrestres; y la geofísica aplicada, dedicada a la aplicación de la geofísica pura.

La geofísica aplicada analiza, a partir de la medición de ciertas propiedades físicas, la parte superficial de la corteza terrestre, y es una herramienta que puede ser utilizada para las investigaciones arqueológicas.

Los métodos geofísicos pueden clasificarse en métodos pasivos (no introducen ninguna perturbación en el suelo), y métodos activos, (miden la respuesta a un campo introducido artificialmente en el terreno). Dicho campo (activo o pasivo), será modificado por las propiedades físicas del medio. A partir de la medición de los valores asociados a este campo natural o artificial, se obtendrá una aproximación sobre los cambios de las propiedades físicas del terreno (Pérrot-Minot et al., 2005).

Las técnicas geofísicas son métodos de exploración indirecta. Por medio de ellas es posible identificar una anomalía geofísica que se refiere a una propiedad física de la tierra, que en un volumen definido difiere con respecto al valor promedio correspondiente al área de estudio. En un caso favorable una anomalía geofísica corresponde a un vestigio arqueológico u otro tipo de alteración en el terreno (Blancas et al., 2008).

Todo método geofísico se fundamenta en el contraste de alguna propiedad física entre la estructura investigada y el entorno que la alberga. Si no hay diferencia en el valor de la propiedad analizada, el material o estructura no se puede detectar con un método basado en esa propiedad (Peña, 2010). Sólo en los supuestos en que se produzca esta diferencia en alguna propiedad física, y que se manifieste en una magnitud observable, será aplicable el método geofísico capaz de detectarla. Si el contraste se presenta en más de una propiedad física medible, se podrá integrar la aplicación de varios métodos (Telford et al., 1990).
Cada uno de estos métodos tiene un campo de aplicación óptimo que depende de las características de los restos arqueológicos, y de las características del terreno circundante. El hecho de existir métodos alternativos para la determinación de una misma propiedad física es extremadamente importante ya que cada método tiene sus propias limitaciones y rangos de aplicabilidad por lo que, en cada investigación, debe aplicarse el método más operativo y que mejor se adapte a la misma. Además, el empleo de diferentes técnicas o métodos para determinar las propiedades de los diferentes materiales presentes en el subsuelo permite ayudar a la interpretación de los datos y determinar el mejor modelo geofísico, geológico y arqueológico del subsuelo del área investigada.

Estos métodos, en sus diferentes técnicas, se utilizan extensamente en distintos tipos o campos de investigación. En ingeniería geológica son usados para localizar cavidades subterráneas, fracturas, zonas de alteración, determinar el espesor del permafrost, localizar galerías y túneles mineros, etc. En minería, se emplean en la detección de depósitos de sulfuros polimetálicos y cubicación de áridos. Se aplican en arqueología para la cartografía de áreas de extensos asentamientos, edificios, pequeñas estructuras, etc., hoy enterrados bajo la superficie.

La importancia del uso de la geofísica aplicada a la arqueología se manifiesta principalmente por su utilización en valiosos enclaves arqueológicos. En una gran proporción de esas aplicaciones las técnicas geofísicas tienen una validez aceptable (Clark, 1990) y han demostrado su utilidad, colaborando en la localización de estructuras de interés arqueológico en planta y en profundidad, y permitiendo evaluar el potencial de un yacimiento que se encuentre en curso de investigación o que sea solo conocido por sus evidencias superficiales, como se ha constatado en numerosas ocasiones. Los resultados obtenidos ayudan a completar el mapa arqueológico del los yacimientos incluso en zonas no excavadas, pudiéndose posteriormente dirigir los esfuerzos de la excavación a las zonas con mayor potencial.

El valor de la geofísica aplicada reside fundamentalmente en que el uso de estas técnicas está legitimado por distintos elementos favorables: su carácter no destructivo del contexto arqueológico, ya que se evitan excavaciones innecesarias, su compatibilidad ambiental, puesto que no afecta el entorno ni perturba el medio, y sus ventajas técnico-económicas, ya que se pueden investigar áreas extensas en un tiempo...
mucho menor y a menor costo, con la posibilidad añadida de poder utilizar inmediatamente la información recibida a través de los planos de anomalías que reflejan los cambios de las características del subsuelo asociado a una actividad antrópica. Por lo tanto, el beneficio científico es real y sustancial.

Los yacimientos arqueológicos se caracterizan normalmente por muros, zanjas, pozos o agujeros de postes que, con frecuencia, son de pequeñas dimensiones y, a veces, se encuentran dispersos y enterrados a diferentes cotas. Son estas características físicas de los propios restos, unidas a las propias de su entorno, las que en ocasiones no permiten que sean detectados utilizando técnicas geofísicas.

Aunque en el campo de la geofísica se han producido considerables avances técnicos, el factor limitante principal para la detección de emplazamientos arqueológicos sigue siendo el de los propios suelos en los que se encuentran, debido a su amplia diversidad geológica. Por ello se precisa de una gran variedad de métodos y configuraciones geofísicas, puesto que según el contexto, algunos métodos pueden ser completamente ineficaces, lo que implica una dificultad en la sistematización de la geofísica para la detección de restos arqueológicos.

La aplicación de métodos geofísicos no debe estar condicionada por estas dificultades, ya que, cuando el objetivo de la investigación arqueológica está bien definido y las características del medio son propicias, pueden colaborar en la obtención de registros útiles para la caracterización del enclave. Así pues, la geofísica se puede utilizar para obtener un mejor conocimiento geomorfológico del yacimiento y de los fenómenos antrópicos presentes en el emplazamiento (Hulin y Simon, 2012).

El actual estado de avance en las técnicas e instrumentos geofísicos hace cada día más necesaria una mayor especialización del arqueólogo en el campo de la geofísica aplicada. Resulta, por lo tanto, indispensable plantear la necesidad de mayor contacto entre estas disciplinas, de modo que los arqueólogos conozcan los conceptos más generales y globales de los métodos geofísicos para un óptimo aprovechamiento de estas técnicas. Así podrán dirigir sus esfuerzos a la obtención de la información en forma correcta, al uso apropiado de estas técnicas e instrumentos, y a la interpretación de los datos con sentido arqueológico.
El incremento en las tareas de prospección arqueológica trae inevitablemente como consecuencia la necesidad del aumento y mejora de las técnicas geofísicas, lo que naturalmente implica nuevos equipos y mayor número de especialistas dedicados a estos servicios.

1.1. APROXIMACIÓN HISTORICA

Históricamente, se considera que la primera aplicación de métodos geofísicos en arqueología ocurrió casi simultáneamente en el período de 1946-47 en México, por parte de Helmut de Terra y su detallada investigación geoarqueológica en varios sitios paleoindios, y en Inglaterra con los trabajos realizados por Richard John Atkinson, quien fue capaz de detectar zanjas húmedas rellenas de limos que habían sido excavadas en gravas secas (García et al., 1984). En ambos casos se utilizaron métodos eléctricos, los cuales han sido profusamente empleados desde entonces en Europa (Hesse, 2000). A pesar de esta coincidencia, es R.J. Atkinson quien suele ser citado como el primero en usar estos métodos en investigaciones arqueológicas y mostrar imágenes fiables de estructuras subsuperficiales (Atkinson, 1963; Hesse, 2000).

Otro hito pionero de la prospección geofísica ocurrió en 1958, cuando Martin Aitken empleó la técnica magnética del magnetómetro de protones en la localización de un horno (Aitken, 1958, 1974; Gaffney y Gater, 2003). Los métodos magnéticos se han convertido desde entonces en la columna vertebral de la prospección arqueológica, siendo utilizados en yacimientos arqueológicos de la Edad del Hierro de Europa y Oriente Medio, los cuales, por contener objetos metálicos, producían anomalías fácilmente detectables.

El método gravimétrico y el método de la polarización inducida se han utilizado con éxito moderado desde la década de 1960. Es un método útil, ya que puede proporcionar información sobre la presencia de horizontes de arcilla o pirita en una zona donde se ha producido la ocupación humana. La experiencia de campo, aunque limitada, sugiere que el método de polarización inducida proporciona información de una mayor claridad que los métodos de resistividad (Aitken, 1974).

Durante los años 70 del siglo pasado, la geofísica comienza a integrarse en la arqueología en Gran Bretaña y en parte de Europa. En las áreas en torno a yacimientos
La Geofísica aplicada y Arqueología

prehistóricos tardíos y romanos a menudo se documentan artefactos de metal, piedra, arquitectura de mampostería y tejas de arcilla cocida. Estos materiales que contrastan fuertemente con su entorno, pudieron ser identificados en mapas realizados con anterioridad a la generalización de las herramientas informáticas. Estos mapas se caracterizaban por tener relativamente pocos puntos de datos y hallarse estos muy separados (Hargrave et al., 2002; Isaacson et al., 1999; Scollar et al., 1990).

John Weymouth y Bruce Bevan llevaron a cabo una serie de estudios realizados en los Estados Unidos (Bevan, 1977, 1983; Bevan y Kenyon 1975; Weymouth, 1976, 1985; Weymouth y Níquel, 1977) que demostraron la utilidad de la geofísica, particularmente en sitios caracterizados por propiedades de alto contraste.

En los años 80 y debido a la evolución de los equipos, y en consecuencia, a la capacidad de obtener mediciones más sutiles de las propiedades físicas, los geofísicos empezaron a utilizar métodos que hasta entonces no se aplicaban a las investigaciones arqueológicas. Se aplicó la magnetometría en yacimientos prehistóricos e históricos de América del Norte (Gibson, 1986; Weymouth, 1986; Weymouth y Woods, 1984) y de la Edad del Bronce de Europa (Clark, 1986), en los que las sutiles alteraciones en la magnetización del suelo pudieron detectarse por estudios de alta resolución. Además, comenzaron los experimentos con los métodos sísmicos de refracción en aplicaciones arqueológicas con relativamente poco éxito. Sin embargo los métodos de reflexión han demostrado su eficacia en ambientes costeros y en la detección de cavidades bajo grandes estructuras (Aitken, 1974).

Una importante aportación técnica en arqueología ha sido la introducción del georradar o radar de penetración terrestre (Ground Penetrating Radar – GPR). Se desarrolló principalmente para localizar cavidades del subsuelo, tales como túneles y pozos de mina. Inicialmente empleado como herramienta en los estudios de geología en ingeniería (Conyers y Goodman, 1997), rápidamente se utilizó para la confección de mapas internos de yacimientos con la localización de muros, suelos, zanjas, etc. (Vaughan, 1986; Imai et al., 1987; Sambuelli et al., 1999).

En la actualidad, los métodos geofísicos son empleados internacionalmente en numerosas investigaciones arqueológicas. Destacan, por ejemplo, las investigaciones en la Gran Pirámide de El Pahñú (Argote-Espino et al., 2013), o más recientemente (2015),
el estudio realizado en la pirámide de Kukulkán, en Chichén Itzá (Yucatán, México)\(^1\), los estudios para la detección de estructuras militares de la Primera Guerra Mundial en Bélgica (Gheyle et al., 2016), las prospecciones llevadas a cabo en un área muy extensa de terreno para la caracterización del entorno de Stonehenge entre los años 2010 y 2012 (Gaffney et al., 2012), o en el campamento romano de Al-Lajjun en Israel (Adams et al., 2013).

En España, en comparación con su adopción internacional, el uso de técnicas geofísicas en arqueología no ha sido tan elevado, posiblemente por la falta de creación de equipos interdisciplinares en las universidades. Sin embargo, hay un crecimiento en el interés en estos métodos, impulsado por factores que incluyen su naturaleza no destructiva y su capacidad de evaluar rápidamente restos arqueológicos del subsuelo, sus beneficios potenciales en el campo de la gestión del patrimonio cultural, así como su capacidad para proporcionar información no fácilmente disponible a través de otros medios.

Una de las primeras aplicaciones de los métodos geofísicos en arqueología de las que se tiene constancia hasta el momento, se realizó en 1969, con la aplicación de métodos eléctricos en la necrópolis fenicia de Trayamar (Málaga), llevada a cabo por Irwin Scollar (Almagro-Gorbea, 1992; Brito-Schimmel y Carreras, 2005).

A partir de la década de los 80, la prospección geofísica pasa a ser reconocida en la arqueología española, en un momento coincidente con las I y II Jornadas sobre Teledetección y Geofísica Aplicadas a la Arqueología, que se llevaron a cabo en Madrid y Mérida, en los años de 1986 y 1987 respectivamente. Las actas de ambas reuniones fueron publicadas posteriormente (1992), por el Ministerio de Cultura. En este momento de auge, en el año 1989, se celebraron las III Jornadas sobre Teledetección y Geofísica Aplicadas a la Arqueología en Aveiro (Portugal), y unas IV Jornadas en 1991, en La Rábida (Huelva), cuyas actas se publicaron en 1990 y 1996, respectivamente.

Esta integración se incrementa sustancialmente en la década de los 90, cuando la geofísica pasa a ser aplicada a la arqueología con más frecuencia (Brito-Schimmel y Carreras, 2005), tal y como queda presente en los diversos artículos que se han publicado con ocasión de las Asambleas Hispano-Portuguesas de Geodesia y Geofísica, celebradas cada dos años desde 1998 hasta el 2012.

Entre las prospecciones geofísicas ejecutadas destacan, por ejemplo, las realizadas en la Sima de los Huesos y la Gran Dolina en la Sierra de Atapuerca (Ibeas de Juarros, Burgos) (Ortega et al., 2012; Parés y Pérez-González, 1995, 1999; Parés et al., 2000), los trabajos con GPR en la muralla romana de Lugo (Casas et al., 1996; Lázaro et al., 1998), para la detección de una *villa* romana en Tarazona (Zaragoza) (Pueyo et al., 2016), en la Catedral de Valencia (Pérez Gracia et al., 2000), y en Numancia (Lorenzo y Hernández, 1995), o los estudios gravimétricos en la Catedral Vieja de Cádiz (Montesinos et al., 2002).

En la actualidad, las investigaciones geofísicas han aumentado considerablemente, por lo que parece que existe una tendencia general al desarrollo en las áreas científicas relacionadas con esta aplicación.

En Castilla-La Mancha, debemos indicar la escasez de estudios arqueológicos apoyados en la geofísica aplicada. Los primeros publicados datan de los años 80 y fueron realizados en la Iglesia de San Lorenzo de Toledo, donde se empleó la tomografía eléctrica para la documentación de estructuras subsuperficiales. En Cogolludo (Guadalajara) se realizaron trabajos con el objetivo de caracterizar y localizar algunos yacimientos arqueológicos de la zona. También hay que citar los ejecutados en la necrópolis de El Navazo (La Hinojosa, Cuenca) (Hernández et al., 1987, 1992), en Fosos de Bayona (Huete, Cuenca) (Hernández et al., 1992), en el yacimiento de Fuente de la Mota (Barchín del Hoyo, Cuenca) (Kermorvant y Sierra, 1988) o en el Parque Arqueológico de Carranque (Carbó et al., 1992). Para la detección de estructuras y edificaciones, en estos trabajos, que continuarían durante la década de los 90, se utilizaron principalmente métodos eléctricos, magnéticos y electromagnéticos orientados al estudio de una parte considerable de la superficie de los enclaves.

Desde el año 2000 a la actualidad, continúa la dinámica de trabajos y publicaciones, escasa pero constante. Destaca principalmente el uso del GPR y las nuevas técnicas y programas de interpretación y modelado de datos en 3D, puesto que los métodos de exploración empleados siguen siendo los indicados en el periodo anterior. Se han llevado así a cabo prospecciones eléctricas en el mausoleo tardorromano de Llanes (Albendea, Cuenca) con el objetivo de conocer las características del basamento de la edificación y la localización de estructuras funerarias (Bernárdez, et al. 2007), en Carranque con el objetivo de completar el mapa subsuperficial del yacimiento y la
documentación de nuevas conducciones hidráulicas (Fernández et al., 2007 y 2012), exploraciones eléctricas y con georradar en las Motillas de la Edad del Bronce de La Mancha (Peña, 2009; Teixidó, 2013; Ibarra, 2015) y la búsqueda de las galerías mineras romanas de *lapis specularis* en las minas de La Mudarra (Huete, Cuenca) (Arladi et al., 2006). También entran en este capítulo la delimitación de la villa romana de La Ontavia (Terrinches, Ciudad Real) (Benítez de Lugo y López-Mencho, 2011), el análisis y la medición magnética de las parcelas del yacimiento de La Vega Baja (Toledo)\(^2\), las prospecciones con georradar y tomografía eléctrica como apoyo al análisis macroespacial del paisaje minero antiguo de la vertiente norte de Sierra Morena (Zarzalejos et al., 2012), las investigaciones en el Conjunto Patrimonial de Las Virtudes (Sánchez et al., 2015), o los trabajos de GPR en el yacimiento del Cerro de la Mesa (Alcolea de Tajo, Toledo), y en la Concatedral de Guadalajara llevados a cabo por el Centro de Apoyo a la Investigación de Arqueometría y Análisis Arqueológico de la Universidad Complutense de Madrid\(^3\).

1.2. LOS MÉTODOS GEOFÍSICOS

Existe una gran variedad de métodos de prospección geofísica basados en las diferencias de las características de los materiales. Estos métodos se utilizan cada vez con mayor frecuencia como un complemento importante a los trabajos arqueológicos puesto que no son destructivos y se pueden utilizar en todas las tipologías de terrenos. A continuación se realizará una exposición de las propiedades de cada uno y su ámbito de aplicación más significativo.

1.2.1. MÉTODOS SÍSMICOS

Los métodos sísmicos son una herramienta con la se pueden inspeccionar con buena resolución desde los primeros metros del terreno hasta varios kilómetros de profundidad. La primera técnica es conocida como sísmica de alta resolución o sísmica superficial, la segunda se denomina sísmica profunda.

\(^2\)Informe sobre los sondeos de verificación de la prospección con métodos geofísicos de la Unidad de Actuación Vega Baja II (Toledo). Toledo, 2009.

\(^3\)http://pendientedemigracion.ucm.es/info/preh/investigacion/curso/proy_cai.pdf
Ambas se basan en la propagación de ondas elásticas a través de las estructuras geológicas que conforman el subsuelo en relación con la compacidad de las mismas. La técnica central consiste en generar ondas elásticas mediante algún medio perturbador, en la superficie o a cierta profundidad en un pozo, y medir el tiempo que tarda la energía en propagarse desde la fuente origen hasta los geófonos-detectors. A partir de los tiempos de viaje es posible calcular las velocidades de propagación de las ondas sísmicas de compresión o longitudinales (ondas P), denominadas así porque consisten en la transmisión de compresiones y rarefacciones (expansiones), y de las ondas trasversales (ondas S). En el primer caso, las partículas del medio se mueven en el mismo sentido en que se propaga la onda, en el segundo, las partículas se mueven en dirección perpendicular a la dirección de propagación de la onda. Sobre la base de este principio se obtienen imágenes del subsuelo a partir de las cuales se deducen las capas geológicas.

Los métodos sísmicos son una técnica geofísica activa y se aplican ventajosamente para la construcción de autopistas, obras lineales o edificaciones, sin adquirir un desarrollo especializado en el campo arqueológico. No es operativo, en general, en el mundo de la Arqueología.

Se dividen en dos tipos de métodos: refracción y reflexión. Los métodos de refracción funcionan bien en capas terrestres no alteradas que tienen velocidades cada vez mayores según aumenta la profundidad, pero resultan menos útiles, con lo que la interpretación se vuelve más cualitativa, cuando hay inversiones de velocidad representativas de perturbaciones con origen antrópico u objetos altamente tridimensionales como lugares de enterramiento y cimientos de piedra. Por su parte, los métodos de reflexión destacan en aplicaciones marinas como la detección de pecios enterrados en sustratos del lecho marino, localización de zonas costeras sumergidas con posibles asentamientos humanos, o búsqueda de cavidades en macizos rocosos homogéneos o fisuras en antiguas estructuras de piedra.

Pueden llegar a ser métodos destructivos para los estratos subsuperficiales dependiendo de cuál sea el método de generación de la onda. Los costes elevados de este método, unidos tanto a la difícil detección e interpretación de estructuras a partir de las diferencias en las velocidades de transmisión de las ondas, como al uso de diversos
softwares muy complejos y específicos de tratamiento de los datos, hacen que su aplicación sea difícil en el ámbito arqueológico, al menos sin cruzarse con otro método.

1.2.2. MÉTODOS MAGNÉTICOS

El método magnético es una técnica geofísica pasiva que se basa en la medida de la susceptibilidad magnética, inducida o natural, de los distintos materiales. La susceptibilidad magnética informa de lo polarizable o magnetizable que es un material ante la presencia de un campo magnético externo. La magnetización de un material es la diferencia entre el campo magnético aplicado y la inducción magnética observada.

En presencia de un campo magnético, las rocas, los suelos y los objetos ferrosos pueden llegar a ser magnetizados. Esta magnetización se dice que es inducida.

Además de esta magnetización inducida, que desaparece cuando el campo aplicado es eliminado, algunos materiales presentan magnetización remanente, es decir, la que persiste en ausencia de un campo aplicado.

El método magnético se fundamenta en que en cualquier punto de la superficie terrestre, el campo magnético total es la suma de variaciones locales de las características de los elementos que componen el subsuelo, añadidas a los cambios en la intensidad del campo magnético de la Tierra. Por lo tanto, en cada zona geográfica el campo magnético total es distinto.

En arqueología, las variaciones en la intensidad del campo magnético total son medidas mediante los magnetómetros y gradiómetros a través del registro de lecturas en distintos puntos de un yacimiento, cuya interpretación final dependerá del recorrido sistemático de la superficie.

Las variaciones en las propiedades magnéticas del material del subsuelo (sedimentos, rocas, o materiales artificiales como el ladrillo) pueden producir una anomalía en el campo magnético medido. En estructuras enterradas, los materiales de mampostería empleados pueden ser alóctonos y dispuestos junto con otras piedras del lugar. Podremos distinguir al menos una parte del conjunto edificado si la susceptibilidad magnética de las zonas de origen de los restos pétreos es diferente.
Aunque sea poco destacable la diferencia de susceptibilidad magnética que generan suelos y muros con respecto a su entorno inmediato, puede llegar a medirse e interpretarse. De hecho, se aconseja este método en la detección de pequeñas estructuras como los agujeros de poste o las tumbas.

En arqueología, los métodos magnéticos obtienen muy buenos resultados para la localización de zanjas, zonas de cultivo, áreas habitacionales, zonas de alfares sometidas a altas temperaturas, en puntos con hornos, en necrópolis relacionadas con el rito de incineración, zonas de fragua y asociadas a trabajos metalúrgicos, etc. Ello se debe a que el fuego provoca en las partículas de hierro cambios sustanciales en su estructura atómica y por tanto en sus propiedades magnéticas. Además, la susceptibilidad magnética es más elevada en la parte somera de los suelos debido a la concentración de materia orgánica, principalmente en áreas de cultivo y antiguas zonas de hábitat. Así pues, las exploraciones magnéticas se fundamentan en la magnetización termorremanente de las estructuras, por un lado, así como en el contraste de susceptibilidad magnética entre los vestigios arqueológicos y el medio que los alberga (Chávez et al., 1995).

Por lo tanto, las propiedades magnéticas más significativas para la investigación arqueológica son la susceptibilidad magnética y la magnetización de los materiales.

La prospección magnética es una de las técnicas geofísicas más utilizadas en arqueología, debido a su fácil uso y fiabilidad. Se utiliza frecuentemente para explorar de un modo rápido y económico grandes zonas.

1.2.3. MÉTODOS GRAVIMÉTRICOS

La gravimetría es una técnica geofísica pasiva que detecta diferencia de densidades o diferencias de masa de los materiales. Las investigaciones gravimétricas se basan en la determinación de las perturbaciones del campo de gravitación causadas por la existencia de masas más pesadas o más livianas en el subsuelo. Debido a ellas, la dirección y el valor de la gravitación cambian de un punto al otro. Los cambios son más importantes donde entran en contacto unidades geológicas de diferente densidad.
Hay dos tipos de mediciones de la gravedad: absoluta y relativa. Las medidas absolutas se realizan estudiando la caída libre de los cuerpos y las relativas, que son las habituales, dan la diferencia de gravedad entre los cuerpos de la zona de estudio y el punto seleccionado como base. Se consiguen así resultados sobre la geometría y localización de estos cuerpos, caracterizados por una densidad anómala respecto a su entorno. Estas mediciones se obtienen mediante el empleo de gravímetros.

Los parámetros gravimétricos se encuentran influidos por factores como la topografía, la altitud, la latitud, etc., por lo que se deben realizar correcciones sobre la base de estos condicionantes.

Son métodos muy específicos, muy empleados en geología, pero de difícil aplicación en la investigación arqueológica ya que necesitan zonas con un gradiente de densidades muy alto, que generen anomalías de cierta entidad; mayores, en todo caso, que las generadas por suelos y muros, cavidades, sótanos, criptas o capillas, relativamente superficiales con origen geológico o antrópico.

1.2.4. MÉTODOS ELÉCTRICOS

Los métodos eléctricos son una técnica geofísica activa, en la que se realiza la medición de la resistividad eléctrica del suelo. Se emplean en ingeniería geológica, minería, obras públicas, y medioambiente. Con ellos se pueden localizar estructuras antrópicas, caracterizar estructuras geológicas, niveles freáticos, cavidades, etc. Por lo que hace a la arqueología, si el contraste entre los restos arqueológicos y su contexto es medible, los restos arqueológicos serán detectados.

Los métodos eléctricos pueden subdividirse en dos grupos: método de polarización inducida y métodos de corriente continua.

El método de polarización inducida consiste en medir la capacidad de carga y descarga del terreno: se introduce una corriente eléctrica de alto voltaje en el terreno y al interrumpirse ésta, se analiza cómo queda cargado el terreno y cómo se produce el proceso de descarga eléctrica. Los resultados obtenidos son de difícil interpretación porque las primeras fracciones de respuesta, las que serían más interesantes en arqueología, son precisamente las que por problemas de representación son más difíciles
de interpretar. Este hecho, unido al coste del sofisticado equipo electrónico, supone que la polarización inducida sea escasamente utilizada en arqueología.

Por su parte, los sistemas que se basan en la aplicación de corriente continua se dividen en métodos de investigación verticales y métodos de investigación horizontal. Los primeros se denominan sondeos eléctricos verticales o SEV. Los sistemas de prospección horizontal son los que mejor aplicación tienen en arqueología y, por ello mismo, son los más usados. Son de dos tipos: los fijos, en los que los electrodos permanecen inmóviles en los extremos o en una zona interna del dispositivo electródico y se desplazan solamente los electrodos centrales o de recepción, y los denominados métodos móviles, en los que la totalidad de los electrodos se desplazan. Con ellos se pueden localizar estructuras y construcciones antrópicas, caracterizar estructuras geológicas, niveles freáticos, cavidades, calcular la profundidad de los estratos, etc.

1.2.5. MÉTODOS ELECTROMAGNÉTICOS

Otra familia de métodos geofísicos activos son los electromagnéticos. Miden desviaciones producidas en los campos magnéticos generados por el paso de una corriente inducida. La velocidad de propagación de las ondas electromagnéticas en un medio depende de las características eléctricas del mismo; especialmente de la resistividad, de la constante dieléctrica y de la permeabilidad magnética. Se fundamentan en la emisión de campos magnéticos mediante un transmisor y la medición de la reacción electromagnética del suelo mediante una bovina receptora.

Estos métodos son aplicados intensamente en la agricultura, en el análisis y rehabilitación de edificios en obra civil y en la detección de metales, tuberías, túneles y pozos de minas. En arqueología se ha producido un gran avance en su uso, debido a la rapidez con la que se obtienen datos y se abarcan grandes superficies de estudio, y porque son útiles en la detección de la profundidad de la roca inalterada, de huecos, de estructuras antrópicas como muros, tumbas, suelos, áreas colapsadas, etc.

La técnica del TDEM (Time Domain Electromagnetic) se basa en el principio de la circulación cíclica de un campo eléctrico alterno alrededor de una bobina transmisora, estableciéndose un campo magnético estable en el subsuelo. Cuando se corta la corriente que circula por el transmisor, este campo magnético desaparece generando un
campo magnético secundario y decreciente en la superficie, cuya medición proporciona las medidas de conductividad del subsuelo. El nanoTEM (\textit{Transient Electromagnetic}) es una variación del TDEM por el que se genera un campo magnético con un ciclo de menor duración; la respuesta llega antes por lo que se aprecian mejor los resultados que se encuentran cercanos a la superficie, lo cual supone una reducción en la penetración subsuperficial. Se puede operar con distintas configuraciones como son \textit{in-loop} y \textit{fixed-loop}.

El georadar o radar de penetración terrestre, más conocido por sus siglas en inglés GPR (\textit{Ground Penetrating Radar}), es un método de estudio basado en el electromagnetismo, el cual genera un pulso electromagnético transmitido al suelo por una antena emisora. Los cambios en la propagación media de este pulso provocados por un objeto o una superficie de discontinuidad generan reflexiones que se registran por la antena secuencialmente en función de su tiempo de llegada.
CAPÍTULO 2. MÉTODOS Y EQUIPOS GEOFÍSICOS UTILIZADOS

Todos los métodos de prospección geofísica están basados en la medición, por una parte, de unas propiedades (o magnitudes) físicas propias de las estructuras arqueológicas y geológicas cuya presencia se intenta poner en evidencia y de las aportaciones naturales o artificiales que han venido a cubrirlas y fosilizarlas, por otra. Estas propiedades pueden ser: la densidad, la susceptibilidad magnética, la resistividad eléctrica o la conductividad. La eficacia de cada método depende de la existencia de un contraste entre los valores medidos en los vestigios arqueológicos subyacentes y el terreno que los envuelve. También dependerá de la sensibilidad de los aparatos utilizados y de la profundidad a la que se encuentran estos vestigios. Hay que subrayar que ninguno de estos métodos es destructivo.

Cuando las condiciones son óptimas, la prospección geofísica puede ser de un gran apoyo para la exploración arqueológica, permitiendo prescindir de la excavación propiamente dicha para la resolución de problemas específicos: delimitación de las zonas de hábitat, reconstrucción de la planimetría de las edificaciones, o localización de ciertos tipos de estructuras como tumbas, zanjas o superficies de combustión.

En este capítulo se van a desarrollar de forma específica aquellos métodos que se han empleado en la investigación, es decir, los métodos eléctrico y electromagnético, así como los equipos y aparatos utilizados para ello: la tomografía eléctrica, el radar de penetración terrestre (GPR) o georradar, y el nanoTEM.

2.1. MÉTODOS

Como se ha descrito en el capítulo 1, son varios los métodos geofísicos que habitualmente se emplean en la prospección de yacimientos arqueológicos: eléctrico, magnético, electromagnético, sísmico y gravimétrico. En el presente trabajo se han aplicado los métodos eléctrico y electromagnético, mediante el uso de la tomografía eléctrica, del GPR y del nanoTEM. Para la elección de estos métodos se ha tenido en cuenta las dimensiones y topografía de las zonas investigadas, los posibles contrastes de valor que puede presentar la magnitud física a medir de los materiales del yacimiento y el sustrato geológico que los alberga (anomalía), y la disponibilidad de los equipos.
2.1.1. EL MÉTODO ELÉCTRICO

Los métodos eléctricos fueron desarrollados en los comienzos del siglo XX aunque comenzaron a ser usados de forma más generalizada a partir de los años sesenta debido principalmente al desarrollo y disponibilidad de los ordenadores personales que permiten el procesado y análisis de los datos.

Estos métodos se basan en determinar el valor de la resistividad eléctrica de los materiales presentes en el subsuelo de la zona investigada determinando igualmente sus cambios, tanto en profundidad como lateralmente. La resistividad eléctrica de un material es una propiedad física que informa sobre la oposición del material al paso de la corriente eléctrica a su través.

2.1.1.1. FUNDAMENTOS DEL MÉTODO

Consideraremos un cubo de material homogéneo e isótropo (figura 1), de longitud \(L \), a través del cual pasa una corriente de intensidad \(I \). La diferencia de potencial \(V \) entre los extremos del cubo es proporcional a la intensidad y verifica la ley de Ohm:

\[
V = RI
\]

donde R representa la resistencia del material.

La resistencia \(R \) es proporcional a la longitud \(L \) e inversamente proporcional a su área \(A \):

\[
R = \rho \frac{L}{A}
\]

donde \(\rho \) representa la resistividad del material.
2. Métodos y equipos geofísicos utilizados

Figura 1. (A) Definición de resistividad a lo largo de un bloque homogéneo de longitud L cuando es atravesado por una corriente I y presenta una diferencia de potencial V entre las caras opuestas. (B) El circuito eléctrico equivalente, donde R es una resistencia.

Estas dos expresiones \(R = \rho L/A \) y \(R = V/I \) pueden combinarse para formar el producto de una resistencia, expresada en ohmios (Ω) por una distancia (área/longitud) expresada en metros. La resistividad queda expresada en ohmios.metro (Ω.m).

\[
\rho = \frac{VA}{IL} \quad (\Omega/m)
\]

El caso anterior de un cubo formado por material homogéneo e isótropo no presentaba variaciones de sus propiedades eléctricas en función de la dirección de medida (anisotropía). Sin embargo las estructuras geológicas sedimentarias suelen alejarse del modelo anterior homogéneo e isótropo.

La alternancia de capas, estratos o formaciones, discontinuidades dentro de los mismos, cambios verticales y laterales de facies hacen que la resistividad de los materiales cambie con la orientación de la medida.

La resistividad es una propiedad intrínseca de las rocas y depende de la litología, estructura interna y, sobre todo, de su contenido en agua y composición química de la misma, no siendo, por tanto, una propiedad isótopra en la masa rocosa (González de Vallejo et al., 2002). La conductividad eléctrica (que es el inverso de la resistividad eléctrica) de las rocas se debe en mayor o menor medida a su grado de porosidad. El agua contenida en estos poros es rica en sales y facilita la conducción eléctrica como si se tratara de la conducción eléctrica a través de un electrolito.

La resistividad de los diferentes tipos de materiales geológicos se extiende en un amplio rango desde los \(1,6 \times 10^{-8} \) Ω.m de la plata nativa a superar los 50000 Ω.m como en el caso del cuarzo.
En general las rocas ígneas tienden a tener unos altos valores resistivos. Las sedimentarias son más conductoras. Las rocas metamórficas tienen valores intermedios entre las dos anteriores pero con valores solapados. La edad de las rocas también influye en el valor de resistividad. Así una roca volcánica cuaternaria puede tener un valor de resistividad comprendido entre 100 y 200 Ω.m mientras que su equivalente de edad precámbrica o paleozoica puede superar los 2000 Ω.m. Ello es debido a que una roca más antigua ha sufrido más procesos de mineralización secundaria en sus intersticios, la compactación ha disminuido su porosidad y permeabilidad, etc. La resistividad de las rocas y materiales geológicos más comunes puede verse en la siguiente tabla.

<table>
<thead>
<tr>
<th>Materiales</th>
<th>Resistividad ρ (Ω.m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Margas</td>
<td>50 – 5.000</td>
</tr>
<tr>
<td>Calizas</td>
<td>300 – 10.000</td>
</tr>
<tr>
<td>Arcillas</td>
<td>1 – 200</td>
</tr>
<tr>
<td>Arenas</td>
<td>50 – 500</td>
</tr>
<tr>
<td>Gravas</td>
<td>100 – 800</td>
</tr>
<tr>
<td>Areniscas</td>
<td>150 – 500</td>
</tr>
<tr>
<td>Cuarcitas</td>
<td>300 – 1.000</td>
</tr>
<tr>
<td>Conglomerados</td>
<td>1.000 – 10.000</td>
</tr>
<tr>
<td>Pizarras</td>
<td>25 – 1.000</td>
</tr>
<tr>
<td>Esquistos</td>
<td>100 – 2.000</td>
</tr>
<tr>
<td>Granitos</td>
<td>300 – 10.000</td>
</tr>
<tr>
<td>Basaltos</td>
<td>100 – 2.000</td>
</tr>
</tbody>
</table>

Figura 2. Valores de resistividad de diferentes rocas o materiales geológicos. Modificado de González de Vallejo et al., 2002.

La medida de las resistividades del subsuelo se lleva a cabo en los siguientes pasos:

a) Introducción en el terreno de una corriente continua de intensidad (I), mediante dos electrodos, denominados A y B (electrodos de corriente), conectados a una fuente de energía.

b) Medida de la diferencia de potencial (ΔV), generada por el paso de la corriente, entre dos electrodos denominados M y N (electrodos de potencial).

c) Cálculo de la resistividad del espesor del terreno afectado por el paso de la corriente.
La resistividad que se obtiene no corresponde a una unidad litológica concreta, sino que define al conjunto de materiales afectados por paso de la corriente. Esta resistividad así obtenida se denomina resistividad aparente (ρ_a).

El cálculo de la misma se realiza aplicando la siguiente fórmula:

$$\rho_a = K \left(\frac{\Delta V}{I} \right)$$

donde K es un factor geométrico o constante de configuración geométrica del dispositivo en cada estación de medida y depende de las distancias entre los electrodos, AM, MB, AN y NB. La resistividad aparente (ρ_a) se expresa en ohmios.metro ($\Omega.m$). La profundidad a la que se adjudica el valor de la resistividad así calculada, depende de la distancia entre los electrodos y de la distancia relativa entre los electrodos de corriente y de potencial.

El valor de la resistividad aparente medida depende de la geometría del dispositivo o configuración empleada definido por el factor geométrico o de configuración. Hay tres tipos principales de dispositivos o configuraciones electródicas y un gran número de subtipos. Las dos primeras toman su nombre de los investigadores que respectivamente las diseñaron, Frank Wenner y Conrad Schlumberger. La tercera engloba los dispositivos dipolo-dipolo.
Figura 3. Configuraciones electródicas en el dispositivo dipolo-dipolo (arriba) y Wenner-Schlumberger (abajo).

Cada uno de estos diferentes tipos de configuraciones o dispositivos tiene sus ventajas e inconvenientes particulares así como su sensibilidad y resolución. Así, el dispositivo Wenner-Schlumberger permite obtener una buena resolución vertical, por un alto nivel de penetración de la configuración dipolo-dipolo. Los factores a considerar a la hora de elegir una configuración u otra son: el espacio disponible para extender el circuito, la complejidad operativa y la laboriosidad de la configuración, la sensibilidad lateral frente a las heterogeneidades y al buzamiento de las capas del subsuelo y el método eléctrico que se va a emplear.

2.1.1.2. LIMITACIONES DEL MÉTODO

Para que el método eléctrico usando un dispositivo colineal funcione correctamente es necesario que la resistencia interna del circuito de medida del potencial sea mucho mayor que la resistencia del terreno entre los dos electrodos de potencial. Si esto no es así, el circuito de potencial proporciona una ruta alternativa de baja resistencia al flujo de corriente y las medidas de resistencia son completamente falsas o sin sentido. Por ello los equipos de medida de resistividades tienen una resistencia interna (impedancia) de al menos 1 MΩ, suficiente para mediciones en la mayoría de los casos.
Quizás la mayor fuente de problemas de medida en campo es la resistencia de contacto de los electrodos. Los métodos de resistividad pretenden introducir una corriente en el terreno y medir la respuesta de éste al paso de aquella. Si la resistencia de los electrodos de corriente es anormalmente alta, la corriente aplicada puede caer hasta valores próximos a cero y no registrarse medidas.

Altas resistencias de contacto son comunes cuando el material superficial en el que se implantan los electrodos son arenas secas, bolos, gravas, suelo congelado, hielo o suelos lateríticos. También puede darse este fenómeno cuando los electrodos han de clavarse sobre roca competente y se aprovechan las diaclasas o juntas para introducir los electrodos de corriente en la roca. Si el problema no puede solucionarse directamente, por ejemplo seleccionando mayor un voltaje de salida de la caja de baterías mayor, pueden usarse otros dos métodos. El primero consiste en mojar o regar la zona donde han de colocarse los electrodos de corriente con una solución salina, mezclada o no con bentonita. El segundo consiste en usar varios electrodos de corriente. A cada electrodo de corriente se le puede conectar varios electrodos que se sitúan de forma perpendicular al perfil, actuando, de hecho, como una resistencia en paralelo. La resistencia total del conjunto de electrodos es así menor que la de un solo electrodo. La presencia en el subsuelo de tuberías, paleocanales de arena o grava, lentejones de arcilla o cualquier otra estructura de entidad por sus dimensiones en relación con la profundidad en la que se encuentra, puede degradar la calidad de las medidas de campo y reducir, en consecuencia, la calidad de la correspondiente interpretación.

Otra situación que puede presentarse es la fuga de corriente. Se presenta preferentemente cuando los electrodos de corriente están muy separados del centro del dispositivo y el perfil es paralelo a una estructura conductor a como una tubería metálica enterrada o el cauce de un arroyo. En este caso los valores de la resistividad aparente comienzan a disminuir de forma errática debido a que el voltaje entre los electrodos de potencial cae por debajo del nivel de “ruído” y tiende a decrecer en valor. Si la situación de la tubería es conocida podemos prolongar el tramo de la curva (suavizado) afectado por la fuga de corriente.

Las fugas de corriente también pueden producirse por un defecto en el aislamiento de los cables y carretes que conectan la fuente de corriente hasta los electrodos de corriente, especialmente cuando se trabaja en condiciones de terreno mojado, lluvia,
hierba húmeda, etc. En estos casos la corriente penetra en el terreno no sólo por los
electrodos de corriente sino también en aquellos puntos en los que el cable ha perdido
su aislamiento y está en contacto con el terreno. En consecuencia se está falseando la
configuración del dispositivo a partir de la estación en la que el cable mal aislado
conecta con el terreno.

Esto se traduce en un aumento de la corriente presente en el subsuelo y en el
consiguiente aumento de la diferencia de potencial entre los electrodos de potencial. La
solución, una vez detectado el problema, pasa por una revisión de los cables y el
correspondiente correcto aislamiento de los mismos.

Otro problema frecuente se produce cuando uno de los electrodos de potencial o los dos
están mal asentados en el terreno (presencia de piedras sueltas en el suelo) o debajo de
alguno de ellos se encuentra un bloque de gran tamaño. La solución pasa por un buen
asentamiento de los electrodos o un cambio en su posición.

2.1.1.3. MODOS DE EMPLEO. TÉCNICAS

Son varios los dispositivos, técnicas de medida o formas de disponer los electrodos en
campo y medir la resistividad del subsuelo. Hay dos tipos principales, los sondeos
eléctricos verticales y las pseudosecciones, o tomografías. Cada una de las anteriores
puede, a su vez, ser ejecutada con diferentes configuraciones electrónicas o formas de
medida.

Los sondeos eléctricos verticales permiten determinar la distribución de materiales en la
vertical de un punto de medida, centro del dispositivo. Pueden alcanzar gran
profundidad pero no dan información de los materiales existentes a los lados del centro
del dispositivo. Son idóneos para investigar medios o subsuelos con contraste de
resistividades horizontales, formados por capas alternantes horizontales de resistividad
diferente.

Por el contrario, las pseudosecciones o tomografías permiten obtener un barrido del
subsuelo a diferentes profundidades de medida y a lo largo de un perfil que coincide con
la disposición de los electrodos en el terreno. Las profundidades de medida dependen de
varios factores como son el tipo de configuración electrónica empleada, la distancia
2. Métodos y equipos geofísicos utilizados

interelectrónica, la longitud del perfiles, la distribución de materiales y el contraste de resistividad de los materiales del subsuelo. Como en el caso anterior, su empleo se adecua bien a la investigación de médios o subsuelos con contraste de resistividades horizontales, formados por capas alternantes horizontales de resistividad diferente siempre que no se necesite alcanzar profundidades superiores a 40-50 metros. También se emplean para la investigación de médios en los que existen contrastes verticales de resistividades en el subsuelo, como pueden ser fracturas, contactos verticales o, en el caso de la arqueología, presencia de estructuras verticales enterradas como pueden ser muros, huecos, etc.

El desarrollo y auge de esta técnica es consecuencia de los avances en electrónica e informática que facilitan la ejecución en campo de las mismas y permiten su interpretación. Así, el moderno equipo de campo consiste en un resistivímetro digital, fuente de alimentación, cables de núcleo múltiple que permiten la conexión simultánea de todos los electrodos, y una caja de conectores.

En este sentido, el trabajo de campo se reduce a disponer el cable en el terreno, clavar los electrodos a lo largo del perfil y conectarlo a la caja de baterías, caja de conectores y al resistivímetro. La programación interna del resistivímetro emite corriente de forma alternativa por los electrodos de corriente y registra la diferencia de potencial entre los electrodos de potencial así como la intensidad del circuito correspondiente a cada estación. El proceso se repite utilizando nuevos electrodos de corriente y de potencial.

La interpretación de esta técnica obliga al uso de software específico (programas de inversión). A partir de los datos de resistividades de una pseudosección determinada, estos programas son capaces de simular la distribución de cuerpos, de geometrías simples, con valores de resistividad determinados que generarían la pseudosección correspondiente.

2.1.2. EL MÉTODO ELECTROMAGNÉTICO

Los orígenes de la prospección electromagnética provienen de los primeros análisis sobre la resistividad de las rocas y de los descubrimientos de la conductividad del suelo y de la polarización espontánea de algunos yacimientos minerales llevados a cabo durante los siglos XVIII y XIX (Orellana, 1974). Con la búsqueda de un método más
operativo para conferir mayor calidad y resolución a los registros que los métodos eléctricos habituales, se inventaron a principios del siglo XX los métodos electromagnéticos (McNeill, 1980).

Los métodos electromagnéticos determinan la respuesta del subsuelo a la acción de campos electromagnéticos oscilantes y permiten explorar grandes áreas de terreno en poco tiempo debido a su versatilidad y rapidez en la toma de registros sin necesidad de contacto físico con el suelo por medio de electrodos, por lo que facilitan la realización de estudios desde barco y avión (Serralde, 2011). La variedad tanto en instrumentación como en metodología, los convierte en herramientas útiles para abordar una gran variedad de objetivos en el contexto de la geofísica superficial, como la localización de fallas, cavidades, aguas subterráneas, en investigaciones arqueológicas, en la detección de vertidos, etc.

2.1.2.1. FUNDAMENTOS DEL MÉTODO

El fundamento teórico se basa en determinar cómo los medios materiales se comportan espaciotemporalmente ante un campo electromagnético. El campo electromagnético consta de cuatro componentes vectoriales y sus relaciones: el campo eléctrico (E), la inducción magnética (B), el desplazamiento dieléctrico (D) y la intensidad del campo magnético (H).

Las ecuaciones de Maxwell se obtienen de los modelos físicos y matemáticos que unen las componentes del campo, y son las que explican cualquier fenómeno electromagnético.

\[\nabla \cdot D = \rho \]
\[\nabla \cdot B = 0 \]
\[\nabla \times E = -\frac{\partial B}{\partial t} \]
\[\nabla \times H = J + \frac{\partial D}{\partial t} \]
Las magnitudes \(D, B, E, H \) y \(J \) (densidad de corriente) son campos vectoriales. Estas cuatro ecuaciones plantean que el flujo neto de las líneas de campo eléctrico que salen o entran de cualquier superficie cerrada, depende de la densidad de la carga eléctrica \((\rho) \) que encierra dicha superficie, que todas las líneas de campo magnético forman siempre un bucle cerrado, y que todo campo eléctrico que varíe con el tiempo producirá campos magnéticos rotacionales y viceversa.

A partir de las ecuaciones del campo electromagnético de Maxwell, se puede demostrar que la velocidad de una onda electromagnética en el vacío (que consta de un campo eléctrico y un campo magnético perpendiculares el uno al otro y alternantes sinusoidalmente en el tiempo) depende única y exclusivamente de la permitividad eléctrica del vacío \(\varepsilon_0 \) y de la permeabilidad magnética del vacío \(\mu_0 \), y la velocidad para dicha onda electromagnética debe ser:

\[
c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}
\]

La caracterización electromagnética de un medio material consiste en medir o inferir la distribución espacial de sus características intrínsecas en relación a factores externos como la temperatura, la compactación, la presión, etc. Dicha caracterización electromagnética es determinada por el valor absoluto o contrastes en la distribución espacial de todas o algunas de sus propiedades electromagnéticas, lo que conforma el fundamento de los métodos electromagnéticos, cuyo objetivo general es la determinación de contrastes electromagnéticos y/o anomalías generadas por regiones conductivas en medios resistentivos o, al contrario, aislantes en medios conductores. Estas regiones y medios mantienen a la vez relaciones con medios dieléctricos con mayor o menor grado o posibilidad de polarizarse naturalmente o por la acción de campos externos y contrastes de susceptibilidad magnética asociada a la permeabilidad magnética (Serralde, 2011).

2.1.2.2. LIMITACIONES DEL MÉTODO

Para que el método sea eficaz, se debe producir un contraste claro de conductividad. El principal condicionamiento en la aplicabilidad del método radica en su dependencia respecto a las características locales de la zona de trabajo; principalmente en zonas de
elevada conductividad eléctrica que condicionan la penetración del impulso electromagnético y por tanto la detección de las estructuras subsuperficiales (Casas, 2000). Probablemente, la limitación más grande es la influencia de superficies de metal, vallas, líneas de energía, y otros objetos de estas características.

Una de las limitaciones de los métodos tradicionales de tránsito electromagnéticos son los largos tiempos de desconexión de las señales transmitidas. Para sondeos poco profundos, y áreas altamente resistivas, lo anterior ha impedido el uso eficaz del método puesto que la señal transmitida debe ir a cero rápidamente.

En el caso concreto del GPR, éste puede tener problemas en áreas con mucha vegetación, ya que las antenas deben estar en contacto constante con el suelo durante la prospección (Somers, 2006). Las zonas pedregosas afectan a las mediciones por las fuertes vibraciones producidas. Además, en suelos conductivos con alto contenido en arcillas y suelos salinos, las señales del GPR pueden verse amortiguadas, causando una pérdida total de la señal.

2.1.2.3. MODOS DE EMPLEO. TÉCNICAS

En geofísica, hay una gran diversidad de técnicas electromagnéticas con las que se pueden determinar numerosas variables de la superficie según el diseño del sistema de adquisición de registros con el que se desarrollen. Estas técnicas se corresponden con la respuesta del subsuelo a una fuente inductora de ondas electromagnéticas.

Figura 4. Sección trasversal de las líneas de transmisión en un campo electromagnético.
Los principios operativos principales son el método en Dominio del Tiempo o TDEM (*Time Domain Electromagnetic*) y el método en Dominio de la Frecuencia o FDEM (*Frequency Domain Electromagnetic*), además del georradar y métodos de muy baja frecuencia (VLF).

Con el método TDEM se hace circular en ciclos cortos alrededor de un transmisor un campo eléctrico. Cuando está activo se genera un campo magnético primario inducido en el subsuelo que cesa cuando se corta la corriente que circula en el transmisor. Las corrientes remanentes que permanecen en el subsuelo disminuyen paulatinamente, provocando en la superficie un campo magnético decreciente. El campo magnético secundario se forma cuando el campo primario cesa. La medida relativa de la progresiva disminución del campo secundario permite la detección de materiales conductores en el subsuelo y la estimación de su conductividad. El campo electromagnético transitorio alcanza su máximo a una distancia denominada profundidad de difusión.

El dispositivo de medida habitual consiste en situar la antena en el centro de la bobina transmisora. Según el retardo (*delay time*) del campo decreciente se obtiene la profundidad de exploración. Al aumentar el tiempo, la intensidad de corriente se transmite a mayores profundidades (Fitterman y Steward, 1986; Casas, 2000). Su interpretación se basa en el estudio de las curvas de decaimiento de voltaje adquiridas. Estas curvas se emplean para obtener las diferentes profundidades alcanzadas en función de los modelos de subsuelo de la zona de investigación (Casas, 2000).

Una variante del TDEM, es el nanoTEM, método por el que se genera un campo magnético con un ciclo de duración menor. La respuesta llega antes por lo que se determinan mejor los resultados cercanos a la superficie, aunque suponga una reducción en la penetración total. El nanoTEM se puede operar con distintas configuraciones como las denominadas *in-loop* y *fixed-loop*.

El radar de penetración terrestre (*Ground Penetrating Radar* - GPR) o georradar, es un método geofísico que puede detectar con precisión objetos enterrados cercanos a la superficie o cambios en la litología del suelo y producir imágenes de esas características. Los datos se adquieren al reflejar las ondas de radar desde el subsuelo. Las ondas de radar propagan diferentes pulsos desde la antena de superficie, reflejan los distintos elementos subsuperficiales, y se detecta en la fuente por la antena de recepción. Como los pulsos de radar están siendo transmitidos a través de varios
materiales en su camino hacia el objeto enterrado, su velocidad cambia, dependiendo de las propiedades físicas y químicas (normalmente cambios de permitividad eléctrica y/o constante dieléctrica) del material a través del cual está viajando. De este modo, se trata de un método útil para clasificar o caracterizar suelos (Hänninen, 1992; Ulriksen, 1982).

Cuando los tiempos de viaje de los pulsos de energía se miden y su velocidad a través del medio es conocida, la distancia y profundidad puede ser medida con precisión, produciendo datos en tres dimensiones. En el método GPR, las antenas del radar se mueven a lo largo del suelo en cortes transversales y en perfiles bidimensionales, donde un gran número de reflexiones periódicas son creadas, produciendo un perfil estratigráfico del subsuelo y anomalías a lo largo de las líneas. Cuando los datos se adquieren en series de cortes transversales dentro de una cuadrícula y las reflexiones son correlacionadas y procesadas, puede construirse una imagen precisa tridimensional de las anomalías enterradas y su estratigrafía asociada.

El método GPR consiste en transmitir pulsos electromagnéticos de alta frecuencia (radar) en la tierra y medir el tiempo transcurrido entre la transmisión-reflexión (provocada por un objeto enterrado) y la recepción en el receptor del equipo. Un pulso de energía del radar se genera sobre una antena de transmisión dipolo que se sitúa sobre o cerca de la superficie terrestre. Las ondas resultantes de la energía electromagnética se propagan hacia abajo en el subsuelo donde parte de ellas son reflejadas hacia la superficie como discontinuidades. Las discontinuidades donde la reflexión ocurre normalmente son debidas a cambios en las propiedades eléctricas del sedimento o del suelo, variaciones en el contenido de agua, cambios litológicos o cambios en la densidad aparente de las capas atravesadas.

La profundidad a la que puede penetrar la energía del radar y la calidad de la definición que se puede esperar en el subsuelo, están parcialmente controladas por la frecuencia de la energía del radar de transmisión. La frecuencia de la energía del radar controla, por un lado, la longitud de onda transmitida y por otro el debilitamiento o la atenuación de las ondas en el subsuelo. Las antenas de georradar más habitualmente utilizadas propagan la onda con una energía que varía en un ancho de banda desde 10 megahercios (MHz) hasta 1200 MHz.

Las antenas de georradar normalmente se sitúan sobre un bastidor de fibra de vidrio o de madera que se coloca directamente sobre el suelo, o apoyadas sobre ruedas a unos
pocos centímetros del suelo. Cuando se emplean dos antenas, una se utiliza como transmisora y otra como receptora.

Normalmente las antenas son arrastradas a lo largo de perfiles dentro de una malla de investigación previamente definida, a una velocidad cercana a 2 kilómetros por hora, o pueden ser empujadas por un vehículo a unos 10 kilómetros por hora. De esta forma la energía está siendo continuamente transmitida y recibida durante el movimiento de la antena. También se pueden mover a lo largo de perfiles, siendo únicamente en la vertical de estos donde se obtienen los registros. El tipo de método empleado se elegirá, pues, en función de los objetivos de la investigación planteada.

2.2. EQUIPOS

2.2.1. TOMOGRAFÍA ELÉCTRICA

El equipo empleado es el SuperSting R8 PI, resistivímetro multicanal portátil con almacenamiento en memoria de lecturas de los ciclos de medida definidos por el usuario. Este instrumento tiene la capacidad de medir simultáneamente hasta 8 canales que utilizan un transmisor de alta potencia para que la producción de datos de campo pueda alcanzar velocidades elevadas. Con el transmisor de alta potencia, se pueden recopilar datos mediante la repetición y filtrado de la toma de registros consecutivos. SuperSting R8 PI utiliza el nuevo cable Multi-canal Modo-Doble Swift Automático Multi-Electrodo basado en el diseño utilizado en los cables de un solo-canal.

Figura 5. Detalle del equipo de tomografía eléctrica SuperSting R8 PI.
Algunas de las especificaciones técnicas se describen a continuación:

<table>
<thead>
<tr>
<th>Especificación</th>
<th>Detalles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rango de Medidas</td>
<td>+/- 10V.</td>
</tr>
<tr>
<td>Resolución de Medidas</td>
<td>Max 30 nV, depende del nivel del voltaje.</td>
</tr>
<tr>
<td>Intensidad de corriente de salida</td>
<td>1mA - 2000mA continuo, medido a gran exactitud.</td>
</tr>
<tr>
<td>Voltaje de salida</td>
<td>800 Vp-p, el voltaje actual del electrodo depende de la corriente transmitida y la resistividad del subsuelo.</td>
</tr>
<tr>
<td>Energía de salida</td>
<td>200W.</td>
</tr>
<tr>
<td>Canales de entrada</td>
<td>Ocho canales.</td>
</tr>
<tr>
<td>Rango de la ganancia de entrada</td>
<td>Automático, siempre utiliza rango receptor totalmente dinámico.</td>
</tr>
<tr>
<td>Impedancia de entrada</td>
<td>>20 MOhms.</td>
</tr>
<tr>
<td>Voltaje de entrada</td>
<td>Max 10 V.</td>
</tr>
<tr>
<td>Compensación de PS</td>
<td>La cancelación automática de voltajes de PS durante la medida de resistividad. PS constante y variando linealmente cancela completamente (V/I y medidas de PI (Polarización Inducida)).</td>
</tr>
<tr>
<td>Ciclos de medida</td>
<td>Demuestra el promedio función de la medida después de cada ciclo. El ciclo automático se para cuando lectura de errores caen por debajo del límite del usuario o se terminan los ciclos máximos definidos del usuario</td>
</tr>
<tr>
<td>Tiempo de ciclos de resistividad</td>
<td>Tiempo básico de medida es 0.2, 0.4, 0.8, 1.2, 3.6, 7.2 ó 14.4 s según se haya elegido por el usuario vía teclado. Cambio automático y conmutación añaden cerca de 1.4 s</td>
</tr>
<tr>
<td>Supresión de ruido</td>
<td>Superior a 100 dB en Hz f > 20 Hz</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Supresión de ruido de líneas eléctricas</td>
<td>Superior a 120 dB en las frecuencias de líneas eléctricas (16 2/3, 20, 50 & 60 Hz) ciclos de medida 1.2 s y más.</td>
</tr>
<tr>
<td>Configuraciones soportadas</td>
<td>Resistencia, Schlumberger, Wenner, dipolo-dipolo, polo-dipolo y polo-polo.</td>
</tr>
<tr>
<td>Sistema operativo</td>
<td>Almacenado en la memoria rápida re-programable. Las versiones nuevas se pueden descargar de la página web y almacenarse en la memoria rápida.</td>
</tr>
<tr>
<td>Almacenamiento de datos</td>
<td>Resolución completa de lecturas promedio y del error que son almacenados junto con coordenadas introducidas por el usuario y hora del día para cada medida. El almacenamiento se realiza automáticamente en un sistema de archivo orientado al trabajo.</td>
</tr>
<tr>
<td>Capacidad de memoria</td>
<td>La memoria puede almacenar más de 79.000 medidas (en modo de resistividad) y más de 26.000 medidas en el modo combinado de resistividad/PI.</td>
</tr>
</tbody>
</table>
Multi-electrodos automático

El SuperSting está diseñado para hacer disposiciones dipolo-dipolo, polo-dipolo, polo-polo, Wenner y Schlumberger incluidos estudios completamente automáticos de roll-along con el sistema Modo-Doble Swift Automático de Multi-Electrodo.

El SuperSting puede hacer cualquier otra disposición utilizando un archivo de comandos programado por el usuario.

Estos archivos son archivos ASCII y se pueden crear utilizando un editor regular de texto. Los archivos de comandos son descargados a la memoria de SuperSting RAM y se pueden utilizar en cualquier momento. Por lo tanto no hay necesidad de un ordenador frágil en el campo.

| **Alimentación de energía, en el campo** | 12 ó 2x12 V DC energía externa (uno o dos baterías de 12 V), el conector en el panel frontal. La salida máxima de energía se incrementa utilizando 2x12V de alimentación usado. |
| **Temperatura Operativa** | -5 a +50°C. |

En cuanto al software de inversión utilizado, AGI EarthImager 2D es el software estándar para imágenes de resistividad y PI dominio tiempo de Advanced Geosciences.

Con este software, los datos registrados con los instrumentos SuperSting de imágenes de resistividad del subsuelo de AGI pueden ser interpretados y obtener secciones 2D del subsuelo. Los datos procesados pueden ser de salida a varios tipos de archivos y se pueden procesar.

Características principales:

- Inversión de Resistividad y PI para los datos de resistividad y PI dominio tiempo.
2. Métodos y equipos geofísicos utilizados

- ERT (Resistividad por tomografía eléctrica) entre dos o más sondeos y electrodos de superficie.
- Planificador de estudios con la entrada modelo gráfica, el estudio virtual con el archivo real de comandos, y simulación inversa con ruidos de usuario-específico Gaussian.
- Corrección topográfica e impresión de secciones de resistividad con características topográficas.
- Modelización directa de las diferencias finitas y elementos finitos.
- Opciones de condiciones de frontera para modelización directa.
- Tres algoritmos de inversión: amortiguados menos cuadrados, el modelo suave, y la inversión robusta.
- Métodos Gauss-Newton y quasi-Newton.
- Windows GUI fácil de usar.
- Rápido procesamiento de gráficos accionado por OpenGL con refresco automático e imagen escalable.
- Desplazamiento en tiempo real por todas las iteraciones utilizando la rueda del ratón, creando efecto "animación de película".
- Edición de datos para detectar y quitar los puntos erróneos de datos y los electrodos malos.
- Supresión de datos ruidosos.
- Determinación de la calidad de las medidas, inversión y convergencia, mediante el cálculo automático de error cuadrático medio (RMS) y del error estadístico.
- Software sin límite en el número de datos ni número de electrodos.
- Sin límite en el tipo de configuración ni en la localización de electrodo.
- Una entrada interfase de gráfica de información a-priori.
- Barra de progreso de inversión para mostrar la situación de la inversión.
- Curva de convergencia
- Cambio reverso y horizontal de perfiles.

2.2.2. GEORRADAR

En nuestra campaña, se utilizó el equipo NOGGIN 250, con las siguientes especificaciones:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tamaño</td>
<td>63x41x23 cm</td>
</tr>
<tr>
<td>Peso</td>
<td>7.3 kg</td>
</tr>
<tr>
<td>Potencia</td>
<td>8 watts</td>
</tr>
<tr>
<td></td>
<td>12 v @0.7 A DC</td>
</tr>
<tr>
<td>Rango de funcionamiento</td>
<td>>160 dB</td>
</tr>
<tr>
<td>Dipolo transductor patentado</td>
<td>125-375 MHz</td>
</tr>
<tr>
<td>Ventanas de profundidad por defecto</td>
<td>2.5,5,7.5,10,15m</td>
</tr>
<tr>
<td></td>
<td>(50,100,150,200,300 ns)</td>
</tr>
<tr>
<td>Datos de adquisición</td>
<td>100,000 muestras /s.</td>
</tr>
<tr>
<td>Temperatura de operación</td>
<td>-40 a 40 ºC</td>
</tr>
</tbody>
</table>
2. Métodos y equipos geofísicos utilizados

El equipo Noggin es arrastrado por el suelo, tal y como se indica en la figura siguiente:

![Figura 6. Detalle del georadar NOGGIN 250.](image)

El equipo Noggin es arrastrado por el suelo, tal y como se indica en la figura siguiente:

![Figura 7. Ilustración simplificada con el manejo del NOGGIN 250.](image)

El Noggin genera una imagen sobre el monitor con la profundidad del eje vertical y la posición del eje horizontal (a lo largo de un perfil). El equipo trabaja en continuo y va registrando las reflexiones detectadas en función de la profundidad en el suelo. Estas son procesadas en el PC para su posterior tratamiento. El equipo toma cada conjunto de reflexiones desde el Noggin y lo muestra como una línea vertical en la pantalla. Cada conjunto de reflexiones se coloca en la pantalla junto al anterior y se construye una imagen continua de la superficie, a imagen y semejanza de un rollo continuo de papel gráfico. La nueva información se agrega a la derecha y los datos anteriores se desplazan continuamente a la izquierda. La profundidad de alcance del Noggin depende el
material que tenga debajo, siendo ésta la única medida que afecta al funcionamiento del mismo.

Para generar una sección bidimensional del subsuelo, el Noggin debe moverse por la superficie a una velocidad uniforme. Esto se ha logrado mediante el uso de un GPS. Una vez hecho esto, la imagen que representa SpiView (el software estándar suministrado con el equipo) son reflexiones en profundidad en las posiciones sucesivas a lo largo de la superficie.

En un registro SpiView los objetivos tales como tuberías, cables, rocas, muros enterrados y suelos antrópicos, generan una hipérbola (tipo U invertida), como la indicada en la figura siguiente.

![Figura 8. Ejemplo de medición con GPR.](image)

La parte superior de la U invertida es el punto para el cual el objeto reflejado está más cercano al Noggin. En la figura anterior, el punto 2 sería el más cercano. Las capas del suelo o los estratos rocosos también causan gran cantidad de ondas reflejadas, así como los cambios en la composición de los suelos o las rocas.

Como mencionamos anteriormente, la profundidad real depende de la velocidad con la que las ondas de radio viajan a través del medio en el cual la señal del Noggin está penetrando. El equipo puede configurarse para diferentes velocidades en diferentes medios. En nuestra investigación se han usado las de **Dry Soil**, **Wet Soil**, **Pavement** y **Dry Rock**, en suelos, y **Concrete** sobre muros, con unas velocidades relativas de 50-100 ns, lo que nos proporciona una profundidad de investigación de alrededor de 2,5 - 5 m según la configuración seleccionada.
2. Métodos y equipos geofísicos utilizados

2.2.3. NANO TEM

El equipo utilizado es el procesador de datos geofísicos GDP-32II, un receptor universal multicanal diseñado para adquirir virtualmente cualquier tipo de datos electromagnéticos o eléctricos desde DC (corriente continua) hasta 8 kHz de ancho de banda.

![NANO TEM](image)

Figura 9. Detalle del procesador de datos GDP-32II.

Los parámetros medibles con el equipo son:

- Resistividad
- Polaridad Inducida (dominio de frecuencia o de tiempo).
- Origen controlado de audiofrecuencia de magnotelúricos (CSAMT).
- CSAMT Armónico (HACSAMT).
- Dominio de la Frecuencia EM (FEM).
- Tránsito EM (TEM).
- NanoTEM.

Los programas de adquisición de datos se almacenan en un disco de memoria interna y son seleccionables mediante software especializado.

El GDP-32II opera tanto en el Dominio del Tiempo como en el Dominio de la Frecuencia.
Está diseñado para la adquisición de datos mediante multicanales, con capacidad de ediciones hasta en seis canales analógicos simultáneamente desde DC a 8 kHz. Estos canales pueden ser una mezcla de placas de adquisición de alta velocidad para nanoTEM y de tarjetas analógicas estándar, pudiendo ser instalados un máximo de 3 canales nanoTEM de alta velocidad.

Algunas de las especificaciones técnicas del equipo son las siguientes:

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Receptor multicanal digital electromagnético de banda ancha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tamaño</td>
<td>43 x 31 x 22 cm</td>
</tr>
<tr>
<td>Peso</td>
<td>6 canales y caja de baterías de 10 A-h: 13.7kg</td>
</tr>
<tr>
<td>Rango de frecuencia</td>
<td>DC a 8kHz</td>
</tr>
<tr>
<td>Número de canales</td>
<td>16 máximo</td>
</tr>
<tr>
<td>Capacidad de estudio</td>
<td>Resistividad, IP (Dominio del Tiempo y de la Frecuencia), FEM, MMR, CR, CSAMT, HACSAMT, TEM, NanoTEM, AMT, MT</td>
</tr>
<tr>
<td>Energía</td>
<td>Baterías recargables de 12V</td>
</tr>
<tr>
<td>Temperatura de operación</td>
<td>-40 a +60°C</td>
</tr>
<tr>
<td>Humedad de operación</td>
<td>0 a 90%</td>
</tr>
<tr>
<td>Impedancia de entrada</td>
<td>10 M Ω en DC</td>
</tr>
<tr>
<td>Intervalo dinámico</td>
<td>190 dB</td>
</tr>
<tr>
<td>Voltaje máximo de entrada</td>
<td>32V</td>
</tr>
</tbody>
</table>
2. Métodos y equipos geofísicos utilizados

<table>
<thead>
<tr>
<th>Filtro quad-notch</th>
<th>50/150, 60/180 Hz, 50/150/250/450 Hz, 60/180/300/540 Hz, u otro uso de intervalos específicos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ratio de digitalización</td>
<td>32 kHz máximo, por canal</td>
</tr>
<tr>
<td>Memoria</td>
<td>16 Mb dRAM</td>
</tr>
</tbody>
</table>

El sistema nanoTEM es una opción de muestreo TEM de salida muy rápida disponible para los receptores GDP-32II. Consiste en una tarjeta de muestreo a alta velocidad para el GDP, un transmisor nanoTEM alimentado por baterías y unas cuantas resistencias de carga.

La tarjeta del receptor muestrea la forma de onda descompuesta a intervalos de 1.2 o 1.6 microsegundos, y luego almacena los datos en un búfer de memoria de la propia tarjeta. Luego, los datos son transferidos a la memoria principal del GDP donde las muestras se combinan para formar ventanas de tiempo en escala logarítmica.

El transmisor nanoTEM va configurado para apagado muy rápido, es alimentado por una batería de 12 voltios, y puede ofrecer una salida de hasta 4 amperios. Hay dos versiones del nanoTEM disponibles. La primera, el NT-20, es un sistema transmisor externo, y la segunda es el NT-32 que utiliza un transmisor integrado dentro de la caja del GDP-32II. En nuestra investigación se empleó el NT-20; está diseñado para transmitir en bucle con una resistencia de hasta 10 Ω y transmite una señal de dominio de tiempo entre DC y 512 Hz.
El software empleado es STEMINV, que construye, edita y revisa los conjuntos de datos, mientras que con el RSTEMINV, ejecutable directamente desde una línea de comandos MS-DOS, se crea una sección del modelo dado por los datos de STEMINV. El modelo de inversión es un método fiable para convertir mediciones TEM a los perfiles de resistividad frente a la profundidad.

El tiempo TEM observado y la magnitud de los datos dB/dt para cada estación, se utilizan para determinar los parámetros de un modelo del subsuelo en capas. Los espesores de capa se fijan mediante el cálculo de las profundidades de penetración del campo para cada ventana de tiempo.

El resultado del modelo de inversión es un conjunto de resistividades estimadas que varían con la profundidad. La variación lateral se determina mediante la inversión de las estaciones sucesivas a lo largo de una línea de estudio. Los resultados para una línea completa se pueden presentar en forma de pseudosección contorneando el modelo de resistividades. Para contornearlos, los valores de resistividad se colocan en el punto medio de cada capa formando una columna por debajo de cada estación. Las columnas forman una matriz que representa una sección transversal del modelo de resistividad. Los datos son automáticamente transformados a resistividad, en función de la profundidad. Esto supone una forma eficaz de mostrar la información inherente a las mediciones de TEM.
CAPÍTULO 3. ORGANIZACIÓN Y SECUENCIACIÓN DEL TRABAJO DE CAMPO

Para poder conseguir los objetivos marcados en un trabajo de investigación se considera fundamental seguir un proceso estructurado que sirva como guía en su realización. En buena medida, la base de una investigación científica es la selección de los métodos y técnicas adecuadas, teniendo en cuenta la naturaleza de lo que se va a estudiar. Esto permite implementar las fases del estudio de una manera válida y fiable.

Con el objetivo de alcanzar esta solidez en la presente investigación, se ha definido una práctica fundamentada, en primer lugar, en el desarrollo de una serie de etapas previas a la ejecución de todo trabajo que se lleva a cabo en el campo de la investigación arqueológica. En segundo término, en la aplicación de un método continuado durante los trabajos de campo para la adquisición de los datos. De esta manera se han incrementado las probabilidades de documentar los materiales culturales que definan el registro arqueológico y patrimonial del área del Monumento Histórico-Artístico Nacional de Las Virtudes, yacimiento de Piédrola, Parque Arqueológico de Alarcos, yacimiento del Cerro de las Cabezas, y del Conjunto Arqueológico Castillo de la Estrella.

En este capítulo expondremos las etapas previas de las que constó nuestro estudio, así como la definición de las zonas de trabajo seleccionadas.

3.1. RECONOCIMIENTO DEL TERRENO

La primera fase de la investigación consistió en el reconocimiento de campo de los cinco enclaves patrimoniales (figura 11).
Figura 11. Localización general de las diferentes zonas de trabajo en la provincia de Ciudad Real. (A) Parque Arqueológico de Alarcos (Ciudad Real). (B) Yacimiento de Piédrola (Alcázar de San Juan). (C) Yacimiento del Cerro de las Cabezas (Valdepeñas). (D) Monumento Histórico-Artístico Nacional de Las Virtudes (Santa Cruz de Mudela). (E) Conjunto Arqueológico Castillo de La Estrella (Montiel).

Antes de iniciar una prospección geofísica en un yacimiento arqueológico, es fundamental la visita previa de la zona de actuación. Este reconocimiento es un primer contacto con el área de estudio, y de ello dependerá el éxito de las etapas siguientes.

En función de las características del lugar, se podrán escoger los métodos de exploración idóneos para cada zona del enclave, o desechar las zonas en las que se prevé que la prospección geofísica no proporcionará resultados evaluables.

Durante esta visita inicial debemos observar primero las características generales de los yacimientos como, por ejemplo, su extensión. Se trata de enclaves muy extensos. El conjunto patrimonial de Las Virtudes, es una amplia zona de aproximadamente 8900 m² dividida en tres áreas bien diferenciadas: el complejo arquitectónico de la ermita, la plaza de toros, con sus edificaciones anexas, y los jardines exteriores ubicados al sur y al este de las dos anteriores. El paraje de Piédrola es un vasto yacimiento con más de 2 km² de extensión en el que se establecen varias zonas bien definidas según los materiales arqueológicos recogidos en superficie y tras su excavación. Así, se identifican un poblado calcolítico-bronce, un asentamiento ibérico, un asentamiento romano, una necrópolis islámica, y restos bajomedievales cristianos. Alarcos se ubica en un cerro de 30 ha donde destacan los restos de un oppidum ibérico y un importante asentamiento medieval coronado por una fortificación militar. El Cerro de Las Cabezas es un oppidum ibérico con aproximadamente 14 ha de superficie con un relevante entramado urbano en sus lados sur y este. Por su parte, el Castillo de La Estrella es un
cerro testigo que supera las 8 ha de extensión, en el que se define un área de culto cristiana con enterramientos asociados, tanto islámicos, como cristianos, una villa medieval en la ladera del cerro, y una estructura fortificada en su zona superior. La elección de los métodos utilizados se realizó atendiendo a la topografía y dimensiones del área de trabajo. Hay métodos que permiten una rápida prospección, como por ejemplo el GPR, que en un tiempo reducido cubre grandes áreas de terreno. Los análisis de detalle pueden realizarse con otros métodos cuya adquisición de datos es más lenta, como por ejemplo el método eléctrico. El estudio previo del lugar también ayuda en la estimación de gastos y en cuestiones relacionadas con la logística.

También se analizó la geología de la zona a través del examen de zanjas y cortes presentes en los lugares, como los existentes, a unos 400 m al sur de Las Virtudes, en unas explotaciones mineras relacionadas con la extracción de mármol y de material ferroso a las que la Carta Arqueológica del término municipal de Santa Cruz de Mudela atribuye una cronología romana, o las canteras de piedras de molino de edad moderna que se extienden a lo largo del sitio de Piédrola. Asimismo se examinaron los perfiles estratigráficos en caminos y carreteras cercanas, como los de la A-4, CR-6102, CR-6311 y CR-4128, que bordean o atraviesan los enclaves. Además, se debe tener en cuenta la potencia de los sedimentos, debido a que cuando estratos rocosos se sitúan cerca de la superficie pueden influir en los resultados geofísicos y ocultar las anomalías pertenecientes a las estructuras arqueológicas.

Es muy importante tener en consideración las posibles informaciones arqueológicas previas, observando si existe dispersión de materiales arqueológicos (líticos, metálicos, cerámicos o constructivos) en superficie, y determinando las zonas de mayor concentración de estos materiales, su tipología y adscripción cronológica. También se analizarán visualmente las estructuras arquitectónicas de los inmuebles que en la actualidad se encuentran edificados, con la finalidad de documentar materiales reutilizados.

Otro factor a tener en cuenta en este reconocimiento de la zona es el tipo y las condiciones del suelo. Los métodos geofísicos miden los contrastes entre los restos arqueológicos y los parámetros físicos del suelo circundante. Por lo tanto, la estructura o material arqueológico que buscamos debe producir un contraste con respecto al suelo que lo rodea; es decir, el material constructivo debe ser distinto al suelo en el cual está
enterrado, o poseer características distintas a este. De lo contrario, no se obtendrán registros anómalos.

Hay que documentarse sobre la hidrología local. Por lo general, se trata de zonas relativamente húmedas, sitas junto a diversos cauces fluviales como los ríos Guadiana, Jabalón y Segurilla, o los Arroyos de la Virgen y del Mundo. Esta cuestión es delicada puesto que afecta directamente al proceso de toma de datos. Los suelos húmedos presentan propiedades físicas distintas a los suelos secos, lo que modifica de forma importante los resultados obtenidos. Las investigaciones con tomografía eléctrica en suelos secos suelen tener resultados muy pobres, por lo que las estaciones de primavera y otoño son los períodos del año preferibles para las prospecciones geofísicas por las condiciones de mayor humedad del suelo.

Sobre la morfología del terreno hay que señalar que lo ideal es que la prospección se realice en áreas con topografía plana y con desniveles suaves, puesto que se pueden generar falsas anomalías de estructuras inexistentes. También las pendientes abruptas deben ser evitadas por la distorsión de distancias y medidas, tanto horizontales como verticales, que pueden generar mapas de anomalías erróneos. En este sentido, los suelos de todos los yacimientos se adecuan a las características especificadas como idóneas. Es en los sectores laterales y cotas elevadas de los enclaves ubicados sobre un cerro, o en sus inmediaciones, como sucede en Alarcos, Cerro de las Cabezas y Castillo de La Estrella, donde existen zonas con ligeras pendientes, desniveles pronunciados, e incluso puntualmente suelos irregulares, debido al paso de pequeñas escorrentías.

Para una óptima recogida de datos y a fin de que la operación con el equipo geofísico se realice sin dificultades, se debe identificar el tipo de vegetación y su disposición espacial. También es importante determinar la existencia de elementos asociados como mangueras para riego o uso de cables metálicos para su sujeción. En los jardines aledaños al sur de la ermita-plaza de toros de Las Virtudes la vegetación es abundante, así como en el área de ribera del yacimiento de Alarcos, hecho que puede dificultar las prospecciones. Por ello deben seleccionarse cuidadosamente los puntos de estudio. Este inconveniente puede dificultar el paso del prospector y, por consiguiente, alterar el ritmo de trabajo y su velocidad, la cual debe ser constante al realizar las mediciones con el georradar. Cuando la vegetación es muy densa se debe desbrozar la zona antes de empezar los trabajos geofísicos. Si las dimensiones y características de la vegetación no
permiten esta limpieza superficial, el área debe ser descartada, ya que impide el movimiento de los equipos, imposibilitando la ejecución de las prospecciones.

Otro factor a tener en cuenta es la comprobación de la existencia de materiales que puedan generar “ruidos”, es decir, señales erróneas que perturben los resultados de la prospección a modo de falsas anomalías. En exploraciones geofísicas, el nivel de ruido que procede de las redes de transmisión de energía eléctrica afecta al campo electromagnético local y a la adquisición de registros de los equipos. Los desechos metálicos esparcidos en superficie, como latas o alambres, exige una limpieza de la zona si se trata de grandes cantidades. Las vallas metálicas y las instalaciones de riego también influyen negativamente en las mediciones. En Alarcos, el Cerro de las Cabezas y el Castillo de la Estrella, existen numerosos carteles explicativos de los yacimientos colocados sobre soportes metálicos, así como alambres y barras de hierro que delimitan y señalan el recorrido a los visitantes. En Las Virtudes, la zona ajardinada está iluminada mediante farolas de hierro y también se observaron en este sector numerosas espalderas de alambre para plantas. En la plaza de toros, los burladeros se fijan al suelo mediante gruesos tornillos, y en la ermita, el espacio del presbiterio se separa de la nave principal mediante una gran reja metálica. En todos estos casos es necesario guardar una distancia adecuada para evitar los problemas señalados, así como documentarlos fotográfica y planimétricamente para tener caracterizada su situación y analizar correctamente las anomalías cercanas a estos puntos.

Precisamente la combinación de varios métodos geofísicos, como el GPR, la tomografía eléctrica y el nanoTEM, permitirá mitigar las limitaciones en el análisis y obtención de resultados procedentes de los diferentes niveles de afeción generada por los ruidos. Con las referencias adquiridas en el reconocimiento previo del enclave se planteará la estrategia de la prospección, la situación de las cuadrículas de trabajo, la selección de los métodos idóneos, etc. (Brito-Schimmel y Carreras, 2005).

3.2. LOS TRABAJOS DE CAMPO

Según todo lo anteriormente expuesto, las características de las zonas, en cuanto a topografía y dimensiones, las áreas de estudio inicialmente seleccionadas, los equipos de geofísica y
software específicos disponibles y los objetivos a conseguir, se planteó y ejecutó una campaña de investigación como la que a continuación se describe.

3.2.1. FASES DE INVESTIGACIÓN

1.- Nuevo reconocimiento general de la zona. El objetivo de este segundo reconocimiento era comprobar que no habían variado las condiciones generales del entorno, principalmente en cuanto a vegetación y distribución de las humedades, desde las primeras visitas y, por lo tanto, determinar la metodología de trabajo específica y real a realizar durante la campaña de prospección. También ayudó a precisar la distribución temporal de la investigación de cada zona dentro de los conjuntos patrimoniales.

2.- Barrido general de los yacimientos mediante perfiles aleatorios de georradar a lo largo de todo el conjunto. El objetivo principal de esta fase de la investigación era confirmar en campo la presencia de anomalías geofísicas detectables originadas por la presencia de estructuras enterradas arqueológicas y contemporáneas, cuya existencia era conocida. También se pretendía determinar la respuesta de las mismas con diferentes configuraciones de velocidades del medio, velocidades de avance, espaciado entre perfiles, etc. Los resultados obtenidos e interpretados permitieron concluir que la mejor configuración a emplear con este método y en los diversos yacimientos son las especificadas en el software SpiView como Dry Soil, Wet Soil, Pavement y Dry Rock, en suelos, y Concrete sobre muros, con una velocidad relativa de 50 - 100 ns, lo que nos proporciona una profundidad de investigación de alrededor de 2,5 - 5 m. En esta fase se confirmó la existencia de posibles estructuras enterradas desconocidas y se comprobó la existencia de varios tipos de anomalías que se describirán más adelante.

3.- Preparación y acondicionamiento del terreno. Una vez concluidas las fases anteriores, analizados e interpretados todos los datos obtenidos, y realizada la planificación definitiva de la investigación, se procedió a la preparación y acondicionamiento del terreno. Esta fase consistió básicamente en el trazado y señalización en campo de las cuadrículas que conforman los perfiles a realizar, y en el alisado de la traza de los perfiles con eliminación de las irregularidades topográficas, vegetación y pequeñas piedras, para conseguir que el GPR se deslizara sobre una superficie lisa y estuviera siempre en contacto
con el terreno. Además se procedió a la caracterización topográfica de los inicios y finales de cada perfil mediante sus coordenadas U.T.M.

![Figura 12. Labores de preparación y acondicionamiento de los perfiles de georradar. Cerro de las Cabezas, zona urbana.](image)

4.- Ejecución de la prospección mediante georradar sobre los suelos y muros de los puntos seleccionados de los diversos yacimientos arqueológicos.

Es importante señalar en este punto que cuando con el GPR se trazaron mallas o cuadrículas de estudio para la adquisición de datos se trabajó en bustrofedón; el procedimiento habitual de actuación fue el de iniciar la cuadrícula desde el perfil 1, es decir P1 (que es el punto marcado en plano como 0,0), de la orientación-dirección seleccionada, y una vez finalizado este, trazar P2 en sentido contrario, para volver a P3 desde el punto 0,0. Y así sucesivamente con el resto de los perfiles trazados dentro de esa orientación-dirección hasta finalizar la cuadrícula (figura 13).
5.- Tras la primera interpretación de los resultados obtenidos por la investigación anterior se procedió a la ejecución de un conjunto de perfiles de tomografía eléctrica en las áreas con anomalías detectadas por el barrido con georradar en la zona de los jardines, en los soportales y en la plaza de toros, para Las Virtudes; en el poblado con adscripción calcolítica y de la edad del bronce de Piérdola; en las necrópolis ibérica e islámica, y en el Sector III del Parque Arqueológico de Alarcos; en el barrio urbano y junto a la muralla defensiva del Cerro de las Cabezas; y en el entorno de la villa, castillo e iglesia medievales
3. Organización y secuenciación del trabajo de campo

de Montiel. Las secciones tomográficas obtenidas mediante los distintos dispositivos de medida se fusionaron con el objetivo de optimizar la resolución de los registros.

![Figura 16. Realización de tomografía eléctrica. Yacimiento de Piédrola.](image)

6.- Tras la interpretación de los resultados obtenidos por las investigaciones anteriores se empleó el nanoTEM para la realización de un perfil electromagnético en la plaza de toros de Las Virtudes.

![Figura 17. Exploración con nanoTEM. Las Virtudes, zona plaza de toros.](image)

7.- Interpretación de registros, elaboración del informe geofísico. Una vez realizada la excavación arqueológica en las áreas donde se había hecho el estudio geofísico, se compararon los resultados para conocer el grado de acierto y las
limitaciones en la interpretación de los datos geofísico. Posteriormente se establecieron las conclusiones definitivas.
CAPÍTULO 4. CONSIDERACIONES GENERALES SOBRE LA INTERPRETACIÓN DE LOS RESULTADOS

En una exploración geofísica, el resultado de los métodos aplicados a la prospección de restos arqueológicos depende de varias circunstancias: el contraste entre los materiales arqueológicos y el medio o sustrato geológico en el que se encuentran; la composición y las propiedades físicas de los mismos (resistividad o conductividad, densidad, etc.); la geometría, profundidad subsuperficial, dimensiones, distribución y disposición espacial de las estructuras. También puede depender de la vegetación existente, del nivel de alteración del sustrato, del índice de humedad del entorno, etc.

El conjunto de todos estos elementos determina que el contraste entre el sustrato y el resto arqueológico a localizar se acentúe o no, con lo que la anomalía generada podrá ser detectada con mayor o menor facilidad dependiendo de la suma de las características señaladas, lo cual contribuye finalmente al nivel de éxito de la investigación. Además, aunque en todas las zonas de estudio se trata de ofrecer con precisión y exactitud la ubicación y dimensiones de los elementos arqueológicos enterrados, factores como la leve desviación centimétrica en el posicionamiento de los perfiles sobre las planimetrías de los yacimientos, la elección de la distancia entre perfiles, o entre electrodos, y los programas de inversión, que no proporcionan una solución única para unos datos concretos, afectan a la precisión de los resultados debiendo considerar la incertidumbre de medida. Dadas las limitaciones propias de los métodos geofísicos a emplear y en previsión de lo anterior, se ha determinado comparar los datos de las técnicas empleadas (georradar, tomografía eléctrica y nanoTEM) para minimizar estos condicionantes y reducir la posibilidad de errores de medida y la presencia de falsas anomalías.

En función de las características de empleo y rendimiento de los métodos usados en la presente investigación así como la superficie a investigar y el tiempo disponible, se estableció, como norma general, aplicar la tomografía sólo en aquellas zonas que presentaran una clara anomalía de georradar. El nanoTEM, al tratarse de un método pionero y experimental en el campo de la arqueología y del patrimonio, se ha empleado en un sector del conjunto de Las Virtudes en el que se documentaron anomalías tanto con el GPR como con la tomografía eléctrica. Esto favoreció la experimentación con sus distintas configuraciones y modos de operación para determinar la más óptima para su empleo futuro en próximas investigaciones en yacimientos de similares propiedades.
El equipo de GPR empleado carece de salida digital obteniéndose únicamente imágenes que se monitorizan en un ordenador portátil. El software incorporado sitúa espacialmente y en profundidad dentro de cada perfil de prospección las imágenes que aparecen de forma continua y en tiempo real en la pantalla. A estas imágenes se las denomina radargramas. La interpretación de estos radargramas es cuantitativa. Consiste en identificar las posibles anomalías en función de su forma y relacionarlas con un tipo de estructura determinada.

Así las cosas, se ha tenido una dificultad inicial añadida en la mayoría de los enclaves investigados, puesto que, por lo general, no se ha podido contar con la excavación previa de sondeos arqueológicos que pudieran aportarnos datos contrastados y fiables sobre la composición estratigráfica de carácter geológico y antrópico en cada una de las distintas áreas donde se desarrolló la investigación, debiendo analizar para tal fin los perfiles estratigráficos de las excavaciones arqueológicas inmediatas a las zonas de estudio. Este procedimiento de investigación se retroalimenta y autoperfecciona a lo largo de la misma.

Antes de continuar debemos hacer unas precisiones en cuanto a la interpretación de la tomografía eléctrica. Las características de los materiales de las estructuras enterradas en los yacimientos son muy semejantes a las de los materiales que las rodean, derrumbios de las mismas. Por ello, aunque la presencia de estas posibles estructuras quede marcada o señalada en el conjunto, en algunos de los estudios de caso no ocurre así con la definición de sus bordes o límites, bien en relación con el sustrato geológico que las alberga, bien entre ellas. De esta manera, el escaso contraste de resistividades hace que en los perfiles de tomografía realizados, las estructuras antrópicas enterradas aparezcan como una zona anómala homogénea sin que puedan identificarse claramente sus bordes externos y límites interiores, desdibujando o difuminando la geometría real de las estructuras. Este efecto o fenómeno se acrecienta por el deficiente estado de conservación que deben presentar las posibles estructuras presentes en el subsuelo. Los métodos de filtrado matemático de los datos no han permitido mejorar significativamente el conjunto. Para intentar minimizar estos defectos del método, y dado que la interpretación de los perfiles de tomografía eléctrica es semicuantitativa, en todos los casos se ha actuado variando las tabla de colores de los gráficos y modificando el número de los mismos y sus límites, de manera que las zonas anómalas queden más resaltadas, sin variar los valores de resistividad (figura 18). Este difuminado de los
límites de las anomalías también es observable en los modelos 3D realizados pese a la alta calidad de los datos obtenidos.

Figura 18. Perfil de tomografía L-B interpretado cambiando el número de colores de los gráficos. Obsérvese que al disminuir el número de colores las anomalías superficiales se muestran con mayor nitidez.

Los programas de interpretación de tomografía realizan una inversión matemática mediante sucesivas iteraciones hasta conseguir una distribución de materiales dentro del perfil, con una resistividad real, que generan una distribución de medidas de resistividad aparente como las obtenidas por el equipo de medida. La tendencia de los programas de interpretación es a suavizar mediante interpolación los contrastes entre valores de resistividad aparente medidos por los equipos. Al tiempo, cuando los valores con fuerte contraste son escasos y no representan una estructura de cierta entidad, como puede ser un pavimento de pocos centímetros, los programas de interpretación no pueden ajustar estas medidas “anómalas” y las separan del conjunto como una entidad de carácter propio, por lo que habitualmente los eliminan en la fase de inversión, pese a ser correctos. Hay un tercer efecto perverso en el proceso de interpretación, la extrapolación de valores en zonas con bajo número de medidas lo que genera una interpretación aberrante de la zona de anomalía, prolongándola y/o deformándola (ver figura 19).
Hay que recordar que los objetivos de esta investigación con este método eran fundamentalmente comprobar las anomalías detectadas con el georradar y manifestar y acreditar la presencia de posibles estructuras enterradas, y no tanto su geometría. Este hecho, unido a las características especiales de los yacimientos y a las limitaciones del método en cuanto a su interpretación, explicadas en los párrafos anteriores, nos lleva a considerar que, en lo que hace a la aplicación de la tomografía eléctrica, se han cumplido los objetivos y expectativas inicialmente planteados.

En cuanto a los registros de georradar se refiere, en principio, hay dos tipos de radargramas: con zonas anómalas, y sin ellas. Los radargramas sin anomalías equivalen a aquellas zonas dentro de un perfil en el que la matriz encajante no ha sufrido alteraciones por causas antrópicas, como movimientos del terreno o estructuras arquitectónicas que rompen la continuidad lateral de los estratos o capas geológicas y arqueológicas. Las zonas anómalas o anomalías pueden estar generadas por diferentes actuaciones: presencia de estructuras soterradas, excavaciones, colapsos constructivos, rellenos, etc. (Zarzalejos et al., 2012). En la figura siguiente, nº 20, se muestra un ejemplo de estos dos tipos de radargramas.
4. Consideraciones generales sobre la interpretación de los resultados

Una vez examinados y procesados todos los radargramas obtenidos de los diferentes perfiles y teniendo en cuenta los datos de los resultados adquiridos con la tomografía eléctrica, se realizó una clasificación de las anomalías en categorías derivadas de su posible naturaleza o causa. La clasificación efectuada se muestra en la siguiente tabla.

<table>
<thead>
<tr>
<th>Anomalías tipo</th>
<th>Estructuras-edificios</th>
</tr>
</thead>
<tbody>
<tr>
<td>tipo I</td>
<td>Estructuras-Edificios</td>
</tr>
<tr>
<td>Anomalías tipo II</td>
<td>Elementos aislados</td>
</tr>
<tr>
<td>Anomalías tipo III</td>
<td>Estructuras colapsadas-terreno removido</td>
</tr>
</tbody>
</table>

4.1. RADARGRAMAS. ANOMALÍAS TIPO I

Las anomalías principales, (tipo I o de primer orden) determinadas son las correspondientes a restos de estructuras importantes y edificios enterrados. También representan la continuidad lateral en profundidad de estructuras identificadas superficialmente.

Los datos sobre la fábrica de las edificaciones y estructuras soterradas en estos yacimientos indican que los vestigios arqueológicos existentes en la subsuperficie podrían estar construidos principalmente mediante mampostería, adobe y tapial. Las piezas constructivas se albergan en substratos compuestos por arcillas, limos y arenas, principalmente. En consecuencia, cualquier estructura enterrada con suficiente entidad proporcionará anomalías definidas. La imagen generada corresponde con la característica hipérbola cuyo vértice permite definir la profundidad del techo de la estructura (ver figura 21). En general se...
observan correctamente señaladas las hipérbolas aunque en ocasiones pueden mostrarse atenuadas, y consecuentemente difíciles de reconocer.

![Figura 21. Ejemplo de radargrama con anomalía de tipo I. Las Virtudes, zona galería porticada. Perfil A-3-A. Abajo detalle del mismo entre los metros 10 al 20.](image)

4.2. RADARGRAMAS. ANOMALIAS TIPO II

Se caracterizan por presentarse como una hipérbola sin desarrollo vertical y de ramas poco inclinadas. Fundamentalmente su inicio se presenta entre la superficie del terreno hasta 1 m de profundidad y no tienen un reflejo de continuidad hacia el subsuelo (ver figura 22). Estas características de la anomalía nos hacen pensar que se corresponde con zonas en las que existen elementos arqueológicos o arquitectónicos aislados con un tamaño significativo y que se encuentran disgregados del conjunto al que estaban asociados en su origen.
4. Consideraciones generales sobre la interpretación de los resultados

4.3. RADARGRAMAS. ANOMALIAS TIPO III

Este tipo de anomalías se caracterizan por presentar una distorsión en el perfil de la matriz estratigráfica a partir de cambios destacados laterales y en profundidad del pulso reflejado, bien delimitados dentro del registro, pero sin generar una figura hiperbólica clásica (figura 23). La causa de estas anomalías puede deberse a tres factores. Puede equivaler tanto a una estructura de pequeñas dimensiones, como a una estructura arruinada, colapsada o descompuesta, especialmente si estaba constituida por mampostería o adobe. También puede corresponderse con zonas en la que ha habido movimiento de tierra, excavaciones antiguas y/o modernas en las que el sustrato geológico ha sido alterado en su continuidad y/o sustituido el material original con otro aportado de la zona pero modificando su compactación natural, y en consecuencia su densidad (Zarzalejos et al., 2012).

Figura 23. Ejemplo de radargrama con anomalía de tipo III. Parque Arqueológico de Alarcos, zona necrópolis islámica. Perfil B-4-A. Abajo detalle del mismo entre los metros 11 al 17.
SEGUNDA PARTE: ESTUDIOS DE CASO
5. Yacimiento del Cerro de Las Cabezas

CAPÍTULO 5. YACIMIENTO DEL CERRO DE LAS CABEZAS

5.1. CONTEXTO GEOGRÁFICO E HISTÓRICO

El yacimiento del Cerro de las Cabezas es uno de los enclaves regionales más importantes para conocer la evolución completa de la cultura íbero-ortana. Destaca por sus sistemas defensivos, y por la excelente conservación de sus restos arqueológicos y arquitectónicos. El 21 de abril de 1998 se resolvió su declaración como Bien de Interés Cultural con categoría de Zona Arqueológica.

El enclave se emplaza en el término municipal de Valdepeñas, en el km 207 de la Autovía de Andalucía A-4, sobre un cerro a 805 m de altitud, junto al cauce del río Jabalón. Esta formación se eleva a más de 900 m de altura en su cota superior, característica que ofrece un punto estratégico de control, clave en el dominio de las rutas entre Andalucía, la Meseta, la zona levantina y las comarcas mineras del interior de Ciudad Real, y por otro lado, una amplia visibilidad sobre el entorno de Valdepeñas, y primeras estribaciones de Sierra Morena. Estos elementos favorecieron el establecimiento de una importante población en la Oretania Septentrional durante el período ibérico.

Geomorfológicamente se caracteriza por tratarse de una zona de transición entre el Campo de Calatrava, donde se observan pequeñas sierras al noreste de Valdepeñas, y el
Campo de Montiel, que es una zona más abrupta. Geológicamente en el entorno del cerro se documenta una predominancia de arcillas, arenas, cuarcitas y pizarras. Este marco geográfico condiciona el proceso de uso de las vías de comunicación y de los pasos naturales de este sector de la Meseta, lo que implica que el Cerro de las Cabezas sea un enclave de paso obligado para los habitantes de los territorios contiguos. Estas vías de penetración parten de los pasos montañosos que rodean el poblado, principalmente de Sierra Morena, por el paso de Despeñaperros, que domina el eje de comunicación norte-sur, las sierras de Cazorla y Segura, en su lado suroriental, la vía Hercúlea, que enlaza los caminos del Levante con el oeste de la región, y las márgenes del río Jabalón, como accidente geográfico natural que se introduce en la comarca de Valdepeñas. Este factor conlleva un continuo intercambio sociocultural a partir de los contactos con otros pueblos peninsulares que aumenta en esta fase respecto a momentos anteriores (Vélez y Pérez, 1987, 2000).

El municipio de Valdepeñas se sitúa al sureste de la provincia de Ciudad Real. Distintos relatos afirmaban que el origen del núcleo urbano se encontraba en una antigua ciudad llamada Luparia, sobre la base de la aparición de unos posibles restos romanos en las cimentaciones de la obra de un convento trinitario en la barriada de San Nicasio, y de cimientos de casas y una torre en la actual Plaza de España, afirmaciones que no han podido contrastarse en la actualidad, tras diversas actuaciones arqueológicas en el pueblo (Benítez de Lugo, 1997; Benítez de Lugo et al., 2012; Madrid, 2008; Molina et al., 2007). Sin embargo, los datos y documentos históricos señalan que Valdepeñas se funda durante la Edad Media, en el proceso repoblador que la Orden de Calatrava lidera para este espacio durante el siglo XIII (Madrid, 2008).

El éxito como centro económico y social del entorno comarcal puede ponerse en relación con la decadencia y abandono de algunos núcleos urbanos romanos y medievales cercanos como Santa María, Aberturas o Corral Rubio. Éste último es un despoblado que se encuentra a los pies del Cerro de las Cabezas, con posible origen en el abandono del oppidum oretano, por el asentamiento de sus gentes en la vega del río Jabalón, junto al lugar conocido como Puente de San Miguel (Benítez de Lugo et al., 2012; Vélez et al., 2003).

El yacimiento del Cerro de las Cabezas ha sido conocido desde antiguo a nivel local, pero la primera noticia que hace referencia al oppidum ibérico la realiza el profesor de
Valdepeñas Cecilio Muñoz (1960), quien pone en valor, a través de un relato histórico literario, la antigüedad de los restos arqueológicos, describiendo los amurallamientos perimetrales, la aparición de escoria metálica, restos óseos degradados y numerosa cerámica dispersa en superficie, relacionándolos con el cercano río Jabalón y el paso del Muradal, en Despeñaperros, como factores detonantes del inicio del asentamiento en la ubicación conocida. Posteriormente, en la década de 1970, Martín Almagro-Gorbea retoma la investigación en torno al Cerro de las Cabezas. Se trata de unas referencias someras sobre el área de Valdepeñas, el yacimiento y otros enclaves ibéricos cercanos como Laminium (Alhambra) y Oretum (Cerro Domínguez), donde se hace una breve relación de los materiales arqueológicos superficiales observados en prospección, particularmente sobre las cerámicas a mano, cerámicas pintadas y estampilladas, así como algunas notas descriptivas de la traza del sistema defensivo ibérico (Vélez y Pérez, 1987; Almagro-Gorbea, 1976-1978).

Este asentamiento sobresale por tratarse de una de las poblaciones ibéricas con mayor extensión superficial, que se calcula en 14 ha, además de ser un centro político capital y de control de los territorios de su entorno en la Oretania septentrional, y de las rutas comerciales entre la Meseta, Levante y Andalucía (Almagro-Gorbea et al. 2001; Almagro-Gorbea y Dávila, 1995). Los trabajos de excavación arqueológica se iniciaron en 1985 y han permitido descubrir una importante superficie del emplazamiento, principalmente de las fases íberas.

En los estratos más profundos de varias zonas ubicadas entre la vega del río Jabalón y la zona intermedia de la ladera del cerro, se han documentado materiales arqueológicos anteriores a las fases ibéricas, en la transición del Bronce Final-Hierro I (Esteban, et al. 2003; Sánchez, 2011). Así pues, en este arranque ocupacional se han registrado las primeras estructuras arqueológicas de habitación sin criterio urbano, con formas rectangulares o semiovaladas, zócalos de mampostería y alzados de adobe, con cerámica asociada con decoración bruñida, cerámicas a la almagra, y pintadas con decoración geométrica de motivos blancos, amarillos y rojos.

En la segunda fase de este momento de ocupación se produjo una expansión del asentamiento desde la vega del río hacia zonas elevadas del cerro con un objetivo defensivo. Las estructuras habitacionales se perfeccionan, además se documenta un enterramiento de incineración bajo lajas sin ajuar. El conjunto de cerámicas está
representado por elementos elaborados principalmente a mano, tanto de factura tosca, como de elaboración más cuidada o fina, con decoración escobillada, ungulada, incisa con trazos paralelos y geométricos, bruñidos espatulados, almagra, grafitada, etc., que muestran la conexión con la tradición alfarera local, del sur y del sureste. Aparece el torno en la elaboración cerámica, que se decora con bandas pintadas monócromas o bícromas (Vélez y Pérez, 1987, 1999; Pérez y Vélez, 1996). La aparición de una fíbula de doble resorte puede datar este horizonte cultural entre finales del siglo VII y principios del siglo VI a.C. (Esteban, et al. 2003; Pérez y Vélez, 1996). A partir de este momento y hasta el siglo V a.C., se observa una progresiva ordenación urbana del poblado, que culmina en el siglo III a.C. con un planteamiento urbanístico avanzado (Vélez y Pérez, 1987).

La transformación del asentamiento del Cerro de las Cabezas se observa principalmente a partir de los siglos VI a V a.C. con la fábrica del sistema de defensa amurallado y la progresiva urbanización del enclave (Vélez y Pérez, 2007). La monumentalidad del oppidum se representa en los 1.600 m de línea defensiva adaptada a la topografía del terreno, edificada mediante diversas técnicas de construcción según la zona del cerro (Vélez y Pérez, 2000). El levantamiento de esta imponente construcción se desarrolló desde el inicio de la cultura ibérica hasta prácticamente el momento previo al abandono de la ciudad, por lo que se aprecian varias fases constructivas asociadas a la expansión y paulatina planificación del uso urbano del yacimiento. El primer anillo defensivo se levanta entre finales del siglo VI e inicios del V a.C., a partir de una fortificación ataludada que evoluciona en una muralla erigida mediante el sistema de cajas, tipología que ocupa el 70% del amurallamiento. Adosados a esta construcción se localizan una serie de bastiones cuadrangulares y circulares subdivididos en dos tipos, macizos, y castiones-contrafuertes, que mantienen un patrón continuo de separación comprendido entre treinta y cinco y cuarenta metros. El objetivo de estas construcciones es tanto defensivo, como de refuerzo del paño exterior de la muralla. Desde el siglo IV a.C. surge en zonas específicas de la muralla un nuevo sistema constructivo ciclópeo caracterizado por la construcción de nuevos tramos defensivos sobre la antigua muralla de cajas, o adosada a ésta, con el empleo de bloques cuarcíticos careados trabados con escasa argamasa de barro, o colocados en seco. En este periodo, con la técnica de construcción ciclópea, se construye un bastión de 150m² que flanquea la puerta sur del oppidum. Esta estructura se utilizó con fines defensivos y de almacenaje, puesto que en
su interior presenta un piso sobreelevado tipo hórreo para salvar la humedad del terreno. Con la ampliación del poblado hacia el sur y oeste del cerro en el último período, siglo III a.C., se continúa construyendo nuevos tramos de muralla con las técnicas citadas, así como nuevas construcciones de casamatas, y murallas de paramentos múltiples con pequeños mampuestos trabados con grandes cantidades de argamasa y cal, en algunos casos, a modo de camisas de refuerzo y reparación de los paños existentes (Vélez y Pérez, 2000, 2007, 2010).

Otro factor de cambio significativo en la distribución del entramado urbano del Cerro de las Cabezas, se aprecia en la disposición espacial de las estructuras privadas y públicas. La ciudad se articula a partir de varios ejes viarios orientados a partir de la puerta norte, localizada mediante excavación arqueológica. La calle principal consta de 4 m de anchura, desde la que se surgen calles laterales, algunas perpendiculares más estrechas. Sobre estas calles se emplazan una serie de barrios asentados en terrazas naturales del terreno que salvan el acusado desnivel topográfico. Se han localizado, áreas de vivienda, almacenes, zonas sacras y zonas industriales (Vélez et al., 2006; Vélez y Pérez, 2000, 2010). Por lo tanto, es un poblado amurallado y en ladera, distribuido a nivel estructural con un orden previo.

La zona más elevada del yacimiento se corona por una plataforma sobre la que se asienta una acrópolis del siglo IV a.C., elemento que indica un poder central, protegida por murallas ciclópeas. Este edificio destaca por su forma heptagonal con muros de grosor superior a 2 m (Vélez y Pérez, 1987, 2000). Otro edificio público importante denominado “santuario de entrada”, representa un área sagrada de uso común relacionado con el culto ibérico, donde se ha documentado la representación de tres betilos en piedra cuarcita. Además, se han documentado numerosos exvotos antropomorfos y zoomorfos en terracota. Estos hallazgos convierten a este enclave en una importante fuente de información sobre cuestiones religiosas relacionadas con la cultura ibérica oretana (Benítez de Lugo y Moraleda, 2013; Vélez y Pérez, 2000, 2010).

Las zonas domésticas se configuran con un patrón arquitectónico similar al representado por las estructuras de las dos primeras fases de ocupación; habitaciones rectangulares de pequeñas dimensiones, ahora integradas en un conjunto amplio, a modo de manzanas, mediante adhesión muraria. Los muros no presentan cimentaciones, se levantan sobre antiguas construcciones a partir de varias hiladas de mampostería, posteriormente se
rematan los alzados con adobes hasta su cota superior. Los pavimentos no son homogéneos en sus materiales, se componen por capas sucesivas de cal, arcilla y cenizas endurecidas, ni en su distribución, sólo se documentan en zonas concretas de las viviendas (Vélez y Pérez, 1987). Las cerámicas documentadas de barniz y engobe rojo, estampilladas, polícromas, fusayolas, permiten diferenciar las estancias en áreas de vivienda, o edificios dedicados a actividades de almacenaje e industriales (Vélez y Pérez, 2000, 2007).

Gran parte de estas estructuras arquitectónicas y estancias estuvieron en uso hasta el momento del abandono de la ciudad en el siglo III a.C. El núcleo urbano pudo contraerse paulatinamente como muestran los indicios del tapiado de calles y puertas de edificios significativos, hasta producirse el despoblamiento repentino del asentamiento en esta época ibérica final, evento representado por la destrucción de las murallas, y por potentes estratos de incendio (Benítez de Lugo y Moraleda, 2013; Pérez y Vélez, 1996; Vélez y Pérez, 2007).

Con las excavaciones sistemáticas realizadas se ha descubierto una notable superficie del asentamiento protohistórico, aproximadamente un 8% del total, que ha mostrado el excepcional estado de conservación de los restos arquitectónicos monumentales enterrados, y la abundante cantidad de cerámica recogida. El valor de este rico patrimonio arqueológico ha posibilitado la apertura de un Centro de Interpretación en el año 2003 que ha puesto en valor su importancia cultural y patrimonial (Blánquez, 2008).

5.2. DEFINICIÓN DE LAS ÁREAS DE ESTUDIO

Como se ha expuesto en páginas precedentes, el yacimiento del Cerro de las Cabezas presenta evidencias arqueológicas de haber albergado un poblamiento ibérico de considerable entidad. Hasta la fecha han sido identificados numerosos restos arqueológicos in situ, lo que permite saber aproximadamente qué superficie abarca el yacimiento. Así mismo, la zona urbana y la sección de muralla situada en la zona norte de la actual excavación se encuentran parcialmente documentadas y situadas espacialmente. Con el objetivo de obtener una caracterización del entramado urbano, aun sin excavar, y de definir la orientación de la muralla con el fin de planificar futuras
intervenciones arqueológicas, se seleccionaron diferentes puntos del entorno para la realización de los trabajos de investigación geofísica y arqueológica, pudiendo ver su disposición en la figura 25.

Figura 25. Localización general de las diferentes zonas de trabajo en el yacimiento del Cerro de las Cabezas. PNOA © Instituto Geográfico Nacional de España - (Castilla-La Mancha).

Zona A. Esta zona de exploración geofísica se localiza en el centro de la zona urbana, en un área sin excavar, entre dos zonas excavadas en las que se han documentado estructuras de habitación, otras de carácter industrial-artesanal, almacenes, así como parte de la estructura defensiva original. Este sitio es crucial para resolver dos cuestiones importantes. En primer lugar, permitiría conocer si existe una continuación tipológica del entramado urbano documentado hasta la fecha. Y, en segundo término, verifican la existencia de posibles espacios públicos abiertos, como plazas o calles, lo que puede aportar datos significativos sobre la organización social del poblado y su articulación.
Zona B. Esta zona de exploración geofísica tiene como principal objetivo documentar la posible continuación de la muralla sur de la ciudad en dirección oeste. Actualmente la muralla está excavada parcialmente hasta la zona oeste del área urbana. Mediante el estudio de este sector se podrían localizar adicionalmente otras estructuras arquitectónicas de índole militar relacionadas con la muralla, como bastiones e incluso un posible fosfo defensivo excavado en la roca madre.
5.3. GEORRadar

La investigación con georradar se desarrolló sobre todas las zonas de estudio definidas inicialmente. A la vista de los resultados obtenidos con el GPR, se seleccionaron las localizaciones en las que posteriormente se realizaron la tomografía eléctrica.

La numeración de cada perfil consta de la letra de la zona de exploración geofísica a la que pertenezca, número de perfil en esa zona y dirección de medida. Así el perfil A-1-A significa que es el perfil número 1, medido en la dirección A (O-E), de la zona urbana (zona de exploración A). Esta numeración se hace extensiva a cada una de las zonas de investigación indicadas.

Figura 28. Vista general de las zonas en las que se realizaron las investigaciones sistemáticas con GPR. (A) Zona fosos-muralla. (B) Zona urbana. PNOA © Instituto Geográfico Nacional de España - (Castilla-La Mancha).

En la zona de exploración geofísica A-zona urbana, debido a su gran amplitud, se realizaron inicialmente una serie de perfiles no sistemáticos separados entre sí 4 m para determinar las características adecuadas de la prospección con el GPR, así como la longitud y distancia óptimas entre los perfiles de la misma. Sobre la base de esta primera fase, se ejecutaron un total de 25 perfiles en una cuadrícula rectangular de 32 m x 14 m adaptada a la morfología del terreno. Estos se separaron entre sí 2 m, medidos según las orientaciones NE-SO (dirección A) y NO-SE (dirección B), a fin de obtener una caracterización doble de la zona. La longitud total de estos perfiles es de 494 m, con una cobertura superficial de 448 m².

La configuración de la antena del GPR se realizó mediante el software Spiview, en el modo DrySoil, en la totalidad de los perfiles, lo cual estima una velocidad de 50 ns que se traduce en un nivel de profundización en la exploración de 3,7 m.
En la zona de exploración geofísica B- foso-muralla, debido a su complejidad topográfica, con importantes desniveles, se ejecutaron dos cuadrículas independientes con una separación entre sí de 20 m, subdividiéndose este sector en zona B-I y zona B-II. En la zona B-I, se realizaron un total de 10 perfiles en una cuadrícula rectangular de 25 m x 6 m adaptada a la morfología del terreno. El estudio consistió en la ejecución de cuatro perfiles medidos según la orientación SO-NE (dirección A) y separados entre sí 2 m, y seis perfiles con una separación de 5 m, con orientación NO-SE (dirección B). La longitud total de estos perfiles es de 136 m, con una cobertura superficial de 150 m². En la zona B-II, se realizaron un total de 14 perfiles en una cuadrícula rectangular de 35 m x 4 m. El estudio consistió en la ejecución de seis perfiles medidos según la orientación SO-NE (dirección A) y separados entre sí 2 m, y ocho perfiles con una separación de 5 m, con orientación NO-SE (dirección B). La longitud total de estos perfiles es de 242 m, con una cobertura superficial de 140 m².

Al igual que en la zona A, en esta zona B la configuración de la antena de 250 MHz se realizó mediante el software Spiview, en el modo DrySoil, en la totalidad de los perfiles, lo cual estima una velocidad de 50 ns que se traduce en un nivel de profundización en la exploración de 3,7 m.
5.4. TOMOGRAFÍA ELÉCTRICA

La campaña de investigación mediante tomografía ha consistido en la ejecución de 11 perfiles o secciones, medidos mediante las configuraciones dipolo-dipolo, Wenner-Schlumberger, y strong gradient, agrupados en dos zonas: el área urbana y la zona fosomuralla (subdividida a su vez en zona B-I, zona B-II y zona B-III). Su ubicación guarda relación con aquellos sitios en los que existía previsión de restos arqueológicos enterrados, o en los que había una anomalía determinada por la investigación previa realizada por el georradar. La situación de estos perfiles puede verse en las figuras 32 y 33.
La posición del inicio y final de cada perfil de tomografía eléctrica se ha determinado de forma que éstos atravesaran toda la zona de anomalía detectada por el georradar y estuviesen centrados en la misma. Los perfiles realizados en la zona foso-muralla han sido indexados para obtener un modelo virtual 3D de cada uno de ellos.

En la zona foso-muralla, se ejecutaron un total de 6 perfiles: dos en la zona B-I (CC1 y CC2), paralelos entre sí, de dirección SO-NE; dos en la zona B-II (CC3 y CC4), paralelos entre sí, con dirección SO-NE; dos en la zona B-III (CC5 y CC6), paralelos entre sí, con dirección NO-SE. Constan de 28 electrodos cada uno, con espaciado inter-electrónico de 1 m y separados entre sí 2 m (figura 34). Los perfiles CC5 y CC6 atraviesan en oblicuo las secciones CC3 y CC4, con correspondencia entre sus electrodos número 10 y 11, con los electrodos número 25 y 26 de CC3, y los electrodos número 27 y 28 del perfil CC4, respectivamente (figura 33).
5. Yacimiento del Cerro de Las Cabezas

En la zona urbana, se ejecutaron un total de 8 perfiles paralelos entre sí, de dirección SO-NE, de 28 electrodos cada uno, con espaciado inter-electrodico de 1 m y separados entre sí 2 m. Conforman un rectángulo regular de toma de medidas de 27 x 14 m (figura 35).

5.5. RESULTADOS E INTERPRETACIÓN

5.5.1. GEORRADAR

El yacimiento del Cerro de las Cabezas destaca por tratarse de un enclave en el que desde la zona más elevada del conjunto, hasta la vega del río Jabalón, pueden existir estructuras arqueológicas que ocupan el espacio de forma continua, tal y como se ha observado en diversos sondeos arqueológicos efectuados desde el año 1985. La presente
La investigación se desarrolla sobre dos sectores ubicados en las zonas media y baja del cerro, cercanas a la autovía. Estas zonas de estudio suponen sobre el terreno la continuación lateral de los perfiles de excavación existentes, por un lado, en la zona del barrio urbano, y por otro, en el espacio donde finaliza el talud del sistema defensivo que protege el flanco sur de la ciudad ibérica.

Los materiales que se utilizan para la construcción de las estructuras tienen un origen geológico local, compuestos principalmente por rocas procedentes de pliegues de cuarcita, y morteros margo-arcillosos que traban los mampuestos.

Las estructuras documentadas en ambos sectores se caracterizan por una diversidad tipológica que se define por áreas habitacionales, religiosas y económicas, en la zona urbana, y de naturaleza defensiva, con muros de grandes dimensiones, en la zona amurallada. Además, en las zonas del cerro prospectadas se observa cómo los edificios ibéricos erigidos con mampostería no amortizan por superposición, ni alteran, en la mayoría de los casos, estructuras anteriores a modo de cimentación, si no que son fundaciones de nueva planta a partir de un proyecto urbano uniforme. A esta característica constructiva se añade la escasa presencia de derrumbes pétreos asociados, lo que indica una buena conservación de los restos arqueológicos enterrados, y el empleo de adobes para rematar la construcción de los muros.

Por otra parte, la línea fortificada que se ubica al mediodía presenta mayor altura en el alzado de sus paños, conservando una potencia en profundidad superior a la registrada en las estructuras de habitación. Este factor favorece la presencia de estratos de material constructivo de relleno, o de material colapsado asociado, de espesor superior al localizado en la zona baja del poblado, lo que además supone una diferencia importante en el modelado y representación de las anomalías estructurales en los distintos radargramas obtenidos para ambas zonas.

5.5.1.1. ZONA A

Las investigaciones que se han planteado en la zona urbana, situada en la parte baja de la ladera este, estuvieron dirigidas principalmente a la detección de estructuras arqueológicas relacionadas con los hipotéticos muros que conformarían una continuidad
del espacio urbano en este sector, y que se localiza entre las áreas ya excavadas en campañas anteriores. En éstas se han localizado, mediante excavación arqueológica, importantes zonas de habitación donde destaca el uso de la mampostería trabada con un mortero arcilloso y el uso de adobes para la construcción de muros rectilíneos. Las habitaciones poseen un pavimento habitualmente constituido por arcillas, cal y cenizas sobre finas capas arenosas, o sencillamente sobre tierra apisonada, aunque también pueden encontrarse pavimentos fabricados con losas de piedra, guijarros o lanchas de pizarra, cuarcitas o calizas.

Es importante señalar que se han documentado calles o ejes viarios que compartimentan el entramado urbano de esta zona baja del poblado, y lo articulan en manzanas.

Los datos obtenidos por la investigación que se ha efectuado con el georradar en esta zona pueden ser considerados satisfactorios, puesto que se han identificado un número elevado de anomalías en el subsuelo de gran parte de la superficie del poblado. Es una cuadrícula de gran valor por la cantidad de registros presentes y la continuidad de los mismos. En este sentido debemos señalar que el 100% de los perfiles ejecutados contienen anomalías, cuyas reflexiones se expresaron en muchos casos con poca claridad en los sucesivos radargramas analizados, debido a la escasa profundidad a la que se encuentran las posibles estructuras.

Las anomalías principales determinadas son las correspondientes a restos de posibles estructuras importantes y edificios enterrados. A partir de los datos expuestos sobre la fábrica de las edificaciones soterradas en este yacimiento, que deben estar albergadas en un suelo edáfico de glacis y coluviales, se infiere que cualquier estructura enterrada con suficiente entidad proporcionará anomalías definidas. La figura anómala generada no se corresponde con la clásica hipérbola de difracción, sino más bien con una leve curva cuyo vértice permite determinar la profundidad del techo de la estructura, asociada a una tenue distorsión en profundidad en el eje de su vertical (ver figura 36).

En general las señales aparecen difuminadas, achatadas, con escasa refracción de onda, y consecuentemente difíciles de reconocer, posiblemente debido a la superficialidad de los restos arqueológicos, que en algunos casos afloran por encima de la superficie del terreno, y a su escasa potencia constructiva, habitualmente constituida por pocas hiladas de piedra en el zócalo de los muros. En la figura 37 se detalla la disposición de las anomalías de primer orden sobre la cuadrícula de trabajo.

Figura 37. Situación de las anomalías detectadas con GPR en la zona urbana.

Sobre la base de esta planimetría (figura 37) se ha realizado una primera valoración e interpretación arqueológica aplicada de la zona urbana, con la que se generó un nuevo plano en el que se sitúan espacialmente las posibles estructuras soterradas. Para ello se han enlazado linealmente las anomalías que se encuentran situadas dentro de una misma
subcuadrícula, cuando a partir de la combinación de las dos direcciones de toma de datos se observa que siguen patrones rectilíneos (figura 38).

Para ofrecer una explicación clara de los resultados obtenidos, se dividirá la cuadrícula de trabajo de georradar en tres secciones transversales según los cambios estructurales observados, tomando como referencia la dirección de medida B: del perfil P9 al P15 (sector I), del P15 al P20 (sector II) y por último del P20 al P25 (sector III).

En el extremo suroeste del sector I se observa una zona sin anomalías, se trata de una superficie abierta de 19,60 m², con un perímetro lineal de 20 m, bien acotada entre anomalías registradas en los perfiles P2 al P5 de la dirección A de medida, y los perfiles P9 al P11 de la dirección B. Su delimitación espacial por tres posibles muros en sus lados oeste (de 7,1 m de longitud), norte (de 2 m) y este (con 4,9 m), y la ausencia de muros de cierre en su lado sur, podría indicar que se trata de un patio o una pequeña plazuela a la que se accedería desde una calle, documentada mediante excavación arqueológica, colindante al sur con la cuadrícula de trabajo (figura 40).

En el resto del sector I, se han identificado más de treinta anomalías importantes. Estas anomalías se pueden interpretar como posibles unidades murales bien delimitadas, puesto que la disposición espacial en planta de las mismas indica una clara alineación en ciertos puntos, formando una disposición de varios recintos a modo pasillos, habitaciones y puertas. La coronación de estas anomalías se detectó a una profundidad de entre 0,10 y 0,30 m. En este sentido debemos indicar que se han contabilizado al
menos treinta y cuatro posibles muros en esta zona, sobre una superficie de 85 m2
(figura 39).

Para finalizar la explicación del sector I, el análisis se centrará en el área comprendida en la intersección entre los perfiles P14 de la dirección B de medida, con los metros 8 a 8,5 de los perfiles P2 al P6 de la dirección A, donde se aprecia una anomalía lineal con una longitud aproximada de 9 m y con orientación NO-SE. Frente a ésta, a unos 2 metros de distancia, en el cruce del P15 con los perfiles P3, P4, P5, P7 y P8, en su metro 12, se han documentado varias anomalías que conformarían varias secciones de posibles muros con continuidad lineal durante unos 10 m, y que son paralelos a la anterior. Entre ambas posibles estructuras se distingue un espacio de entre 3 y 4 m de ancho, con orientación NO-SE y que podría corresponderse con una posible calle o callejón. Esta calle continuaría hacia los lados este y oeste de la cuadrícula de trabajo, y articularía esta parte del espacio urbano en una manzana donde existirían varios posibles edificios (figuras 40 y 42).
Los sectores II y III ofrecen una configuración urbana muy similar a la descrita en el sector I. Se trata de unas zonas en la que se han registrado numerosas anomalías con idénticas características a las referidas anteriormente para el sector I. Serían treinta y un posibles muros con una cotas muy superficiales, comprendidas entre 0,10 y 0,30 m, que abarcarían una superficie construida de unos 132 m2, para el sector II, y 54 posibles muros sobre una superficie aproximada de 160 m2, para el sector III (figura 41). Igualmente se localiza una posible calle entre los perfiles P18 y P20, con orientación NO-SE y unos 3 m de ancho, delimitada en su lado sur por una posible gran estructura de 14 m de longitud (figuras 41 y 42). Como sucede en el caso anterior, esta calle continuaría hacia los lados este y oeste de la cuadrícula de investigación, y articularía esta parte del poblado en una pequeña manzana.

En consecuencia, la interpretación conjunta de los resultados que se han obtenido en la zona del poblado, parece indicar que en el subsuelo inmediato de esta zona se conservan restos arqueológicos de varias edificaciones, así como una posible plazuela y dos posibles calles (ver figura 43). En esta retícula urbana los edificios tendrían una planta cuadrangular o
rectangular, en algunos casos de forma irregular, con un espacio unitario constituido por estancias muy compartimentadas mediante muros medianeros bien definidos. Las calles, que parecen paralelas entre sí, muestra de un urbanismo bastante evolucionado, y con una orientación similar a otras vías localizadas a escasos metros mediante excavación arqueológica, generarían una ordenación urbana mediante manzanas de viviendas.

Es significativa en esta zona del yacimiento la ausencia casi total en los radargramas de anomalías definidas en otros estudios geofísicos como “derrumbes” o anomalías secundarias. Esto podría estar originado tanto por la forma de construcción de las viviendas en el mundo ibérico, mediante una cubierta con materiales vegetales perecederos que no se han conservado, como por una escasa destrucción o colapso lateral de los zócalos fabricados mediante mampostería de caliza o cuarcita.

Figura 43. Posición georreferenciada de las posibles estructuras detectadas en la zona de exploración urbana.

5.5.1.2. ZONA B

La investigación geofísica realizada en el sector ubicado en el límite oeste de las excavaciones arqueológicas, junto al último tramo de muralla documentada, estuvo especialmente dirigida a la comprobación de la orientación y continuidad de la misma en posición estratigráfica, así como al registro de un posible foso excavado en el terreno
natural asociado a la estructura defensiva. La hipótesis de partida era que este imponente elemento arquitectónico continuara en dirección oeste, reforzado en diversos puntos por bastiones defensivos adosados a su pared exterior.

En esta zona de estudio la muralla se levanta y adapta a la topografía del terreno mediante el uso de mampostería reforzada en su cara externa por una línea de piedras en la base, para evitar desplazamientos laterales. El muro interno de la muralla se levanta paralelo al exterior y se une a éste mediante muros perpendiculares a partir de un sistema de cajas. Son numerosos los bastiones cuadrangulares y circulares que se adosan a la muralla y que a su vez actuarían como refuerzos constructivos para impedir el colapso de la misma.

En este sector del yacimiento el terreno comienza a tener una pendiente pronunciada. Esto ha supuesto que la prospección con georradar se realice en dos zonas niveladas, separadas entre sí por 20 m, debido a la imposibilidad de operar entre ambas por la topografía desfavorable. Debido a este factor se ha dividido la zona fosso-muralla en zona B-I, cercana a la muralla ya excavada, y zona B-II, situada al oeste de la anterior y con una diferencia de cota de 6 m.

Al igual que en el poblado la cantidad de registros obtenidos por la exploración que se ha efectuado con el GPR en esta zona pueden ser considerados satisfactorios. En la figura 44 se detalla la disposición de las anomalías sobre la cuadrícula de trabajo.

Figura 44. Situación de las anomalías detectadas con GPR en la zona fosso-muralla B-I (arriba) y B-II (abajo). Rojo: tipo I. Verde: tipo III.
En este caso parte de las anomalías observadas se representan con claridad (figura 45), posiblemente debido a que algunas de las estructuras se encuentran soterradas a una profundidad levemente mayor que las analizadas en la zona urbana.

5.5.1.2.1. ZONA B-I

Como se observa en la figura 44, las anomalías se han identificado en dos zonas muy definidas de la cuadrícula de prospección. Las primeras, en torno a la zona sur y central de los perfiles ejecutados en ambas direcciones de medida, cuyas orientaciones son NO-SE (dirección A) y NE-SO (dirección B). En concreto, en el metro 1 del perfil P1, en los metros 1, 3 y 7 del perfil P2, a 1, 4, 7, 8, 12 y 14 m del perfil P3, y a 4, 7, 11 y 15 m del perfil P4. Y en los perfiles que cruzan a los anteriores en dirección B: a los 2 m del perfil P6, y a 3 y 5 m del perfil P7.

La primera puede interpretarse como un estructura lineal independiente, sin conexión con otras estructuras (la más cercana se encuentra a 3 m al norte), de 6 m de longitud y que podría continuar en dirección oeste y este. Se dispone espacialmente a unos 0,60 m de profundidad, y se sitúa entre los perfiles P5 y P6, paralela a ellos. La figura 46 muestra el perfil P3 y el correspondiente segmento ampliado donde se ha indicado esta zona anómala con un rectángulo rojo.
Figura 46. Radargrama obtenido en la zona sur del área de trabajo con la anomalía señalada en rojo que indica la señal generada por la estructura lineal. Perfil B-I-3-A. Abajo detalle del mismo entre los metros 0 al 5.

Se observa además en los perfiles P2, P3, P4 y P7, la presencia de un posible edificio de pequeñas dimensiones, con dos muros bien delimitados, paralelos entre sí, de 4,2 m y 2,2 m de longitud respectivamente sobre una superficie de 10 m² (ver figura 47), y con orientación O-E. El conjunto se sitúa a una cota más somera que la anterior estructura lineal, en torno a los 0,35 m – 0,70 m. En el lado este del mismo podría haber una puerta de acceso desde el exterior, con un metro de anchura, enmarcada en un posible muro de un metro de longitud que delimitaría la edificación por este lado, y un cuarto muro con orientación SE-NO ubicado a 1 m al norte de esta edificación.

Figura 47. Registro de GPR. En rojo se señala la anomalía producida por posible muro ubicado a 0,35 m de profundidad. Perfil B-I-4-A. Abajo detalle del mismo entre los metros 8 al 13.

La segunda zona anómala de interés se localiza en el sector norte de la cuadrícula investigada. En ésta las anomalías se distribuyen espacialmente con un patrón lineal bien definido. Se ha registrado en el metro 20 de los perfiles P1, P2, P3 y P4 de la dirección de medida A y en los metros 1, 3 y 6 de la dirección de medida B, con una
orientación NO-SE. Por su continuidad y cercanía a las estructuras excavadas arqueológicamente en campañas anteriores, se infiere que se trata del paño exterior de la muralla defensiva, puesto que mantiene la misma dirección y cota en profundidad de unos 0,20 m. En el metro 18 de los perfiles P1 y P2 se observa una anomalía lineal tenue, de escasa entidad, paralela a este paño de la muralla por su flanco sur, que podría equivaler a un muro. Además, aunque su señal en el radargrama es débil, parece existir un muro paralelo a la muralla exterior en su lado norte, a unos 4-5 m de distancia, como se observa en el metro 24,5 de los perfiles P1 y P2, con una cota de 0,50 m que podría interpretarse como el muro secundario o interno de la muralla, puesto que es propio de la arquitectura militar del Cerro de las Cabezas este tipo de construcción defensiva doble de muralla de cajas (figura 48).

![Imagen de un perfil B-I-I-A. Abajo detalle del mismo entre los metros 19 al 25. En rojo se señala la anomalía producida por la cara exterior de la muralla. Obsérvese en color magenta la tenue señal reflejada por la posible cara interna de la muralla.](image)

5.5.1.2.2. ZONA B-II

Los registros que se han obtenido en este sector muestran unas anomalías hiperbólicas bien definidas, con una señal de onda muy clara, concentradas al sur de la zona de exploración y principalmente en el centro de la misma.

Entre los metros 2 y 3 de los perfiles P1, P2 y P3 se localiza una anomalía potente, con una anchura superior a 5 m, a unos 0,50 – 0,60 m de profundidad, que atraviesa la cuadrícula de trabajo en dirección NO-SE. Aparecen varias anomalías asociadas,
incluso alguna adosada a la anterior, que se registran entre los metros 4 al 6 de los perfiles P1, P2, P3 y P5 (figuras 49 y 51).

Figura 49. Radargrama del perfil B-II-1-A. El rectángulo rojo indica la ubicación y desarrollo de la potente anomalía en el registro.

A la altura del primer tercio de la zona de exploración se observa una alineación anómala con desarrollo NO-SE, que por su cercanía al sistema defensivo puede equivaler a una posible estructura antrópica. En concreto se emplaza entre los metros 8 y 11 de los perfiles P1, P2 y P3, de la dirección de medida A, y en el metro 4 del perfil P6 de la dirección B. La señal que emite el elemento reflector subsuperficial se caracteriza por una hipérbola sin reflexiones internas, bien definida en los perfiles P2 y P3, y con escasa energía en el perfil P1 (figura 50).
La tercera zona en la que se ha detectado una importante concentración anómala se delimita entre los metros 16 y 26, donde se localizan varias alineaciones paralelas entre sí, todas con orientación NO-SE. Las dos primeras se ubican a los 16 y 18 m de los perfiles P1, P2 y P3, a una profundidad de 0,30 a 0,40 m. Si se observan desde el sureste mantienen una estructura rectilínea en sus dos primeros metros, a partir de donde parece realizar un leve giro hacia el noroeste. En el yacimiento existen bastiones defensivos circulares adosados a la muralla, además, en superficie se observan alineamientos estructurales curvos, con lo que se podría inferir que estas anomalías pueden indicar la presencia de una posible estructura con tendencia circular. A continuación de ésta, en el metro 21 una tercera anomalía lineal, muy potente, paralela a otra registrada en el metro 26, ambas enterradas a 0,30 – 0,55 m de la superficie y presentes en los seis perfiles longitudinales P1, P1´, P2, P2´, P3 y P3´. Podría tratarse de la continuación en esta zona de los dos lienzos de la muralla, analizados previamente en la zona foso-muralla B-I (figura 48). Para finalizar el estudio de este sector, hay que señalar que entre los metros 1 y 3 del perfil P8 se observan dos señales enmarcadas entre el posible paramento exterior de la muralla y la estructura con posible tendencia circular, perpendiculares a éstos y paralelos entre sí. Se trataría de dos posibles muretes que compartimentarían este espacio definido entre ambas estructuras.
El último tramo de los radargramas, entre los metros 26 a 32 de los perfiles P1, P2 y P3, se caracteriza por un aumento de la presencia de anomalías tipo III (figura 51), representadas por una sensible modificación de la secuencia de reflexión subhorizontal de las imágenes, así como por leves perturbaciones hiperbólicas, que pueden equivaler al inicio de alguna estructura antrópica de menor entidad que la observada en la muralla del oppidum.

La interpretación combinada de los registros que se han obtenido en las zonas de prospección zona fosomuralla B-I y B-II, muestra que en el subsuelo de esta zona se conservan restos arqueológicos de varias posibles edificaciones. Algunas ubicadas extramuros, en una zona donde la topografía es más suave, a unos 10 – 15 metros al sur del paramento exterior de la muralla. Son estructuras muy someras, bien definidas y una al menos, la localizada en la zona B-I, podría tratarse de una pequeña estancia, con una puerta de acceso desde el exterior, posiblemente perteneciente a un edificio de mayor envergadura y localizada en la zona este del mismo.

El complejo defensivo de este oppidum ibérico queda bien evidenciado por la presencia continuada de la muralla en las diversas zonas estudiadas. La hipótesis inicial de una muralla compuesta por dos muros paralelos en este sector del yacimiento, tal y como se ha documentado mediante excavación arqueológica en otras zonas del Cerro de las Cabezas, se refuerza. Estos potentes muros están separados por una distancia constante de 5 m. Además, el paño exterior de la muralla podría tener un refuerzo constructivo a modo de contrafuerte, o incluso un bastión con tendencia circular con funcionalidad defensiva, para salvar las fuertes presiones laterales de la estructura fortificada en un área donde hay un desnivel topográfico considerable.
5.5.2. TOMOGRAFÍA ELÉCTRICA

Como se describió en apartados anteriores, en el Cerro de las Cabezas se han realizado 14 perfiles de tomografía eléctrica agrupados en dos zonas, parte baja del poblado y sector amurallado oeste, elegidas por corresponderse con zonas de anomalía del georradar. Los perfiles de tomografía se configuraron con una distancia interelectródica y una longitud suficiente para poder detectar muros con unas dimensiones métricas, con una resistividad teórica superior a los 100 ohmios.metro (Ω.m).

A continuación se muestran los resultados de los perfiles realizados de forma gráfica. Las zonas con las mayores resistividades registradas quedan destacadas por sus colores rojos o rojo-amarillos. Estas zonas de mayor resistividad o zonas anómalas, deben corresponder según en la posición en la que se encuentran y la forma en planta a las estructuras de interés arqueológico motivo de esta investigación.

5.5.2.1. ZONA A

La investigación mediante tomografía eléctrica en esta zona ha consistido en la ejecución de 8 perfiles o secciones, denominados CC7, CC8, CC9, CC10, CC11, CC12, CC13 y CC14. Estos perfiles se midieron con las configuraciones dipolo-dipolo, Wenner-Schlumberger y strong gradient, con separación interelectródica de 1 metro y
separación entre perfiles de 2 metros (ver figura 35). A partir de estas medidas se han realizado las correspondientes secciones de resistividad 2D.

Los perfiles de inversión de resistividad (secciones 2D) realizados se muestran en las figuras 53 a 60. Las secciones muestran una estructura general del subsuelo formado por un sustrato geológico homogéneo caracterizado por unos valores georresistivos inferiores a 40 ohmios por metro, representado por los colores azules, que debe corresponder con arenas arcillosas con cantos dispersos. La parte superior de este sustrato (techo) aparece, según los diferentes puntos, entre los 0 m y los 1,5 de profundidad. Continúa esta unidad hasta la máxima profundidad de investigación, 6,5 m. Por encima del material se distingue un material caracterizado por valores de resistividad intermedios, que varían entre 50 y 80 Ω.m, representado por colores verdes. Debe corresponder con depósitos antrópicos procedentes de muros de adobe colapsados y niveles de uso a modo de suelos apisonados. El espesor de estos materiales varía entre 0 y 1,5 metros. Intercalados en estos materiales superficiales, se encuentran restos de posibles estructuras enterradas que destacan por sus relativos altos valores resistivos comprendidos entre 100 y 360 Ω.m. Se representan por colores amarillo-verdosos, amarillos, naranjas y rojos.

Figura 53. Perfil de tomografía eléctrica CC7.

El perfil CC7 (figura 53) muestra una zona anómala principal con unos valores de resistividad relativamente altos, entre 300 y 330 Ω.m, entre los metros 22 y 23, a una profundidad de entre 0,20 y 1m, con unas dimensiones aproximadas de 1 metro de ancho. Dentro de este perfil se diferencia, igualmente, dos zonas de resistividad elevada, entre 170 y 220 Ω.m, en los metros 18 y 20, y puntos de resistividad intermedia, entre 100 y 140 Ω.m, en los tres primeros metros de la sección, todos con una profundidad de entre 0,20 en su coronamiento, y 1 m en la base. Estas mismas anomalías se han detectado en los perfiles CC8, CC9 y CC10 (ver figuras 54, 55 y 56).
5. Yacimiento del Cerro de Las Cabezas

Figura 54. Perfil de tomografía eléctrica CC8.

El perfil CC8 (figura 54) es prácticamente idéntico al analizado anteriormente. Las principales anomalías presentan unos valores resistivos intermedios, entre 100 y 140 Ω.m, y se sitúan entre los metros 0,5 y 3, metro 15, entre el 17 y 18, en el 21 y en el metro 22. Todas con una cota comprendida a 1 m de profundidad, a excepción del emplazado a 21 m, que es una anomalía somera. Destaca al final de la sección, en su extremo norte, una anomalía de grandes dimensiones, con mayor entidad que el resto de los eventos anómalos detectados en el perfil, con más de 1 m de ancho, con techo a escasos centímetros de la superficie, muro a 1,3 m de profundidad y unos valores resistivos elevados. Esta importante anomalía se observa en el resto de perfiles, a partir del CC9 al CC14 (ver figuras 55 a 60), cruzando la zona de exploración en diagonal, desde el electrodo 28 en CC9, hasta el electrodo 22 en CC14.

Figura 55. Perfil de tomografía eléctrica CC9.

En el perfil CC9 (figura 55) se observan dos zonas anómalas principales, la comprendida entre los metros 18 y 22 (electrodos 19 y 22), con dos estructuras subhorizontales de resistividad comprendida entre 110 y 150 Ω.m. Y una segunda entre los metros 24 y 27 (electrodos 25 y 28), de elevada resistividad (en torno a los 250 Ω.m) observable mediante un color rojo intenso, con base profunda a 1,7 m. Como en los perfiles anteriores, todas estas zonas anómalas están envueltas por materiales de resistividades menores comprendidas entre 35 a 80 Ω.m, de nuevo los posibles derrumbes de tapiales.

Es interesante la anomalía subhorizontal que se extiende entre los metros 8 y 10 representada en color amarillo, situada a 0,50 m de profundidad. Se interpreta como un
posible suelo arcilloarenoso bien definido lateralmente, compactado por acción antrópica, con una resistividad menor (alrededor de 75 Ω.m).

La sección CC10 (figura 56) se sitúa en el centro de la zona de trabajo. En este perfil se destacan nuevamente las dos zonas anómalas de los extremos (metros 0 a 3, y 24 a 26.5), manteniéndose la resistividad elevada (entre 290 y 360 Ω.m) y la profundidad base de las posibles estructuras en torno a 1,5 m. La zona anómala comprendida entre los metros 18 y 21, reduce sus valores resistivos aproximadamente hasta los 90 Ω.m, debido posiblemente a que las anomalías serían un reflejo lateral de unas estructuras comprendidas entre CC9 y muy cercanas a CC10 (pero no cortadas perpendicularmente por esta sección). Se siguen detectando en la totalidad del perfil los paquetes de adobes derrumbados, desde la superficie hasta los 1.6 m en algunos puntos, con resistividades medias de 60 Ω.m.

En el perfil CC11 (figura 57) la zona de principal interés arqueológico se muestra a partir del metro 12 hasta el 25, con una sucesión subvertical de anomalías de elevada resistividad (en torno a 280 y 320 Ω.m). Se trata de cinco elementos resistivos de diverso grosor (entre 0,4 y 1 m), muy juntos entre sí, cuyas bases son poco profundas y regulares (a 0,50 m). En la zona sur del perfil se localizan dos pequeñas anomalías en color amarillento entre los metros 3 y 4, y el metro 5, respectivamente, muy someras, casi en superficie. Destacan por su resistividad media (100 Ω.m) en una zona en la que la resistividad del sustrato arqueológico desciende hasta 50 Ω.m durante más de 10 metros.
5. Yacimiento del Cerro de Las Cabezas

Figura 58. Perfil de tomografía eléctrica CC12.

En este perfil CC12 (figura 58) vuelven a destacarse claramente las anomalías descritas en el perfil CC11. Se localizan entre los metros 14 y 24, con colores anaranjados y rojizos, y presentan nuevamente una resistividad elevada (alrededor de 180 a 220 Ω.m.), por lo que la naturaleza de las estructuras que generan estas anomalías puede ser rocosa, como por ejemplo caliza o cuarcítica. Con un muro de 0,50 a 0,60 m, estas anomalías presentan contornos más definidos y formas subverticales con grosores cercanos al metro. Entre los metros 8 al 12 se observa una continuidad anómala somera de geometría irregular, pero con contorno bien definido, caracterizada por una resistividad de 90 a 100 Ω.m.

Entre los metros 24 y 25 de la sección (electrodos 26 al 28) se registra una nueva anomalía subhorizontal alargada de escaso espesor, inferior a 0,30 m, con una cota en profundidad de 0,50 m y valores resistivos medios comprendidos entre 100 y 120 Ω.m.

En este perfil CC13 (figura 59) se resaltan en color naranja y rojo las mismas anomalías registradas en los perfiles CC11 y CC12. Se localizan entre los metros 12 y 23, manteniendo una resistividad alta (en torno a 230 y 320 Ω.m.), con una cota en profundidad de 0,50 a 0,60 m, estas anomalías presentan nuevamente geometrías definidas y formas subverticales. La zona anómala superficial situada en los metros 8 y 12 de la sección (electrodos 9 y 13), y que también se ha documentado en CC12, en este perfil mantiene sus características físico-químicas y conserva una resistividad de 90 a 100 Ω.m.
La sección CC14 (figura 60) corresponde a la última de las secciones realizadas en la zona del poblado. En dicha sección se aprecian nítidamente zonas subverticales de resistividad media y alta (120 a 270 Ω.m.) con una profundidad máxima de coronamiento a 0,30 m que se interpretan como posibles muros principales con más de 1 m de ancho, emplazados en los metros 15 y 21. Y estructuras de menor entidad ubicadas entre 0,10 y 0,40 m de profundidad, sitas en la vertical de los metros 2, 4, 5, 8, 9 y 23, ésta última de 0,30 de anchura, localizada a 0,40 m por debajo de la profundidad base de las pequeñas anomalías descritas. Los derrumbes de tapial, representados en color verde, vuelven a abarcar la totalidad del subsuelo del perfil con valores resistivos bajos de 40 a 60 Ω.m, envolviendo al resto de las estructuras antrópicas.

La siguiente imagen muestra una representación de las imágenes obtenidas a partir de los perfiles tomográficos, dispuestas secuencialmente a partir de su orden de medida sobre el terreno, con el fin de obtener una visión conjunta de los eventos anómalos detectados y de sus principales características resistivas y espaciales.
Como puede observarse en la figura 61, el terreno subyacente de la zona de exploración A es homogéneo. La base geológica se distribuye de manera uniforme desde la base subterránea de las tomografías situado a 6 m, hasta 1,5 m de profundidad, albergando las cimentaciones de las posibles estructuras arqueológicas y los rellenos estratigráficos asociados, principalmente constructivos. El bloque 3D obtenido a partir de la
interpolación de perfiles 2D también aporta información precisa sobre el contraste entre las resistividades que definen las distintas capas antrópicas y geológicas, así como de las anomalías con posible origen estructural (figura 62).

La disminución de la densidad constructiva en la zona oeste del área de estudio, entre los perfiles CC7 a CC10, con una anchura que se comprende entre los metros 8 a 15 del perfil CC7, y entre 10 a 14 m para CC10, permite observar una reducción en la presencia de materiales constructivos colapsados que posibilita el afloramiento de los niveles arcillosos hasta prácticamente la superficie del terreno (figura 63). Esta característica puede indicar la existencia de un espacio abierto en esta zona que se extiende en dirección este, hacia la autovía. Como se indicó anteriormente, el espacio urbano del oppidum se desarrolla a partir de un sistema viario que distribuye los inmuebles en manzanas. La zona investigada se encuentra inmediatamente a continuación de una calle de grandes dimensiones que avanza en sentido sur, documentada mediante excavación arqueológica. Si se establecen paralelos con el espacio urbano excavado, se puede inferir que esta zona, en la que no se aprecian edificaciones construidas, puede equivaler a una calle o acceso perteneciente a la red de comunicaciones intraurbana del poblado.
5. Yacimiento del Cerro de Las Cabezas

Como puede observarse en la secuencia de tomografías (figura 61), se registran diecisésis anomalías principales (denominadas entre A y P), cantidad que indica una importante concentración estructural en este sector del yacimiento. Estos datos mantienen una continuidad con respecto a lo documentado a partir de las excavaciones arqueológicas al norte de esta zona de estudio, en la que se observa una elevada presencia de muros y unidades habitacionales bien definidas. Ninguna de estas anomalías se desarrolla en la totalidad de los perfiles ejecutados, si bien, cinco anomalías aparecen con continuidad en al menos cuatro secciones eléctricas (anomalías A, B, C, H y N), seis con prolongación entre dos y tres perfiles (E, G, I, J, L y M), y cinco sin correspondencia lateral (D, F, K, O y P). Por lo general, se identifican como elementos con valores resistivos altos (entre 130 y 360 Ω.m), así como por una cota superficial similar en casi todos los casos.

 Destaca al final de las secciones CC9 al CC14, en su extremo norte, la anomalía H, con unas dimensiones de 1 m de ancho y resistividad elevada (entre 250 y 360 Ω.m), por lo que se trata de la anomalía más resistiva registrada en el subsuelo de esta zona. Mantiene una alineación con dirección diagonal a la toma de medidas, con orientación NO-SE. Su inicio se registra en el metro final del perfil CC9, y finaliza a 6 m del electrodo 28 de CC14. Con estos datos puede interpretarse como un posible muro de mampostería con unas dimensiones de al menos 12 m lineales (figura 64). Paralelas a la anomalía H, se localizan las anomalías I y N, también distribuidas perpendicularmente a las líneas eléctricas CC11 a CC14. Por su geometría y posición espacial somera pueden
equivaler con varios muros de menor entidad al descrito anteriormente, con coronamiento situado a menos de 0,30 m de profundidad, construidos con materiales con valores de resistividad aproximada de 150 Ω.m.

En la zona central de la toma de datos, entre los perfiles CC9 a CC11, se observa una cuarta anomalía (anomalía G) que avanza con la misma dirección NO-SE. Este elemento anómalo se encuentra a 6 m de distancia de la anomalía I, lo que dificulta establecer una relación directa con las anteriores anomalías asociadas a esta orientación. Por su longitud de 4 m, con unos límites laterales poco definidos, pero modelados con una forma alargada, cota superior a 0,50 m de profundidad, y a partir de sus valores resistivos de 80 a 90 Ω.m, puede inferirse que se trata de un posible murete construido con adobes o un material similar, que podría relacionarse en su lado este con la zona inicial de la anomalía M, en el perfil CC12.

El siguiente conjunto de anomalías (anomalías A, B, C, E, J, L, y M) se agrupa a partir de un cambio en la orientación con respecto a las anomalías G, H, J y N. En estos casos el modelo de avance NO-SE se modifica levemente hacia la disposición lineal O-E, que es perpendicular a la adquisición de datos. La variación en la distribución de las anomalías no implica un cambio observable en sus características físicas. Si se realiza una comparativa con las primeras anomalías analizadas, se observa que mantienen el patrón definido en cuanto a valores de resistividad, establecidos entre 80 y 210 Ω.m, profundidad de aparición y coronamiento muy superficiales, la base de cimentación, que no supera los 1,6 m, y dimensiones laterales comprendidas 0,5 y 2 m. En estos casos en los que el grosor de las anomalías supera el tamaño de los muros reales del yacimiento, por lo general con un grosor inferior a 1 m, pueden interpretarse como posibles derrumbes o colapsos constructivos disgregados asociados a la base de las estructuras lineales. Estas alineaciones pueden corresponderse con muros de adobe o mampostería con longitudes comprendidas entre 4 y 6 m.

El último grupo de anomalías se compone por perturbaciones individuales registradas en sólo un perfil eléctrico. La inexistencia de una correlación lateral en perfiles contiguos, implica un aumento en la complejidad de la interpretación de estos registros. Por su cercanía a las anomalías lineales definidas como posibles muros, y sobre la base de lo observable en superficie, en el resto de la zona urbana, así como por unos parámetros geométricos y de resistividad similares a las anomalías agrupadas en línea,
5. Yacimiento del Cerro de Las Cabezas

posiblemente equivalen a estructuras constructivas de dimensiones reducidas, como hogares, muretes o tabiques divisorios, con formas cuadrangulares, como es el caso de las anomalías D, F y P, en los perfiles CC8, CC9 y CC14, o con tendencia circular, como sucede con las anomalías K y O sitas en los perfiles CC12 y CC14.

5.5.2.2. ZONA B

La investigación mediante tomografía eléctrica en esta zona ha consistido en la ejecución de 6 perfiles, agrupados en tres zonas y denominados CC1, CC2 (zona B-I), CC3, CC4 (zona B-II), CC5 y CC6 (zona B-III). Estos perfiles se midieron con las configuraciones dipolo-dipolo, Wenner-Schlumberger y strong gradient, con separación interelectródica de 1 metro y separación entre perfiles de 2 metros (ver figura 34). Posteriormente se ha aplicado a cada perfil una corrección topográfica para solucionar el desnivel existente en la zona de estudio. A partir de estas medidas se han realizado las correspondientes secciones de resistividad 2D y modelos 3D por yuxtaposición e interpolación de los datos de las mismas.

Los perfiles de inversión de resistividad (secciones 2D) realizados se muestran en las figuras 65, 66, 69, 70, 73 y 74. Las secciones muestran una estructura general del subsuelo formado por un sustrato geológico homogéneo caracterizado por unos valores
georresistivos entre 20 a 80 ohmios por metro, representado por los colores azules, que debe corresponder con pizarras y areniscas. La parte superior de este sustrato (techo) aparece, según los diferentes puntos, entre los 0,6 m y los 2,1 m de profundidad. Su espesor alcanza, al menos, la máxima profundidad de investigación, 6,1 m. Por encima del material se distingue un material caracterizado por sus valores resistivos, que varían entre 150 y 200 Ω.m, representado por colores verdes. Debe corresponder con depósitos antrópicos procedentes de muros de mampostería colapsados y un nivel edáfico de glacis y coluviales. El espesor de estos materiales varía entre los 0 y los 2 metros.

Intercalados en estos materiales superficiales, se encuentran restos de posibles estructuras enterradas que destacan por sus altos valores resistivos comprendidos entre 500 y 5500 ohmios por metro (Ω.m), cuya composición litológica debe ser predominantemente cuarcítica. Se representan por colores amarillos, naranjas y rojos.

5.5.2.2.1. ZONA B-I

![Perfil de tomografía eléctrica CC1.](Figura 65)

El perfil CC1 (figura 65) muestra una zona anómala principal con unos valores de resistividad elevados, entre 900 y 1150 Ω.m, entre los metros 20 y 25 (electrodos 21 y 26), a una profundidad de entre 0,20 y 1,3 m y con unas dimensiones aproximadas de 1 metro de ancho. En la zona sur del perfil, en torno a los metros 1 y 6, se localizan dos puntos de resistividad significativos, de 300 Ω.m, con una profundidad de entre 0,20 y 0,30 m. Estas mismas anomalías se han detectado en el perfil CC2 (ver figuras 66 y 67). Debemos añadir que en la parte central del perfil, entre los metros 13 y 18 se aprecia una zona con una resistividad muy baja de unos 25 Ω.m, con una anchura de unos 4 metros y una profundidad aproximada de 4,1 m.
En el perfil de tomografía eléctrica CC2 (figura 66) se observan las mismas zonas anómalas que en el perfil CC1 (figuras 65 y 67); la anomalía de alta resistividad entre los metros 20 y 24, y la zona azulada de baja resistividad, entre los metros 14 y 18. Mantienen las mismas cotas en el subsuelo, aumentando los valores de resistividad a 1600 Ω.m la primera, y conservando las medidas resistivas, en torno a los 20 Ω.m, el segundo caso. Sin embargo en la zona anómalal al sur del perfil la resistividad se incrementa de los 300 Ω.m registrados en CC1 (figura 65), a unos valores muy elevados de 800 Ω.m. aproximadamente. En este perfil las anomalías se representan subhorizontales en color anaranjado, con una zona intermedia amarilla (metro 4) donde la resistividad disminuye por debajo de los 500 Ω.m.

Por otro lado, en el metro 18 de la sección se distingue al sur de la zona anómala principal una pequeña anomalía en color amarillo, con unos valores resistivos de 350 Ω.m y techo a 1,3 m de profundidad.

En la siguiente secuencia de imágenes tomográficas puede apreciarse la correlación lateral de las distintas anomalías registradas en esta zona de exploración:

Se registran tres zonas anómalas con presencia en ambos perfiles. Los parámetros resistivos de sus materiales varían desde medidas inferiores a 30 Ω.m, en la zona central de las secciones, hasta valores elevados, marcados en rojo, en el extremo norte de los mismos, con
más de 1600 Ω.m en el caso del perfil CC2. Así mismo, la posición espacial de las anomalías se establece en dos cotas con alturas diferenciadas. Por un lado, las anomalías de alta resistividad A y C, representadas con coronamientos someros, a una distancia inferior a 0,25 m de la superficie del terreno. Por otro, la anomalía B, con cota superior que coincide con la base o posible cimentación de la anomalía C, a 1,3 m de profundidad, y que continúa hacia la zona inferior de exploración del subsuelo hasta alcanzar aproximadamente 4,1 m de profundidad.

Las anomalías B y C se encuentran en una zona no excavada del yacimiento, ubicada a 2 m de distancia de las estructuras exhumadas en intervenciones arqueológicas anteriores. La excavación permitió la documentación del paño sur de la muralla ibérica, así como una estructura parcial de gran envergadura adosada a su flanco sur, construida con fines defensivos, y/o de refuerzo de esta barrera de protección. Por su cercanía a estos elementos constructivos se deduce que la anomalía C representa los paños exterior e interior de la muralla de cajas, puesto que mantiene la misma dirección y cota en profundidad de unos 0,20 m, y el antemuro descrito, o posible escarpa de la muralla, sito a 2,5 m de la misma.

En la base de este potente muro exterior sur se inicia la anomalía B. Esta anomalía se extiende durante 6 m de longitud en dirección sur, con límites bien definidos, zona superior subhorizontal y base con tendencia geométrica hemisférica. Los responsables de los trabajos arqueológicos indicaron en campo, durante los trabajos de reconocimiento del terreno previos a la exploración geofísica, la hipótesis de la existencia de un posible foso asociado a la estructura defensiva, excavado en el terreno natural de arenisca, que complementaría la defensa de este sector del oppidum, que por su topografía, resulta más vulnerable en comparación con otros sectores del cerro, donde los desniveles son más pronunciados. Por lo tanto, sobre la base de esta aportación, y tras el análisis comparado de las tomografías CC1 y CC2, la anomalía C podría corresponderse con una estructura negativa antepuesta a la muralla en su lado sur y rellena por materiales de naturaleza arcillo-arenosos, tipológicamente similar a una fosa cóncava.

La anomalía A se compone por dos núcleos resistivos con forma alargada y subhorizontal, de 390 a 640 Ω.m de resistividad, 7 m de ancho y base a 1,20 m de profundidad, unidos por un área intermedia con menor resistividad (210 Ω.m), posiblemente con origen en un
derrumbe constructivo procedente de las dos anomalías laterales principales. Se aprecia en la zona inicial de las tomografías, al sur de la zona de investigación, y puede corresponder con dos estructuras antrópicas de grandes dimensiones situadas extramuros de la ciudad.

Se ha generado un bloque diagrama 3D interpolando los valores interelectrónicos de los dos perfiles. En la imagen se observan con claridad las zonas anómalas analizadas en los perfiles CC1 y CC2 (figura 68).

5.5.2.2. ZONA B-II

![Figura 69. Perfil de tomografía eléctrica CC3.](image)

En el perfil CC3 (figura 69) se pueden apreciar las anomalías resistivas de una manera nítida e intensa (entre 1150 a 2500 Ω.m). La primera, es una anomalía subhorizontal
con geometría alargada y 2,3 m de espesor, comprendida entre los metros 0 y 5, con base profunda a 2,4 m, y con una resistividad superior a 2300 Ω·m. Se observa una segunda anomalía en la cota superior del terreno, al norte, entre los metros 17,5 a 24, a 0,20 m de profundidad y alta resistividad (entre 1200 a 2540 Ω·m).

Al igual que se indicó en las secciones CC1 y CC2 (figuras 65 y 66), en la parte central del perfil, entre los metros 9 y 16, se localiza una zona con una resistividad baja, de unos 60 a 90 Ω·m, con una anchura de unos 5 metros y una profundidad aproximada de 2 m.

En el perfil de tomografía eléctrica CC4 (figura 70) se observan las mismas zonas anómalas que en el perfil CC3 (figura 69); la anomalía al sur, entre los metros 0 a 5, y la ubicada entre los metros 16 y 24, de alta resistividad (entre 1000 y 2360 Ω·m) con una estructura subhorizontal observable mediante un color rojizo, con coronamiento a 0,20 m. Estas anomalías principales, y la central, destacada en color azul, mantienen las mismas cotas en el subsuelo, la apariencia subhorizontal y las resistividades comprendidas entre 60 a 2500 Ω·m.

La correspondencia entre las anomalías obtenidas en la investigación tomográfica de esta zona puede visualizarse en la figura 71.
Figura 71. Zona foso-muralla B-II. Secuencia con los perfiles 2D de tomografía eléctrica. Perfiles CC3 y CC4. Las anomalías principales se señalan en color negro.

El sector de trabajo B-II representa la zona con la máxima cota de elevación estudiada en el yacimiento, en concreto, su punto más elevado lo constituye el electrodo 28 de ambos perfiles. Desde esta posición electródica el terreno mantiene un pronunciado buzamiento con vertiente hacia el sur, hasta alcanzar un leve aterrazamiento donde se reduce el desnivel y en el que se observan en determinados puntos superficiales afloramientos rocosos naturales. Estos elementos geológicos se encuentran cercanos al electrodo 1 de las dos líneas eléctricas. Sobre la base de estas premisas se observa que la anomalía A comienza en el metro inicial de los perfiles de tomografía, en la zona aterrazada, con techo muy superficial que se introduce en la sombra de la toma de datos. Representa un elemento de alta resistividad bien definido pero con contornos carentes de regularidad, con una leve inclinación descendiente hacia el norte y con espesor aproximado de 2,3 m. Caben dos posibles interpretaciones para especificar su naturaleza; por un lado podría tratarse de un muro potente paralelo a la dirección de medida, con un posible uso relacionado con el inicio del aterrazamiento junto al que se sitúa, o bien que constituya la continuación subsuperficial de alguno de los afloramientos rocosos de la zona con desarrollo en profundidad hasta los 2,7 m. La anomalía B representa un elemento resistivo (920 $\Omega.m$) con forma rectangular escalonada de 3,9 metros de grosor y 2,3 de espesor con orientación sur-norte. Se encuentra rodeada por materiales con resistividades menores (425 $\Omega.m$) en un nivel profundo, a 2 m. Esta posición espacial alejada verticalmente del nivel arqueológico somero con base en 1,4 m, permite deducir que se trata de un elemento geológico natural.

La anomalía E, por el contrario, se observa junto a la cota cero. Se aprecia con nitidez en CC4, pero sin continuidad en CC3. Este elemento anómalo se sitúa al mismo nivel superficial que el resto de las anomalías primarias caracterizadas. Puede tratarse de algún tipo de estructura antropológica de pequeñas dimensiones con geometría alargada horizontal.
Por su parte, la anomalía D se encuentra en una zona donde el terreno dibuja una curva de nivel sobre la que se inicia una zona amesetada con un desnivel contenido, en el que los restos geológicos presentes en superficie se caracterizan por mampuestos cuarcíticos diseminados procedentes de estructuras ubicadas en cotas superiores del cerro, es decir, en esta zona elevada no se observan afloramientos rocosos como los descritos anteriormente. Además, se puede señalar que la dirección de avance que presenta el perímetro de la muralla desde la zona excavada atraviesa este sector. Este dato se refuerza mediante la observación en superficie de varios sillares careados de tamaño significativo en posición primaria, hincadas en el terreno, que según los responsables de los trabajos arqueológicos podrían asociarse con un posible bastión o refuerzo de la muralla en esta zona. Así pues, la considerable entidad resistiva de las anomalías modeladas entre los metros 17 y 24 con valores superiores a 1500 $\Omega\cdot$m, geometría trapezoidal y bordes con esquinas bien delimitadas, espesor de 0,90 m, anchura cercana al metro y una profundidad de hasta 1,1 m, permite suponer que los elementos resistivos de la anomalía D pueden corresponderse con estructuras antrópicas soterradas relacionadas con el sistema defensivo amurallado y con alguna de sus estructuras anejas avanzadas hacia el flanco sur.

La anomalía C destaca por su baja resistividad, inferior a 90 $\Omega\cdot$m. Presenta continuidad lineal en los dos perfiles, y se ubica entre los metros 11 y 15, con un posible desarrollo subhorizontal hasta el metro 24 de las secciones. Por su tamaño, de aproximadamente 6 m de longitud, su morfología cóncava con contornos regulares, y su ubicación, en la base sur de la zona anómal D, podría tratarse de nuevo del posible foso defensivo excavado en la roca basal (representada en color verde, con 350 a 370 $\Omega\cdot$m de resistividad), detectado en la zona de exploración B-I, cuyo avance en dirección oeste continuaría en paralelo al paño exterior sur de la muralla, remontando la ladera del cerro hasta esta zona de estudio. Esta anomalía

Se ha elaborado un bloque diagrama 3D interpolando los valores interelectródicos de los dos perfiles. En la imagen se observan con claridad las zonas anómalas analizadas en los perfiles CC3 y CC4 (figura 72).
5.5.2.2.3. ZONA B-III

Figura 73. Perfil de tomografía eléctrica CC5.

El perfil CC5 (figura 73) es un perfil transversal (oeste-este) a las secciones CC3 y CC4, paralelo a CC6, ambos ejecutados para obtener una visualización del terreno subyacente en una zona en la que parcialmente no se exploró con GPR.

Se observan cinco zonas subhorizontales de elevada resistividad (en torno a los 2200 y 2500 Ω.m), someras, con cotas superiores establecidas en 0,20 a 0,30 m, y base de cimentación constante a 0,75 m. Se localizan entre los metros 4 a 6, 9 a 10, 12 a 14, 20 a 22 y 25 a 27 (electrodos 5 a 7, 10 a 11, 13 a 15, 21 a 23 y 26 a 28). El conjunto anómalo aparece albergado en un estrato muy resistivo, definido en color verde, que supera los 510 Ω.m de resistividad.
Figura 74. Perfil de tomografía eléctrica CC6.

En la sección CC6 (figura 74) se muestran las posibles zonas de interés arqueológico desde el centro al este del perfil, en el metro 27. Destaca un punto en color rojo muy resistivo en la vertical de los metros 13 y 14, con una resistividad de 5500 Ω.m. La anomalía que se representa entre los metros 18 al 26, destaca por su longitud y sus elevados valores resistivos (alrededor de 3000 Ω.m). Entre ambos eventos anómalos destaca en el metro 16 una pequeña perturbación resistiva subhorizontal con anchura de 0,60 m, y 2150 Ω.m de resistividad. En todos los casos el muro, o base de los registros, se emplaza a 0,80 m. Al igual que en la sección anterior, se observa la presencia importante de un nivel natural poco resistivo (80 Ω.m) que avanza hasta la máxima profundidad de exploración definida en 7,8 m.

En la figura 75 se representa la secuencia correlativa de las anomalías visualizadas en ambos perfiles de tomografía.

Figura 75. Zona foso-muralla B-III. Secuencia con los perfiles 2D de tomografía eléctrica. Perfiles CC5 y CC6. Las anomalías principales se señalan mediante recuadros de color negro.

Como puede observarse en las secciones realizadas, el subsuelo de la zona B-III es uniforme. Se registran dos anomalías, una con continuidad en la totalidad de los perfiles realizados (anomalía B), y otra sin correspondencia lineal lateral (anomalía A). Todas se caracterizan por los elevados valores resistivos de los materiales que las componen, y su posición espacial a escasos centímetros de la superficie.
La elección de la situación de las dos líneas de electrodos sobre el terreno se determinó sobre el hipotético trazado real de la muralla, oculta completamente en el subsuelo, a partir de la dirección oeste-este observable en los restos arqueológicos excavados a 9 metros al noreste de la zona de trabajo. La anomalía B representa un conjunto de posibles estructuras arqueológicas con valores resistivos por lo general elevados, con zonas puntuales de alta resistividad (marcados en naranja y rojo), especialmente en los metros 9 a 11, 12 a 14, 20 a 23 y 24 a 27 del perfil CC5, y en los metros 13 a 14, 16, 18, y 21 a 26 del perfil CC6. Estas anomalías se extienden en ambos perfiles desde el metro 8,5 hasta el 27, siempre manteniendo la base de cimentación entre 0,75 y 0,80 m, y el coronamiento entre 0,30 m y la superficie. La continuidad de estos registros durante 19 m hace suponer que las anomalías detectadas pueden relacionarse con la prolongación de un mismo elemento constructivo subsuperficial, posiblemente la muralla, que se dispondría con una orientación paralela, aunque levemente oblicua, con la vertical de los perfiles de tomografía. Las diferencias de valores resistivos en los distintos metros de la anomalía B, que se inician en 520 Ω.m y ascienden puntualmente a 5560 Ω.m, pueden deberse a zonas arruinadas de la construcción defensiva, con pérdida de componentes constructivos, degradación de los morteros, y mayor concentración de humedad, en contraposición a otros sectores del amurallamiento que conservarían sus características constructivas originales, así como por posibles muros de refuerzo o de compartimentación adosados perpendicularesmente a la misma, atravesados trasversalmente por las secciones.

La anomalía A destaca como registro resistivo (2250 Ω.m) independiente entre los metros 3 a 6 del perfil CC5, con techo a menos de 0,20 m de profundidad, aunque se observa en diversos tramos a ras de la superficie, y como sucede con la anomalía B, con base a 0,80 m. Por su geometría y distribución alargada, y por su ubicación sobre la hipotética línea de muralla, puede corresponderse con una estructura arquitectónica de envergadura cercana al lado sur de la muralla, e incluso de un tramo del mismo paño exterior de la construcción defensiva principal.

La vista 3D del subsuelo de la zona B-III ayuda a obtener una mejor comprensión del posible conjunto arquitectónico enterrado (figura 76). Se aprecia el claro avance hacia la zona superior del yacimiento de la anomalía B, con dirección este-oeste. Además, la vista tridimensional de los registros ha permitido modelar una anomalía poco resistiva (de 30 a 60 Ω.m), representada en color azul en la base de la posible muralla, que en los perfiles
2D no se distingue con claridad por configurarse con límites difusos e irregulares. Se puede deducir que este elemento de baja resistividad puede equivaler al reflejo lateral del posible foso que completaría la defensa del oppidum, ubicado en la misma posición, anterior a la muralla en su flanco sur, y con las mismas características físicas en cuanto a resistividad de sus materiales, que las anomalías B y C pertenecientes a las zonas B-I y B-II, respectivamente.

5.6. DISCUSIÓN Y CONTRASTE DE RESULTADOS
La investigación desarrollada en el yacimiento del Cerro de las Cabezas tiene como finalidad definir las zonas con presencia de estructuras antrópicas, y comprobar la validez del uso complementario de métodos geofísicos eléctricos y electromagnéticos en el yacimiento, con el objetivo de desarrollar futuras intervenciones arqueológicas en las áreas de mayor interés. La exploración geofísica ha permitido determinar los sectores en los que se registran una cantidad importante de elementos anómalos. Con estos datos se pretende caracterizar la disposición espacial y naturaleza física de las anomalías documentadas en la prospección geofísica, sobre la base del uso combinado de georadar y tomografía eléctrica, y su contraste a partir de excavaciones arqueológicas.
sistemáticas. Para ello se expondrá de manera pormenorizada un análisis de cada una de las zonas en las que se ha excavado arqueológicamente, comparando los resultados con los obtenidos mediante la exploración geofísica, con el fin de determinar la idoneidad o carencias de los métodos y configuraciones empleadas en un yacimiento arqueológico con las particularidades arqueológicas y geológicas propias del Cerro de las Cabezas.

El método de trabajo ha consistido en una excavación en área en la zona de exploración B-I, y un sondeo manual longitudinal en la zona de exploración B-II, que ocupa adicionalmente parte de la zona B-III (figura 77). Para ello se ha llevado a cabo el levantamiento de los estratos geoarqueológicos, desde el más reciente hasta el registro con mayor antigüedad o un nivel estéril. En la zona de exploración A, no se han realizado excavaciones arqueológicas. En esta zona los frentes de excavación existentes, con origen en campañas anteriores, se ubican a una distancia superior a 2 metros de los perfiles y secciones efectuados en la presente investigación.

5.6.1. ZONA B-I

La excavación arqueológica manual se planteó sobre la cuadrícula donde se realizaron los trabajos geofísicos, entre un talud o antemuro constructivo que protege lateralmente el antiguo perfil este de excavación ante eventuales desprendimientos del terreno, y el límite oeste del área explorada, con una ampliación adicional de 2 m en dirección este, con el fin de aprovechar trasversalmente esta zona del cerro de escasa pendiente. Así pues, las estructuras arqueológicas situadas en el extremo oeste del área de excavación, se encontraban colindantes con respecto al perfil este de la zona investigada.

El objetivo de esta excavación era comprobar las características de la estratigrafía y su relación con las numerosas anomalías detectadas durante la investigación geofísica previa, determinar su grado de correspondencia con unidades constructivas arqueológicas reales, evidenciar una ampliación constructiva subsuperficial de la muralla hacia el noroeste, y obtener las configuraciones óptimas en los equipos de medición para este sector del yacimiento. La excavación se planteó con unas dimensiones de 15 m de longitud para su eje mayor (con dirección N-S) por 8 m de anchura en su eje menor (con dirección E-O). La secuencia estratigráfica orientativa de techo a muro es la siguiente:

El nivel de uso superficial de este sector del yacimiento se corresponde con el nivel de rasante actual, representado por el estrato identificado como nivel inicial de la excavación, con 0,25 m de espesor. Se distingue por la cubierta vegetal formada por tierra marrón rojiza, textura arenosa, escasa compactación y alta proporción de materia orgánica en su composición.

La segunda unidad se localiza debajo del nivel superficial. Indica una fase final del proceso de colmatación de la zona amurallada. La unidad cubre de este a oeste la superficie de excavación, derivada de la zona superior del cerro a partir de las escorrentías potentes que afectan a la ladera y que completan el proceso de sedimentación natural del enclave. Se trata de una matriz de tierra rojiza de compactación media, de grano grueso y composición homogénea, con un espesor aproximado de 0,50 m. Presenta, adicionalmente, escasas piedras de cuarcita de diámetro reducido.
La siguiente unidad antrópica, que se compone por un número elevado de capas de composición homogénea con espesor comprendido entre 0,10 y 0,30 m, se ha agrupado bajo la denominación de tercera unidad estratigráfica con el fin de sintetizar su explicación. Es una matriz compacta con 1,75 m de espesor, formada por un relleno de material arcilloso anaranjado, mezclado con sedimentos blanquecinos provenientes de cenizas, donde se observa una importante presencia de cantos y piedras de cuarcita con diámetro pequeño y medio, que cohesionan su tramo inferior aumentando la compacidad.

La cuarta unidad estratigráfica completa la fase antrópica de esta zona del yacimiento. Es un paquete compacto con espesor aproximado de 1,40 m, constituido por un conglomerado cohesionado de arcillas de color marrón oscuro con finas vetas de cal, y abundantes mampuestos cuarcíticos de tamaño medio.

La última unidad equivale al terreno natural y representa la cota final de la actuación. Compuesta por un suelo geológico de calizas y arcilla pardo rojiza, se localiza a una profundidad variable debido a su marcada concavidad, con base a 3,90 m. El perfil estratigráfico de la excavación arqueológica puede observarse en la figura 5.55.

![Figura 78. Detalle perfil estratigráfico zona de exploración B-I.](image)
Tras excavar estas capas estratigráficas, se han alcanzado las estructuras arqueológicas (figura 80). Se han documentado cuatro muros de mampostería, parcialmente excavados, que continúan dentro del perfil oeste de excavación, un pavimento de pequeños cantos cuarcíticos asociado al cuarto muro, y una estructura negativa colmatada por mampostería al este de estas edificaciones. Además, se ha excavado el paño meridional de la muralla, y una camisa o paramento rectangular para su refuerzo constructivo en su lado sur, con continuidad en la escarpa de un foso defensivo adicional (figuras 80 y 81). La única zona en la que se ha desarrollado la excavación en profundidad se sitúa en el entorno de la muralla, alcanzando la cimentación del antemuro de refuerzo, y la base rocosa del foso. En el resto de la cuadrícula no se han agotado las secuencias estratigráficas antrópicas, y por tanto, no se ha llegado hasta el sustrato geológico natural.

Los cuatro muros de mampostería exhumados pueden pertenecer a dos edificaciones independientes pero con relación lateral entre sí. Su arquitectura es idéntica en cuanto a materiales, aparejo y fábrica. Tres de los cuatro muros se encuentran parcialmente encastrados en el perfil oeste, por lo que exceden los límites de las áreas sondeadas (figuras 80 y 81). Los muros I, II y III, pertenecen a la primera construcción, de forma rectangular, el muro IV, a la segunda. Sus orientaciones son O-E, en el caso de los muros I y III, y NO-SE, para los muros II y IV. Ambas construcciones se separan por una distancia de 0,79 m.

Con el fin de obtener una visión de conjunto de los elementos constructivos detectados y su correlación con los datos proporcionados por la investigación geofísica, se expondrán de sur a norte según su orden de aparición, mediante una descripción pormenorizada de sus principales características físicas con la siguiente tabla:
En la zona occidental de la excavación, adosado al muro III, en su lado este, y muro IV, en su lado oeste, se ha documentado sobre la tercera unidad estratigráfica descrita, un suelo empedrado con unas dimensiones de 5,47 x 4,85 x 2,07 m que podría corresponderse con un pavimento de uso doméstico. Presenta una elevada proporción de piedras cuarcíticas de pequeño tamaño distribuidas mediante un aparejo irregular. Parece apoyar sobre una solera constructiva formada por tierra compactada arcillosa de color rojizo y composición homogénea (figuras 80 y 81).

Por otra parte, se ha detectado una zanja colmatada por una importante concentración de piedras que atraviesa la zona de trabajo linealmente en dirección O-E, con inicio junto al lado sur del muro I, y fin en el perfil este de excavación. Representa un relleno masivo de mampostería cuarcita y caliza sin mortero constructivo intersticial. Sus dimensiones aproximadas son 8,25 x 2,65 m. Se ha procedido al decapado de las primeras hiladas hasta alcanzar una profundidad de 0,40 m, nivel en el que se observa una continuación de la misma unidad estratigráfica hacia el terreno subyacente, con lo que se desconoce su cota final. Esta unidad discurre en paralelo al foso defensivo, situándose a 4 metros al sur. El foso asociado a la muralla, sin embargo, en superficie evidenció escasos materiales pétreos de relleno procedentes de derrumbes, alternando estratigráficamente matrices arcillo-arenosas, cenizas y mampuestos. Con una longitud mínima de 3,15 m de ancho, se ha documentado para este foso el inicio de la posible contraescarpa, que no presenta ninguna construcción añadida, caracterizada por el corte en el propio terreno natural. Y la escarpa, que actúa como base para la cimentación del grueso parapeto anterior a la muralla, de 2,60 m, fábrica de mampostería caliza y cuarcítica de tamaño irregular trabada con mortero arcilloso, con función de contrafuerte para las cargas constructivas laterales del sistema defensivo principal (figuras 80 y 81).
Adicionalmente, se ha excavado el área de la muralla que ha permitido documentar la hilada superior de su coronamiento, mostrando en superficie un grosor parcial de esta estructura hasta el perfil norte de al menos 1,10 m. Mantiene la dirección observada en las zonas excavadas al este, así como los mismos componentes constructivos calizos y cuarcíticos trabados con un mortero arcilloso (figuras 80 y 81).

En la figura 81 se observa la disposición combinada de los métodos geofísicos empleados en la investigación a partir de la superposición de los perfiles de georadar y tomografía eléctrica sobre una fotografía aérea con la planta de la excavación arqueológica.

Las anomalías geofísicas detectadas mediante la prospección en el sector ubicado en el extremo este de las cuadrículas de trabajo, han podido constatarse a partir de la excavación arqueológica desarrollada en esta zona. Los estratos superficiales del terreno que sellan los niveles arqueológicos, caracterizados por materiales procedentes de cotas
superiores del cerro, compuestos por unidades de sedimentos que albergan una elevada cantidad de raíces y materia orgánica, con notable presencia de arcillas semicompactadas y cantos cuarcíticos de pequeñas dimensiones, cubren la totalidad del área investigada desde la superficie hasta 0,75 m de profundidad. En los radargramas ocupan la totalidad de las imágenes desde su cota inicial real hasta un intervalo comprendido entre 0,70 y 0,80 m de profundidad, coincidiendo, por tanto, con los datos de excavación. Bajo estos estratos superficiales se observa en los radargramas un segundo cambio de unidad reflectora horizontal a 0,90 m, que representa el inicio del tercer estrato, definido anteriormente como una matriz compacta de materiales constructivos formada por un relleno arcilloso y ceniciento mezclado numerosos mampuestos de cuarcita. Desde esta profundidad la calidad de la onda irradiada pierde nitidez, con un paulatino desvanecimiento de la señal que se disipa a partir de 1,25 m. Por consiguiente, el nivel superior de la tercera unidad estratigráfica equivale a la zona final de estudio de GPR en profundidad, puesto que la atenuación de la señal de la onda en estos materiales impide la exploración total hasta la profundidad máxima, localizada a partir de la excavación arqueológica en 3,90 m (figura 78 y 82).

Las estructuras antrópicas representadas por cortes estratigráficos negativos en las unidades de relleno, y sobre el manto rocoso, se encuentran escasamente definidas tanto lateralmente como en profundidad (figura 83). En el caso de la zanja colmatada masivamente por mampostería que atraviesa la zona de investigación en dirección O-E, su representación en los radargramas se observa a partir de anomalías con diversas morfologías, posiblemente relacionadas con la entidad, dimensiones, o posición subsuperficial del bloque de piedra, o conjunto de mampuestos, que conformen el elemento reflector principal. Se caracterizan por pequeñas hipérbolas, o hipérbolas parciales, con contornos poco definidos, sin reflexiones asociadas en profundidad. La cota superior de este relleno de mampostería cuarcítica y caliza, que se ha medido en la excavación a 0,50 m de profundidad, en los radargramas se observa a 0,85 m, lo que implica una diferencia real de cotas de 0,35 m en vertical. Por su parte, la escarpa y contraescarpa del foso defensivo anterior al parapeto de refuerzo de la muralla, así como su base geológica, que indica la cota más profunda del estudio, no aparecen representadas en los radargramas debido a la imposibilidad de adquisición de datos para una profundidad superior a 1,25 m por parte de la antena de 250 MHz.

En cuanto a la cota superior del pavimento de mampostería, cabe señalar que se identifica según excavación arqueológica a 0,60 m de profundidad, se dispone bajo la unidad estratigráfica dos, apoya sobre los muros III y IV, y representa la última unidad constructiva documentada en la zona central del lado oeste de la excavación. Los perfiles de georradar que han medido parcialmente su superficie se corresponden con P4 y P8 (B-I-4-A y B-I-8-B). Los registros obtenidos revelan un medio continuo entre ambos muros, con un patrón de reflexión idéntico al analizado para la segunda unidad estratigráfica, es decir, un reflector subhorizontal continuado que representa un material constructivo con una composición homogénea, en el que no existen elementos arquitectónicos aislados con dimensiones superiores a los pequeños mampuestos empleados para su nivelación, o posibles derrumbes asociados. La similitud visual en los radargramas respecto a la señal que caracteriza a la segunda unidad estratigráfica,
puede deberse al leve espesor del suelo, factor que complica adicionalmente la medición exacta de su coronamiento en los registros. Esta particularidad física caracterizada por la escasa potencia del pavimento ha dificultado su detección por parte de una antena con las especificaciones de la empleada en la presente investigación. En este caso, la inexistencia de anomalías de tipo I o tipo III durante más de 4,5 m lineales, ha dificultado su interpretación como una posible estructura constructiva horizontal, considerándose en el apartado interpretativo como un área carente de construcciones (figuras 81 y 84).

Figura 84. Correspondencia entre las unidades constructivas excavadas respecto a los registros obtenidos mediante georradar. Arriba, sección perfil B-I-4-A, entre los metros 8 a 18. Abajo, perfil B-I-8-B. Azul: pavimento. Cian: muro III. Magenta: muro IV. En color verde y rojo, detalle de los perfiles GPR posicionados sobre la excavación. Nótese en el perfil inferior la ausencia de señal reflectora procedente del muro IV.

Los coronamientos de los muros se observan en los radargramas a alturas distintas según el perfil adquirido, con señal de onda poco nítida y escaso detalle; en el perfil P2, el muro I se representa a 0,45 m. En P3 la cota superior del muro I se detecta a 0,70 m, el muro III a 0,70 m, y a 0,65 m el muro IV. En el perfil P4, el muro I se representa a
0,35 m, por 0,40 m del muro III, y 0,40 m para el muro IV. En el caso del perfil P7 la hilada inicial conservada del muro II se observa a 0,85 m, y a 0,75 m en el muro III. El perfil P8, que midió trasversalmente el muro IV en dirección O-E, por el contrario, no detectó la estructura en su posición real, a 1,5 m del inicio del perfil (ver figura 84). Estos datos se asemejan, por lo general, con los coronamientos reales de estas estructuras localizadas en la excavación, ubicadas entre 0,35 y 0,50 m, en el caso de los muros I, II y III, y de 0,60 a 0,75 m de profundidad, para el muro IV. Además, el emplazamiento de las distintas estructuras tiene una variación lateral de menos de 0,25 m según el muro analizado (figuras 81, 84 y 85). La base real de las estructuras no ha sido certificada mediante excavación arqueológica, pero las escasas reflexiones obtenidas pueden indicar que estos muros se encuentran en un estado avanzado de arruinamiento, conservando probablemente un alzado constructivo mínimo. Así pues, en este caso, en el que el suelo encajante de naturaleza arcillosa tiene un grado medio de compacidad, con presencia de mampostería cuarcítica de tamaño pequeña y media, y es rico en materia orgánica vegetal, se observa que los datos geofísicos aportados por la antena de 250 MHz se aproximan a los posicionamientos reales laterales de las estructuras habitacionales localizadas en la excavación, con un leve aumento en profundidad de la ubicación de la cota real subvertical en los archivos de radar.
Como se ha expuesto en páginas precedentes, el sistema defensivo edificado en esta zona del yacimiento se ha conservado a escasa distancia de la zona investigada, hacia el este, la muralla de cajas y un contrafuerte exterior para su paramento sur. La excavación arqueológica ha permitido liberar la continuación de la base de la camisa de la muralla hasta la cimentación, que sostiene todo el conjunto constructivo desde el borde geológico de la escarpa del foso. Así como un tramo de las hiladas superiores de la pared sur de la muralla en la totalidad del eje menor del área excavada (figuras 80 y 81).

La fase de exploración permitió el registro de varias anomalías de tipo I correspondientes a todo el complejo arquitectónico militar del sector noreste de trabajo. La excavación arqueológica ha confirmado este punto. La ubicación de las anomalías relacionadas con la muralla en los radargramas P1, P2, P3 y P4, coinciden con la ubicación precisada por los datos de la excavación arqueológica con un desvío lateral inferior a 0,20 m (figuras 80 y 86). No obstante, su cota superior real se encuentra a 0,15 m, y en los radargramas se representa a 0,40 m. Es decir, se han registrado a 0,25 m por debajo de su cota real. Además, la reflexión de la onda ha generando una secuencia anómala hasta 1,40 m de
profundidad, cuando su cota máxima real en profundidad es superior a 2,50 m, lo que indica una limitación en la penetración de la onda del GPR, posiblemente por la conductividad del terreno, que implica una pérdida en la intensidad del pulso afectando a la calidad de la señal en profundidad. Por su parte, el refuerzo de la muralla se ha registrado en los perfiles P1 y P2 con una desviación lateral de 0,40 m hacia el norte, en dirección a la muralla. La construcción tiene una altura ascendente, así pues, junto al foso su cota se sitúa a 0,70 m de profundidad, por 0,40 m en su unión con la muralla. Este dato concuerda con lo aportado por el estudio de georadar en el segundo caso, en el que coincide con exactitud. Para la zona inicial del elemento constructivo, en el radargrama se mantienen los 0,40 m de cota, con lo que se ocasiona una discrepancia en la medición de alturas que provoca una diferencia negativa de aproximadamente 0,30 m, con respecto a los 0,70 m reales aportados por la excavación (figura 86).

Sobre el terreno excavado, esta estructura de refuerzo se observa con una potencia constructiva considerable debido a sus 2,60 m de grosor, sin embargo, en los radargramas se percibe escasamente el detalle de su contorno. Se aprecia una hipérbola inicial a la que se adosa una pequeña figura hiperbólica en su lado sur. En otras zonas del yacimiento el encamisado de la muralla se ha construido en varias fases, a modo de
sucesivos refuerzos de los forros de mampostería con materiales irregulares poco cohesiónados, a modo de superposición sobre los anteriores. La señal doble observada en los radargramas podría apuntar a dos posibles fases en la construcción del contrafuerte. Por el tamaño de ambos eventos se puede inferir que el recrecido lateral de la camisa no tiene un espesor constante, y además, puede definir la zona de contacto interior de los distintos recrecidos arquitectónicos (figura 86).

Por lo tanto, la posición espacial y geometría de los elementos arqueológicos, especialmente del coronamiento de los muros y muralla, coincide con un mínimo margen lateral y vertical de error respecto a la ubicación definida por el GPR, con una diferencia de 0,20 a 0,40 m según el elemento constructivo estudiado (figuras 84, 85, 86 y 87).

Esta precisión en la variación posicional subhorizontal también se observa en los perfiles 2D de tomografía, y el los bloques 3D generados a partir de la interpolación de los archivos anteriores, que han representado el subsuelo del yacimiento con elevada exactitud. Se considera que los modelos elaborados muestran correctamente los distintos elementos arquitectónicos murarios, así como las zonas ocupadas por los
materiales constructivos de relleno que colmatan las diversas zanjas documentadas con origen antrópico. A este respecto, las unidades estratigráficas conformadas por acopios potentes de bloques y mampuestos de cuarcita y caliza, como el evidenciado en la zanja colmatada, definido entre los metros 5 a 10 de las secciones tomográficas, y los derivados de la disgregación de tapiales, y morteros arcillosos con trazas de cal, como el detectado en la totalidad del foso defensivo, ubicado entre los metros 12 a 16,5 de los perfiles CC1 y CC2, se representan con nitidez en los perfiles de tomografía, generando imágenes de elementos resistivos con un volumen, contornos y geometría hemilenticular afines a las unidades arqueológicas exhumadas (figura 88).

Así mismo, en los supuestos caracterizados por unidades estratigráficas constructivas, las imágenes modeladas permiten identificar adecuadamente las interrelaciones entre las construcciones y los estratos naturales o antrópicos que las cubren, o sobre los que apoyan, aportando información precisa sobre los diversos valores de resistividad de las distintas capas, y zonas de contacto entre matrices, tanto en vertical como horizontal, con una desviación inferior a 0,30 m. Además, su posición real se corresponde con el metro indicado en cada sección eléctrica. Quedan definidas entre los metros 16,5 a 19, y 20 de la sección CC1, y a 7,5, 16,5 a 19, y 20 m de la sección CC2, datos que indican una desviación total hacia el sur de 0,20 m con respecto a las estructuras arquitectónicas reales, para el contrafuerte y el paño sur de la muralla, y 0,35 m, también en dirección sur, en el caso del muro (figura 89). Sin embargo, estos datos contrastan con las formas geométricas definidas para el muro I, encamisado, y muralla, con superficies y remates regulares y rasos, en contraposición a las geometrías representadas en los registros, de sección romboidal, con bordes, esquinas y coronamientos apuntados, aunque cercanas al grosor lateral de las construcciones originales, con un margen de error inferior a 0,30 m.

![Imagen de la excavación arqueológica]

En cuanto a la ubicación en profundidad de las anomalías en las secciones, la cota del coronamiento de las estructuras, y de los derrumbes, difiere con los datos aportados en la excavación en menos de 0,20 m, lo que indica una correcta caracterización de las
mismas frente a sus homólogos excavados. Sobre la situación de la base de las anomalías en los registros, se debe indicar que se ha excava en su totalidad hasta la base del corte en el terreno rocoso generado por el foso defensivo, y hasta la cimentación de la camisa de la muralla, por lo que son los únicos elementos constatables en cuanto a cota final (figura 90).

Figura 90. Perfiles de tomografía CC1 y CC2. Se han señalado en rojo sobre los perfiles las cotas reales inferior (CIR) y superior (CSR) de las estructuras arqueológicas exhumadas. En negro se señala las cotas inferior (CIP) y superior (CSP) de las anomalías en los perfiles. Las anomalías estructurales (B, D y E), y las estructuras negativas (A y C) aparecen inscritas en el interior de recuadros de color azul.

En este aspecto hay que señalar que los datos eléctricos poseen un alto grado de equivalencia con los datos aportados en la excavación, es decir, en los resultados tomográficos la base rocosa del foso se sitúa ligeramente a mayor profundidad que la arqueológica, a 4,10 m, en contraposición con los 3,90 m de profundidad real, y por otra parte, con una medición de 1,30 m en el caso de la cota final del antemuro, que se aproxima a la real, con 1,60 m (figura 66). Este ejemplo es además significativo puesto que la imagen de la anomalía asociada al contrafuerte en CC1 y CC2, describe un buzamiento ascendente en dirección norte hasta adosar a la muralla, idéntico al visualizado sobre el terreno tras la excavación (figura 91).
La excavación arqueológica realizada en el área exterior del perímetro amurallado del oppidum ibérico ha permitido certificar la fiabilidad de los métodos geofísicos empleados en la localización de nuevos elementos arqueológicos en el límite oeste de la zona musealizada del yacimiento. Se observa que la tipología en la fábrica de las estructuras verticales exhumadas, respecto a las estructuras restauradas, continúa caracterizada por un aparejo irregular de mampostería con trabazón de morteros arcillosos con presencia de cal, y orientación principal oeste-este. Los muros de la edificación rectangular y de la muralla, junto a su contrafuerte, se construyen con mampostería cuarcítica y caliza, materiales que por sus parámetros físicos favorecen un alto contraste electromagnético con la matriz encajante. Este factor debe favorecer el registro de cualquier conjunto arquitectónico de entidad que se encuentre soterrado. En el caso del Cerro de las Cabezas, los niveles subsuperficiales que albergan las construcciones se componen principalmente por arcilla, material altamente conductor que ha influido considerablemente en la exploración mediante la generación de registros con anomalías hiperbólicas con baja definición, debido a la atenuación de la onda en profundidad. Por este motivo se ha producido una disminución en la penetración del impulso hasta alcanzar una cota máxima de 1,25 m. Por lo tanto, la naturaleza geológica del terreno ha originado la disipación de la energía de la onda emitida, disminuyendo...
notablemente la calidad de los registros proporcionados por la antena de 250 MHz, que ha manifestado una alta sensibilidad ante el carácter arcilloso del suelo.

La envergadura de las estructuras motivo de la presente investigación ha facilitado su identificación, especialmente en el caso de las defensivas, con grosores comprendidos entre 1 y 2.5 m, pero siempre con registros de mala calidad visual. Adicionalmente, tras el análisis de los radargramas se sugiere que la caracterización de zanjas y muros en un avanzado estado de degradación, y escaso alzado conservado, es compleja, en particular en los estratos donde existen conjuntos de mampuestos pertenecientes a rellenos constructivos dispersos y sin trabazón artificial. Aun con las carencias expuestas, se considera que el georradar proporciona unos resultados fiables para los estratos arqueológicos superficiales que, complementados con los perfiles obtenidos a partir de los trabajos de tomografía eléctrica, permiten una caracterización adecuada de la subsuperficie del yacimiento, eventualidad que manifiesta la importancia del uso combinado de varias técnicas complementarias de exploración geofísica en toda investigación arqueológica para la correcta generación de modelos del subsuelo.

En este sentido, la efectividad del método eléctrico para conseguir modelos válidos del suelo arqueológico se considera positiva principalmente por la adecuada separación entre matrices de relleno, unidades de derrumbe, y unidades murarias, debido a la correcta diferenciación de los bordes de las anomalías de alta resistividad, y los contornos de los elementos menos resistivos, sin apenas zonas de transición que difuminen sus geomertrías. Todas estas razones permiten determinar la zona de contacto entre estratos y alineaciones constructivas. Asimismo, la correspondencia en la ubicación espacial y el tamaño de las anomalías en comparación con el posicionamiento subvertical y espesor real de las estructuras, tiene un elevado grado de equivalencia, inferior a 0,25 m en la mayoría de los casos estudiados, además se produce una leve sobredimensión en profundidad de la cota final de las estructuras de 0,20 m.

5.6.2. ZONA B-II

La excavación desarrollada en esta zona se planteó para localizar la posible continuación de la muralla proveniente del lado este del poblado, delimitar nuevas estructuras arquitectónicas relacionadas con la construcción defensiva, así como
constatar su dirección de avance en un área de ladera donde comienza un desnivel topográfico pronunciado. Con objeto de aprovechar longitudinalmente una zona del terreno con una pendiente suave y accesible, se ejecutó en el lado suroccidental del yacimiento, a 20 m al oeste de la zona de exploración B-I, un sondeo o trinchera manual con unas dimensiones de 25 m de longitud para su eje mayor (con dirección S-N), por 1 m de anchura en su eje menor (con dirección O-E). La excavación se ha limitado al decapado superficial de la cubierta vegetal hasta acceder a las cotas superiores de los elementos constructivos, así pues, la estratigrafía de la zona no agota la secuencia arqueológica. Por consiguiente, la serie estratigráfica registrada a partir de la excavación es simple; la única unidad rebajada se corresponde con el nivel de suelo superficial, constituido por un nivel de tierra vegetal, con idénticos atributos que en la zona B-I, y con espesor comprendido entre 0,20 a 0,30 m.

Figura 92. Zona B-II durante el proceso de excavación. Detalle perfil estratigráfico. (Fotografía cedida equipo científico del Cerro de las Cabezas).

Se han documentado tres muros de mampostería, que continúan hacia el interior de los perfiles este y oeste de excavación, un afloramiento calizo de grandes dimensiones y una zona con abundante presencia de cal (figuras 93 y 94). Puesto que cuando se alcanzaron los coronamientos de las estructuras finalizó la excavación en profundidad, no se han alcanzado las cimentaciones de los muros, ni la base de sustrato rocoso, con lo que la información aportada por la trinchera para estos elementos constructivos fueron su ubicación, cota inicial, materiales, grosor y fábrica.
Los tres muros de mampostería desenterrados pueden pertenecer a edificaciones diferentes, si bien los muros II y III se encuentran separados por menos de 2 m de distancia. Por su parte, los muros I y III se separan por 7,68 m. En los tres casos la dirección es coincidente, siempre con trazado O-E. Del mismo modo que los materiales empleados para su construcción son idénticos, bloques irregulares de mampostería de cuarcita y caliza local de diverso tamaño trabada con mortero arcilloso, el tercero destaca por su imponente tamaño respecto a los dos primeros, pudiendo corresponder con la muralla o a una estructura perpendicular al muro II. Así, el muro III mide 2,03 m, con finalización en la zona con abundante cal, por 0,80 m del muro I, y 0,90 m del muro II. Los alzados parciales documentados han conservado una altura de 0,15 m para el muro I, y 0,10 m en los muros II y III. El crestón de roca se ha localizado desde la cota cero del suelo hasta a una profundidad de 0,30, con una longitud de 5,24 m. La figura 94 representa la ubicación integrada de los métodos geofísicos utilizados en la investigación sobre los inmuebles reales documentados en la excavación.

5. Yacimiento del Cerro de Las Cabezas

Las anomalías geofísicas detectadas mediante la prospección en el transect correspondiente a los perfiles P3, P4, P5, P6, P7, P8 y P9 de georradar y el perfil CC4 de tomografía, han podido identificarse mediante la excavación arqueológica desarrollada en esta zona. La tierra vegetal que cubre la totalidad del área de trabajo desde la superficie a 0,25 m de profundidad, se representa en los radargramas como una superposición de la onda directa de reflexión con la superficie del suelo, ocupando la totalidad de las imágenes desde su cota inicial real a 0,30 m de profundidad, lo que coincide con los datos de excavación. Bajo este nivel inicial se localizan en los registros, a distintas profundidades, las señales reflejadas por las superficies de los diversos elementos reflectores arquitectónicos localizados. Como puede observarse en los radargramas, desde esta primera unidad estratigráfica somera hasta el coronamiento de los muros existe una zona intermedia sobredimensionada con un grosor superior a 0,35 m que no se corresponde con la cota inicial de las estructuras antrópicas y de los afloramientos geológicos. En otras palabras, los coronamientos de los muros se caracterizan en los registros electromagnéticos proporcionados por la antena de 250 MHz a profundidades levemente superiores a las documentadas en excavación; en el perfil P3, el muro I se representa a 0,65 m, por 0,40 m del muro II, y 0,55 del muro III. Estos datos se diferencian en lo referido a la cota inicial real de estas estructuras localizadas en la trinchera, en 0,25 m para el muro I, y 0,30 m para los muros II y III. En el caso del perfil P8 se aprecia el posicionamiento de la anomalía que representa el muro III a 0,55 m, dato que coincide con el indicado para el perfil P3. Para la roca caliza ubicada al sur de la cuadrícula investigada, tanto en el perfil P3, de la dirección de medida A, como en el perfil P4, de la dirección de medida B, la anomalía equivalente se distingue a 0,55 m, cuando su cota real varía entre 0,10 y 0,30 m de la superficie (figura 95).

![Figura 95. Correspondencia entre las cotas superiores de las unidades estratigráficas excavadas respecto a los registros obtenidos mediante georradar. Segmento del perfil B-II-3´-A (P3´) entre los metros 10 a 35. Magenta: cota real estructuras en excavación. Amarillo: nivel de suelo rocoso. Rojo: muro I. Verde: muro II. Azul: muro III.](attachment:figura95.png)

Por su parte, la ubicación lateral de este estrato geológico en los radargramas P3 y P4 coincide con la posición precisada por los datos de la excavación arqueológica con un
desvío lateral inferior a 0,25 m. Del mismo modo, se observa que las reflexiones del muro III en los perfiles P3 y P8 coinciden con la estructura real, no así los muros I y II, con una desviación lateral en la imagen de 0,40 m en dirección sur (figura 96).

Es pertinente destacar que el material calcáreo situado entre los metros 21,5 a 23,5 no ha generado ninguna sección reflectora reconocible, y por tanto, no se ha registrado en ninguno de los dos perfiles medidos en dirección A (P3 y P3’), trazados transversalmente al estrato.

![Figura 96. Relación espacial entre las unidades constructivas exhumadas con las anomalías electromagnéticas. Arriba, segmento del perfil P3 (B-II-3-A) entre los metros 0 a 5. Debajo, ortofoto planta excavación. Amarillo: nivel de suelo rocoso. Rojo: muro I. Verde: muro II. Azul: muro III. Línea verde: proyección georreferenciada del perfil de GPR P3. Nótese la desviación lateral de las anomalías roja y verde hacia el sur en relación con las correspondientes estructuras arqueológicas detectadas.](image)

Con referencia a la sección 2D de tomografía CC4 se debe señalar que ha permitido evidenciar la existencia del nivel geológico calizo somero, los muros I a III, y una anomalía profunda poco resistiva que puede tener correspondencia directa con un área arenosa con inicio estratigráfico a 0,30 m de profundidad que se encaja entre los muros I y II, tal y como se ha comprobado en la excavación. En la figura 96 puede observarse una superficie comprendida entre los muros I y II con una distancia longitudinal de 8,10 m, con dirección S-N. Su superficie se caracteriza por un material arenoso de color marrón de textura plástica y compactación media, con baja presencia de mampostería en las zonas cercanas a los muros, como posibles derrumbes constructivos asociados, y escasos materiales de este tipo en su zona central. Esta descripción, obtenida a partir de los datos de campo, se aproxima a los datos recogidos en el perfil de tomografía CC4, en el que se define una anomalía entre los metros 9 a 17 que destaca en su conjunto general por la baja resistividad de sus materiales profundos, con unos materiales someros cercanos fundamentalmente a los laterales de las estructuras murarias, que en
5. Yacimiento del Cerro de Las Cabezas
cambio, aumentan su resistividad hasta 370 Ω.m debido a la existencia del material construido disgregado definido anteriormente, y con una superficie total en el registro de aproximadamente 8 m, lo que se corresponde con lo manifestado en la excavación arqueológica. En la figura 97 se pone de manifiesto esta similitud y correspondencia tanto espacial como en la naturaleza de los materiales entre ambos elementos, que permiten inferir que esta anomalía cóncava se corresponde con la zona ocupada por la unidad estratigráfica arenosa, documentada entre los metros 9 a 17 de la excavación.

El perfil tomográfico CC5, perteneciente a la zona de estudio B-III, durante la fase de exploración se dispuso en oblicuo al perfil CC4, produciéndose una correspondencia entre el electrodo 10 del perfil CC5, y el electrodo 25 de CC4. Este punto de contacto se localiza en la zona final del sondeo arqueológico, en el metro 24. Los dos perfiles en ese tramo exacto del terreno localizan una misma anomalía superficial de alta resistividad (superior a 1000 Ω.m) modelada en las imágenes en color naranja (ver figuras 33, 70 y 73). Esta anomalía no ha podido confirmarse en la excavación puesto que en la zona final de la trinchera no se ha rebajado la primera unidad estratigráfica más allá de 0,20 m desde la cota cero, con lo que la anomalía resistiva, o más bien, la posible estructura
que representa, ha permanecido oculta a menos de 0,10 m de la superficie, impidiéndose de este modo su caracterización arqueológica y su análisis exhaustivo.

El acopio de cal no se localiza en el perfil tomográfico, y queda absorbido por el contorno de la anomalía perteneciente al muro III. Sin embargo, las estructuras antrópicas del sector B-II enterradas bajo el nivel arcilloso de cubierta vegetal se representan con buena calidad en el perfil CC4, con una leve disminución lateral en las dimensiones de su tamaño de 0,30 m para el muro I, y un aumento del grosor de entre 0,20 y 0,50 m, para los muros II y III, respectivamente. Esta variación en la ampliación del tamaño de las anomalías murarias ha provocado que el lado norte del muro II, y la pared sur del muro III se modelen casi solapados, separados por una distancia corta de 0,15 m, cuando la distancia real entre ambos es de 1,56 m. Las cotas en profundidad de las anomalías se aproximan a los datos reales, observándose variaciones mínimas de 0,10 m. La distribución de las anomalías en el perfil se corresponde espacialmente con las distintas estructuras localizadas en la excavación con una diferencia lateral inferior a 0,25 m en todos los casos, a excepción del muro III que se emplaza desviado por 0,50 m hacia el norte de la sección, error de deriva con origen probable en la generación del modelo del subsuelo por parte del programa de inversión, puesto que de los datos de campo introducidos en el software para la corrección topográfica fueron debidamente medidos con estación total (figura 98).

Así pues, la precisión en la posición real de las estructuras se corresponde por lo general con el metro indicado en la sección eléctrica CC4 y en el perfil B-II-3-A de georradar para cada anomalía, por lo que los registros obtenidos representan adecuadamente los diferentes elementos constructivos, así como las zonas ocupadas por el nivel geológico rocoso superficial (figura 98).
CAPÍTULO 6. MONUMENTO HISTÓRICO-ARTÍSTICO NACIONAL DE LAS VIRTUDES

6.1. CONTEXTO GEOGRÁFICO E HISTÓRICO

El paraje de Las Virtudes se localiza en el término municipal de Santa Cruz de Mudela (Ciudad Real), a seis kilómetros de distancia al sureste de la localidad, pudiéndose acceder a él desde la A-4, principal eje de comunicación entre el centro y el sur de la Península. Esta cercanía a la Autovía del Sur, así como la presencia de la que probablemente sea la plaza de toros más antigua del mundo (1641), han convertido al paraje en destinatario de un incipiente turismo cultural.

El municipio de Santa Cruz de Mudela se sitúa en la zona sureste de la provincia de Ciudad Real. En su extremo sur se alzan las sierras del Acebuche y del Aljibie que dan paso a las primeras estribaciones de Sierra Morena. Históricamente este lugar ha servido como paso obligado para los viajeros que deseaban cruzar Sierra Morena, bien para acceder a las ricas tierras del mediodía peninsular, bien para conectar con la inmensa Meseta castellana. Es por ello que su localización geográfica condiciona y explica la forma en la que las sociedades humanas a lo largo del tiempo han ocupado lo que hoy es su término municipal. Baste como ejemplo reparar en los grandes oppida ibéricos del Cerro de las Cabezas al norte y de Cástulo al sur, tomando como paso obligado entre ambos el Collado de los Jardines con el famoso santuario de la Cueva de los Muñecos, donde se han localizado miles de pequeños exvotos ibéricos (Rueda et al., 2003). Los
romanos igualmente apreciaron su privilegiada posición, poblando sus tierras con *villae* y quizá también con la *mansio* de *Ad Turres* como señalan algunos autores (Coello, 1889; Saavedra, 1862; Fernández-Guerra, 1951).

Sin embargo, tras la conquista musulmana de la península Ibérica se abre un periodo de silencio donde la zona parece perder peso a favor de otras localidades o espacios geográficos como el Campo de Montiel o el valle de Alcudia.

La batalla de las Navas de Tolosa (1212) cambia sustancialmente esta situación y sirve como germen de la actual población de Santa Cruz de Mudela.

La villa fue fundada en terrenos de la Encomienda de Cañada de Mudela, en torno al llamado Pozo del Llano situado en lo que siglos más tarde sería el convento de los Padres Agonizantes, hoy desaparecido. La facilidad para localizar aguas subterráneas en esta zona y su excepcional ubicación para controlar los pasos de Sierra Morena, especialmente el puerto del Muladar, desempeñaron, sin duda, un papel crucial en la fundación de la villa justo en este lugar en 1212.

Según Pardo (1929), Santa Cruz se cita por primera vez, entre otros muchos pueblos, en 1482 como villa de la Orden de Calatrava, en los acuerdos de percepción de impuestos entre el Arzobispo de Toledo y el Maestre de Calatrava.

Durante la Edad Media esta nueva población estuvo sometida a la jurisdicción de los comendadores de la Orden de Calatrava hasta los años inmediatamente posteriores a la conquista de Granada por los Reyes Católicos. En 1537 el rey Carlos I obtiene dos bulas de los Papas Clemente VII y Paulo III por las que se concede la enajenación de varios pueblos y jurisdicciones de los Reales Maestrazgos y de la Orden de Calatrava, pasando Santa Cruz de Mudela a ser tierras de realengo. En 1538 el Consejo de las Órdenes refrenda la incorporación a la Corona. Tal situación fue breve ya que en 1539 D. Álvaro de Bazán compra a la Corona las villas de Santa Cruz de Mudela y Viso del Puerto del Muradal (actual Viso del Marques) con sus términos y su jurisdicción por 26.208.626 maravedíes.

Del siglo XVI data uno de los monumentos más emblemáticos de la villa, la iglesia de Nuestra Señora de la Asunción, declarada BIC, para cuya construcción se trajeron piedras extraídas de Las Virtudes, especialmente para la torre, que fue levantada entre 1575 y 1580.
Los siglos venideros consolidarán a Santa Cruz de Mudela como una villa de paso atravesada por el camino real de Andalucía.

La principal fuente de información que han utilizado los historiadores desde el siglo XIX para trazar la historia de Las Virtudes se sustenta en las interesantísimas menciones que se realizan en las Relaciones Topográficas de Felipe II (1575). Las referencias aparecen tanto en las respuestas relativas a Santa Cruz de Mudela, como a la vecina Torrenueva. En el primero de los casos, se indica lo siguiente en relación con el paraje de Las Virtudes:

36. “Al treinta y seis capítulos decimos que una legua de esta dicha villa, en donde la dicha villa tiene una ermita de mucha devoción y frecuentación de gentes, que se llama Nuestra Señora de las Virtudes, hay muchos rastros de edificios antiquísimos porque en estos dichos edificios se han hallado sepulturas, donde han parecido huesos de difuntos, que el hueso de la canilla de la rodilla abaxo tenia casi una vara de medir en largo, de los cuales dichos edificios tuvieron para la iglesia mayor de esta villa ciertas piedras marmoles azules y blancos, y algunas de las dichas piedras especialmente una piedra marmol cuadrada se había estado en el dicha iglesia de esta dicha villa sin poner en el edificio hasta cinco años ha que se puso en una torre que agora se va haciendo de la dicha iglesia, la cual piedra tenía un letrero en cifra griego, e de lo que decía no hay noticia, porque no hobo en esta tierra quien declarase el epitafio del dicho letrero, y la dicha piedra esta puesta como dicho es en una esquina de dicha torre; el dicho epitafio a la parte de adentro, de manera que de presente no se puede leer. Y en la dicha población antigua de Nuestra Señora de las Virtudes, hemos oido decir a nuestros pasados que se hallaron dos sepulturas hechas de piedra marmol, a manera de una pila larga grande, en las cuales se hallaron los dichos huesos que arriba en el capitulo esta dicho, y en la mayor piedra de los dichos sepulcros se hallo que tenía una lauda y cobertura de piedra marmol, la cual tenía un epitafio que dicen que decía: aquí yace nuño vazquez de los godos, las cuales dichas piedras estan puestas en el edificio de la dicha ermita de Nuestra Señora de las Virtudes en la que se pusieron quince o diez y seis años poco mas o menos; y se dice por cosa cierta que las dichas piedras de los dichos sepulcros se truxeron a lo menos la una de ellas a esta dicha villa para servirse de ella por pila de dar agua a los ganados, y que todos los ganados que en ella
bebieron, dicen que se cayeron muertos, por lo cual se dio orden que se tornase la dicha piedra de sepulturas a la dicha ermita de Nuestra Señora de las Virtudes” (Campos, 2009).

51. “Al cincuenta y un capítulo decimos (…) que la dicha villa tiene una ermita que se llama Nuestra Señora de las Virtudes como arriba queda dicho que es de mucha devoción y tiene su cofradía muy principal, donde ocurre a la dicha ermita mucha diversidad de gente de toda la comarca y hemos oído decir que una imagen de Nuestra Señora pequeña, morena de rostro que de presente está en ella, fue hallada y sacada de debajo de tierra, dentro unos edificios antiguos, en el sitio donde ahora está la dicha ermita y por esta razón se edifico allí y hay tanta devoción a la dicha ermita de las gentes y que vemos y se ve claro sanar muchas personas de muchas y graves enfermedades que se encomiendan de Nuestra Señora de las Virtudes y van a visitar a su Santa casa” (Campos, 2009).

Por su parte entre las respuestas de Torrenueva puede leerse:

“vase desde esta villa (refiriéndose a Torrenueva) en procesión el postrero día de Pascua florida de cada año a la ermita de Nuestra Señora de las Virtudes que es una legua de esta dicha villa, que la dicha ermita está en termino de Santa Cruz de Mudela, tierra de Don Alvaro de Bazan; de esto no hay memoria por que se votó porque siempre lo han visto hacer y oyeron decir a sus pasados sin haber visto ni oído otra cosa en contrario” (Campos, 2009).

Las respuestas son extremadamente precisas en sus descripciones aportando una valiosa información para comprender cuál era el estado de la zona antes de que se construyera la plaza de toros, la alameda y, más recientemente, las numerosas casas que han ido colonizando todo el paraje a lo largo del siglo XX, distorsionando de esta forma el entorno primigenio.

Destaca la mención a la existencia de estructuras “antiquísimas” que, por un lado, fueron desmontadas para abastecer de piedra la construcción de la iglesia parroquial y, por otro, sirvieron de base para la edificación de la ermita, justo en el lugar donde apareció enterrada una imagen de la virgen. Todas estas referencias han servido a algunos autores para ubicar en este lugar la ciudad romana de Ad Turres mencionada como mansio en la vía 29 del Itinerario de Antonino (Per Lusitaniam ab Emerita
Caesarea Augusta), apareciendo como quinta mansión entre Carcuvium, de la que la separan XXVI m.p. y Mariana distante XXIII m.p. (Carrasco, 1987; Carrasco, 2012). Sin embargo, la aparente inexistencia de vestigios arqueológicos en superficie ha propiciado que más recientemente autores como Pierre Sillières (1990) ubiquen Ad Turres en el cerro de la Virgen de la Cabezuela en el término municipal de Torrenueva. Se han identificado otras piezas distribuidas por el entorno de Las Virtudes. La más destacable de todas es un pulvino localizado en el interior de la ermita, reutilizado como base para sostener una pila bautismal. Los pulvinos son coronamientos de tumbas monumentales romanas en forma de altar.

La Carta Arqueológica del término municipal, recoge, por su parte, la existencia de restos romanos en este paraje: unas canteras de mármol y un pilón que podría ser una tumba reutilizada. Pese a ello, nadie hasta la fecha ha sacado a la luz piezas escultóricas o arquitectónicas que pudieran confirmar la existencia de una ciudad romana.

En este sentido, aunque la presencia humana en esta zona está probada desde tiempos prehistóricos, la realización de trabajos arqueológicos o puramente históricos ha sido claramente insuficiente en las últimas décadas, lo que dificulta conocer el potencial real del lugar. Desde un punto de vista histórico, el único trabajo digno de resenarse es el llevado a cabo en 1929 por el párroco D. Antonio Pardo Ahuetas que, a pesar de los años transcurridos, sigue constituyendo la obra de referencia para el estudio de la historia local. Desde un punto de vista puramente arqueológico, únicamente podemos citar los trabajos efectuados por la empresa ANTHROPOS, S.L. durante el 2001 en las cercanías de la Noria Olaya. Se ha tratado de la realización de una excavación arqueológica que ha servido para sacar a la luz un interesante qanat y un pequeño asentamiento de la Edad del Bronce (Benítez De Lugo y Menchen, 2010).

Por su parte, el conjunto de la ermita-plaza de toros de Las Virtudes también ha sido objeto de diversas restauraciones desde que fuera declarada en 1981 Monumento Histórico-Artístico. Restauraciones que, sin embargo, no han venido acompañadas de excavaciones arqueológicas por lo que apenas si han aportado información relevante desde el punto de vista arqueológico.

Cabe destacar los trabajos que, recientemente, se han efectuado en el entorno de Las Virtudes por un equipo del grupo de investigación “Materialidad, Arqueología y Patrimonio” de la Universidad de Castilla-La Mancha liderado por Víctor Manuel
López-Menchero Bendicho. En estos estudios se ha realizado una exhaustiva documentación histórica y arquitectónica que ha permitido la localización de piezas reutilizadas con origen romano y visigodo (López-Menchero, 2015).

Todo ello ha provocado que, trascurridos ya 150 años desde que Saavedra propusiera como posible localización de la *mansio* de *Ad Turres* el paraje conocido como Las Virtudes, se hayan producido avances significativos en la investigación del lugar.

6.2. DEFINICIÓN DE LAS ÁREAS DE ESTUDIO

Una vez reconocida la zona, la siguiente fase consistió en la selección de las zonas para la intervención arqueológica.

Como hemos expuesto en páginas precedentes, el paraje de Las Virtudes presenta signos de haber albergado algún tipo de poblamiento romano-visigodo de cierta entidad. Sin embargo, hasta la fecha, han sido identificados escasos restos arqueológicos *in situ*, lo que impide saber con exactitud qué superficie abarca el yacimiento. Así mismo, la ermita y la plaza de toros han sufrido desde su construcción numerosas reformas que no han quedado recogidas documentalmente y por lo tanto nos son desconocidas. Tal desconocimiento dificulta la protección de dichos restos así como su posible aprovechamiento social.

Con objeto de paliar esta falta de conocimiento, se seleccionaron diferentes puntos del entorno de la ermita-plaza de toros para la realización de los trabajos de investigación geofísica y arqueológica, pudiendo ver su disposición en la figura 100.
Zona A. Esta zona de exploración geofísica se localiza bajo la galería porticada del lado sur de la ermita, a la altura del punto de enlace entre la nave principal y el crucero. Este sitio es crucial para resolver dos cuestiones importantes. En primer lugar, permitirá conocer si, tal y como dice la tradición, la ermita se construyó sobre restos de una edificación anterior, entendemos que romana o visigoda. Y, en segundo término, permitirá verificar si la ermita medieval contaba con tres naves, como parece deducirse del examen de sus muros.
Zona B. Esta zona de exploración geofísica se localiza sobre la arena de la plaza de toros ubicada al sur de la ermita. Esta zona, que se encuentra explanada, podría estar sobre un área en la que se habrían cubierto estructuras arqueológicas. Además se encuentra cercana a puntos donde diversas fuentes orales afirman haber visto huesos, aparentemente humanos, localizados durante pequeñas remociones de tierra motivadas por trabajos de mantenimiento.

![Figura 102. Vista del lugar elegido para localizar la zona de exploración geofísica B.](image1)

Zona C. Esta zona de exploración geofísica tiene como principal objetivo documentar el estado de conservación subsuperficial del pulvino localizado en el interior de la ermita, así como localizar posibles estructuras funerarias o arquitectónicas eventualmente ubicadas en la nave principal de la misma.

![Figura 103. Detalle del lugar elegido para ejecutar la exploración geofísica C.](image2)
Zona D. Esta zona de exploración geofísica se ubica en torno al altar de la ermita. Su fin es determinar la posible existencia de una cripta debajo del mismo.

Figura 104. Detalle del lugar elegido para situar la zona de exploración geofísica D.

Zona E. Esta zona de exploración geofísica se emplaza en el exterior de la ermita, en concreto entre dos muros exteriores de la sacristía-camarín que forman la esquina norte del edificio, y en un pasillo interior adyacente a éstos. Aquí se pretende documentar la presencia de una posible cámara de aire que permanecería oculta por un tapiado posterior de este sector de la ermita.

Figura 105. Vista del lugar elegido para realizar la exploración geofísica E.

Zona F. Esta zona de exploración geofísica se sitúa en el exterior de la plaza de toros, en su muro sur, donde actualmente existen dos puertas tapiadas. El objetivo es averiguar
si existen cámaras de aire tras ellas o si, por el contrario, esa zona fue rellenada con material de desecho en el proceso de remodelación de la plaza durante el siglo XIX.

Figura 106. Vista del lugar elegido para situar la zona de exploración geofísica F.

Zona G. Esta zona de exploración geofísica se localiza sobre unos jardines de propiedad municipal ubicados al sur del complejo de la ermita-plaza de toros. Esta zona parece haber recibido importantes aportes sedimentarios a lo largo del tiempo que podrían haber cubierto estructuras arqueológicas.

Figura 107. Detalle del lugar elegido para realizar la exploración geofísica G.
6.3. GEORRADAR

La investigación con georradar se desarrolló sobre todas las zonas de estudio definidas inicialmente. A la vista de los resultados obtenidos con el GPR, se seleccionaron las localizaciones en las que posteriormente se realizaron la tomografía eléctrica y el nanoTEM.

![Figura 108. Vista general de las zonas en las que se realizaron las investigaciones sistemáticas con GPR. (A) Zona de exploración A. (B) Zona de exploración B. (F) Zona de exploración F. (G) Zona de exploración G.](image)

En la zona de exploración geofísica A-galería porticada, el estudio consistió en la ejecución de cinco perfiles. Se situaron tres bajo los soportales: el primero de 50 m, cuyo origen es el muro noreste de la galería, y su final, el muro suroeste que cierra el conjunto, y los dos segundos de 30 m, con origen en el mismo punto del muro noreste de la galería y final en la puerta de la ermita. Otros dos perfiles de 40 m se ubicaron entre la galería porticada y la zona del callejón de la plaza de toros. Todos están separados entre sí 0,5 m, medidos según la orientación NE-SO (dirección A). La longitud total de estos perfiles es de 190 m y abarcan una superficie de 170 m2.

La numeración de cada perfil consta de la letra de la zona de exploración geofísica a la que pertenezca, número de perfil en esa zona y dirección de medida. Así el perfil A-1-A significa que es el perfil número 1, medido en la dirección A (NE-SO), de la galería porticada (zona de exploración A). Esta numeración se hace extensiva a cada una de las zonas de investigación indicadas.
La configuración de la antena del GPR se realizó mediante el software Spiview en los modos *Dry Rock* en los perfiles P1, P3, P4 y P5, y en *Paviment* para el P4, lo que supone una velocidad de 100 ns que se traduce en un nivel de profundización en la exploración de 5 m.

En la zona de exploración geofísica B-plaza de toros, debido a su gran amplitud, se realizaron inicialmente una serie de perfiles no sistemáticos separados entre sí 4 m para determinar las características adecuadas de la prospección con el GPR, así como la longitud y distancia óptimas entre los perfiles de la misma. Sobre la base de esta primera fase, se ejecutaron un total de 36 perfiles en una cuadrícula rectangular adaptada a la morfología de la arena de la plaza. Estos se separaron entre sí 2 m, medidos según las orientaciones NE-SO (dirección A) y NO-SE (dirección B), a fin de obtener una caracterización doble de la zona. La longitud total de estos perfiles es de 1166 m y con una cobertura superficial de 1080 m².

La configuración de la antena del GPR se realizó mediante el software Spiview, en el modo *Wet Soil*, en la totalidad de los perfiles, lo cual estima una velocidad de 50 ns que se traduce en un nivel de profundización en la exploración de 3 m.

![Figura 109. Situación de los perfiles de georradar realizados en la zona A-galería porticada (verde) y zona B-plaza de toros (rojo).](image)
Dentro de la ermita, se encuentran las zonas de exploración C-pulvino y D-zona del altar. En el área del *pulvino* se ejecutó una cuadrícula rectangular de 8 x 4 m, compuesta por un total de 14 perfiles, medidos según las orientaciones NE-SO (dirección A) y NO-SE (dirección B). La longitud total de estos perfiles es de 76 m y la superficie explorada de 32 m².

En torno al altar, los trabajos se dividieron en dos sectores debido a la configuración de diferentes alturas del lugar. Inicialmente se desarrolló la investigación en la zona del altar propiamente dicha, donde se ejecutó una malla rectangular de 7 x 2 m, compuesta por un total de siete perfiles, separados entre sí 1 m. Posteriormente en la zona más baja, es decir, entre la reja del presbiterio y las escaleras, se ejecutó una malla de 7 x 3 m, compuesta por un total de 12 perfiles, separados entre sí 1 m. Ambas áreas fueron medidas según las orientaciones NE-SO (dirección A) y NO-SE (dirección B). La longitud total de estos perfiles es de 65 m y la superficie sometida a control de 29 m².

Además la investigación se amplió fuera de estos dos sectores hacia la nave principal del santuario donde se ejecutaron dos perfiles paralelos longitudinales desde el altar hasta los pies de la ermita, entre los que se situó el *pulvino*, con el fin de documentar anomalías. También se realizaron dos perfiles trasversales entre sí de 3 m en el muro sur del inmueble, junto a un pequeño retablo existente cerca de la reja de acceso al presbiterio, en el lugar en el que fuentes orales nos indicaron que en la antigüedad existió un pozo de agua.

En la zona de exploración geofísica E-esquina norte de la ermita, se ejecutaron 20 perfiles GPR sobre los muros, en tres paredes distintas: dos exteriores, orientadas al norte y este, pertenecientes a la sacristía-camarín, y una interior, correspondiente a la galería subterránea que discurre con orientación O-E por debajo de la sacristía-camarín. La longitud total de estos perfiles es de 65,6 m abarcando una superficie mural de 21 m².

En la zona de exploración geofísica F-puertas tapiadas, se ejecutaron diez perfiles GPR sobre los muros situados entre los contrafuertes exteriores de la plaza así como sobre las puertas. La longitud total de estos perfiles es de 52 m con una superficie mural de 29 m².

En las zonas de exploración E y F, la configuración de la antena del GPR se realizó mediante el software SpiView en el modo *Concrete* en la totalidad de los perfiles. La velocidad estimada es de 50 ns que se traduce en un nivel de profundización en la exploración de 3 m.
En la zona de exploración geofísica G-jardines, en el punto en el que se levanta un humilladero para situar la imagen de la Virgen en las romerías, se ejecutó una cuadrícula rectangular de 12 x 8 m. El estudio consistió en la ejecución de siete perfiles, medidos según la orientación E-O (dirección A) y separados entre sí 1 m (los de dirección A), y cinco perfiles con una separación de 2 m, con orientación N-S (dirección B). Su fin consistía en obtener una caracterización doble de la zona. La longitud total de estos perfiles es de 124 m y la superficie explorada de 96 m².

La configuración de la antena del GPR se realizó mediante el software Spiview en el modo Wet Soil en la totalidad de los perfiles, lo cual estima una velocidad de 50 ns que se traduce en un nivel de profundización en la exploración de 3 m.
6. Monumento Histórico-Artístico Nacional de Las Virtudes

6.4. TOMOGRAFÍA ELÉCTRICA

La investigación geoelectrica en este yacimiento consistió en la ejecución de 11 perfiles medidos mediante la configuración dipolo-dipolo y mixed gradient. Tal y como se señala en la figura 114, estos perfiles se realizaron agrupados en cuatro zonas: plaza de toros, soportales, puerta tapiada este (en la fachada sur de la plaza de toros) y jardines. Su ubicación guarda relación con aquellas zonas en las que existía previsión de restos arqueológicos enterrados, o en las que existía una anomalía determinada por la investigación previa realizada por el georradar.

La situación de los perfiles quedó georreferenciada mediante la determinación de las coordenadas de sus extremos. Como en el caso anterior, el objetivo de la realización de estos perfiles de tomografía eléctrica es, además de cruzar dos métodos geofísicos en una misma zona, determinar el comportamiento de las estructuras del yacimiento con este método, determinando el tipo de anomalías que éstas generan.

En la zona de la plaza de toros y galería porticada, se ejecutaron un total de 4 perfiles paralelos entre sí, de dirección NE-SO. Tres constaban de 28 electrodos, y uno de 25, y los cuatro tenían un espaciado inter-electrodico de 1,5 m, estando separados entre sí 2 m. Conforman un rectángulo casi regular de 42 x 8 m (figura 112).
Sobre la fachada sur de la plaza de toros, donde se encuentra la puerta tapiada este, se realizó, a una altura de 1,10 m, un perfil con 14 electrodos, con un espaciado interelectródico de 0,5 m y una longitud de 7 m.

En la zona de los jardines, en el sector del humilladero, se ejecutaron un total de seis perfiles paralelos entre sí, con dirección E-O, de 14 electrodos cada uno, con espaciado interelectródico de 1 m y separados entre sí 1 m. Conforman un rectángulo regular de toma de medidas de 13 x 5 m (figura 113).
6. Monumento Histórico-Artístico Nacional de Las Virtudes

Figura 114. Vista general de las zonas en las que se realizaron las investigaciones sistemáticas con tomografía eléctrica (magenta) y nanoTEM (azul). (A) Zona de exploración A. (B) Zona de exploración B. (F) Zona de exploración F. (G) Zona de exploración G.

6.5. NANOTEM

La prospección electromagnética mediante nanoTEM en el conjunto patrimonial de Las Virtudes se realizó sobre una zona de la plaza de toros donde previamente se combinaron el GPR y la tomografía eléctrica. Se pretendía así comprobar el comportamiento de este sistema en un yacimiento arqueológico.

Para ello, se ejecutó un perfil con las configuraciones in-loop y fixed-loop, empleando un sistema de emisor-receptor (antena), con las espiras (cables) en forma cuadrangular, y con distintas dimensiones: 5 x 5 m – 1 x 1 m; 4 x 4 m – 1 x 1 m; 2 x 2 m – 1 x 1 m; y 2 x 2 m – 0,5 x 0,5 m. La disposición de las distintas configuraciones que se han utilizado puede observarse en la figura siguiente:
Figura 115. Disposición emisor-receptor con las configuraciones utilizadas in-loop y fixed-loop.

En la configuración in-loop, tanto el emisor como la antena permanecen estáticos durante el proceso de medición, dispuestos de forma concéntrica. En la fixed-loop, el emisor se queda fijo, y la antena se desplaza lateralmente, desde un borde del emisor hasta el borde opuesto a éste, pasando por el centro del mismo durante su recorrido.

6.6. RESULTADOS E INTERPRETACIÓN

6.6.1. GEORRADAR

6.6.1.1. ZONA A

El estudio del subsuelo en la zona de la galería porticada se ha planteado inicialmente para determinar la posición de elementos arqueológicos junto a la pared sur del santuario, en el sector del presbiterio que se adosa a la nave principal con una estructura
cronológicamente anterior, de 9 m de longitud, posiblemente del siglo XIV. Estos restos podrían pertenecer a una nave lateral situada al sur del edificio. Dicha estructura tuvo que ser demolida parcialmente para posibilitar la construcción de la nave actual, donde se conservan los arranques de dos arcos que carecen de funcionalidad.

Los datos recogidos con el georradar a lo largo de los cinco perfiles que se han realizado de forma paralela a la orientación de la ermita, en los soportales, permitieron documentar varios puntos donde existe un alto contraste en el subsuelo. Este contraste parece deberse a la posible presencia de varias estructuras subsuperficiales y de material constructivo colapsado perteneciente a las mismas y dispuesto en torno a ellas.

Cuatro de las anomalías de tipo I registradas se han observado en los radargramas de los cinco perfiles realizados, en tanto que una de ellas sólo aparece en los perfiles P4 y P5. La primera de ellas se localizó en el metro 1 de los perfiles P1, P2, P3, P4 y P5, es decir, existe una continuidad de la anomalía que se refleja en la totalidad de los perfiles. Se detectó con una señal muy débil pero de cierta importancia. La segunda, tercera y cuarta anomalía de carácter subvertical se han detectado en los metros 9, 14 y 18 de los perfiles P1 a P5. Se repitieron en cada perfil al igual que sucedió con la primera anomalía. La quinta anomalía de este tipo ha coincidido en el metro 27 de los perfiles P4 y P5. Es puntual e intensa y define con claridad una probable estructura. La altura de la coronación de los posibles muros se detectó a una profundidad de entre 0,30 m y 0,50 m.

Las anomalías de tipo III se han localizado en los perfiles P4 y P5, en unas zonas bien acotadas entre los posibles muros, entre los 2-8 m, 10-13 m, 15-17 m y 24-28 m. Aparecen expresadas como una alteración del patrón por ruptura en la secuencia de reflexión, por lo que se pueden corresponder, por su disposición espacial, con derrumbes de muros.

En la siguiente figura puede observarse, en rojo y sobre los perfiles P1 al P5, la disposición de los posibles muros paralelos entre sí y perpendiculares al actual muro sur de la ermita. En verde y delimitado por estos muros, puede verse la situación del material constructivo procedente de los mismos.
Figura 116. Situación de las diferentes anomalías detectadas en la zona de la galería porticada. Rojo: tipo I. Verde: tipo III.

En la figura 117 se muestra el detalle de los radargramas en los que se han detectado las anomalías subverticales. Se trata probablemente de cuatro grandes estructuras que atraviesan los soportales con una orientación NO-SE, con un inicio bajo el muro sur del templo y que presentan una anchura de entre 1 y 1,5 m. Las reflexiones más superficiales en cada perfil corresponden a los primeros estratos debajo del piso. Este es el relleno empedrado y apisonado sobre el que se construye el suelo actual de la galería porticada.

La disposición y orientación con las que han sido localizadas estas estructuras, hace suponer que podría tratarse, en consecuencia, de los restos de una antigua edificación que ha quedado por debajo de la edificación actual.

6.6.1.2. ZONA B

Las investigaciones que se han planteado en la plaza de toros estuvieron dirigidas principalmente a la detección bajo el albero de estructuras arqueológicas relacionadas
con los hipotéticos muros laterales de la ermita en su fachada sur que, como hemos visto más arriba, también se utilizaron como punto de partida en los estudios de la zona de exploración geofísica A. Conviene resaltar que esta zona se encuentra explanada y resulta por tanto muy apta para la operación con el GPR.

Además se ha abordado la cuestión de los huesos aparentemente humanos localizados durante pequeñas remociones de tierra motivadas por trabajos de mantenimiento, tal y como señalaron fuentes orales de la zona. Estos supuestos hallazgos podrían estar relacionados con una posible necrópolis de la que procedería dicho material óseo, y de la que, en la actualidad, no quedaría ningún resto. Es importante señalar que también nos informó sobre la aparición de algunos fustes de columnas y capiteles enterrados bajo la arena, que habrían sido exhumados puntualmente durante las obras y reformas que en la plaza se han acometido durante años. Este tipo de testimonios han sido de gran utilidad en la planificación del presente estudio geofísico.

Los datos obtenidos por la investigación que se ha efectuado con el georradar en esta zona pueden ser considerados satisfactorios, puesto que se han identificado un número elevado de anomalías en el subsuelo de gran parte de la superficie de la plaza de toros. Es una cuadrícula de gran valor por la cantidad de registros presentes y la continuidad de los mismos. En este sentido debemos señalar que el 100% de los perfiles ejecutados contienen anomalías, cuyas reflexiones se expresaron con claridad en los sucesivos radargramas analizados. En la figura 118 se detalla la disposición de las mismas sobre la cuadrícula de trabajo.
Las anomalías de tipo I se han identificado en dos zonas muy definidas. La primera, en la zona norte de la plaza, en torno a los perfiles ejecutados en la dirección A, cuya orientación es NE-SO. En concreto, entre los metros 10 y 14 del perfiles P1, a 21 y 27 m del perfil P2, y a 14 m del perfil P3. La segunda anomalía se ha localizado en los perfiles que cruzan a los anteriores en dirección B, con orientación NO-SE: a los 2 m del perfil P1, a 30 m del perfil P2, a 27 m del perfil P4, a 5 m de P5, a 27 m de P6, y en los metros 2 y 5 del perfil P7.

Estas anomalías se pueden interpretar como posibles unidades murales bien delimitadas, puesto que la disposición espacial en planta de las mismas indica una clara alineación en ciertos puntos, formando una disposición de varios recintos a modo pasillos, habitaciones, vanos de puertas que las interconectarían e, incluso, dos puertas de acceso desde el exterior. La coronación de los muros se detectó a una profundidad de entre 0,25 y 0,40 m.

Se aprecian dos posibles muros con orientación NO-SE, paralelos y separados entre sí unos 3 m aproximadamente, situados en los perfiles P1 y P2 de la dirección A de medida. Se corresponderían con la extensión hacia el sur de dos de las anomalías de tipo I documentadas en la zona de exploración A (galería porticada), en concreto de los posibles muros detectados en los metros 10 y 13, puesto que tanto su espesor, como su cota, coinciden. La figura 119 muestra los perfiles P1 y P2 y los correspondientes segmentos ampliados donde se han indicado estas zonas anómalas con rectángulos rojos.

![Figura 119. Zona plaza de toros. Perfiles B-1-A y B-2-A. Abajo los recuadros en rojo sobre cada sección de radargrama indican la posición de los posibles muros.](image)

En cuanto a los posibles muros orientados SO-NE, uno de ellos resulta especialmente relevante, puesto que tiene una longitud aproximada de 8 m y se dispone espacialmente entre los perfiles P4 y P7 de la dirección B de adquisición de datos. Este muro, junto con el detectado a la altura de los metros 14 y 27 de los perfiles P1 y P2 respectivamente, de la dirección A, concluiría en su zona SO en una puerta de acceso con orientación sur a una primera estancia rectangular de unos 8 m² de superficie.

En los posibles muros que se encuentran alineados entre los perfiles P1 y P7 de la dirección B, existen tres posibles puertas, ubicadas en P3, P5 y P6. Una de ellas, la situada en P3, se emplearía para acceder al edificio directamente por su cara sur.

La segunda zona donde se han detectado anomalías de tipo I se ubica en el extremo sur de la plaza de toros, bajo los perfiles ejecutados en la dirección A, cuya orientación es
NE-SO. En concreto a los 18 m del perfil P14, 18 m de P15 y 19 m de P17, y por lo que hace a los perfiles que los cruzan en dirección B, con orientación NO-SE, a los 3 m del perfil P2, 30 m de P3, 3 m de P4, 27 m de P5, 3 m de P6, 4 m de P8, y 29 m de P9.

Como en el caso descrito anteriormente, estas anomalías se pueden explicar como posibles muros ya que su disposición lineal así lo presume. La cota superior de los muros se detectó a una profundidad de entre 0,30 m – 0,50 m. Se trataría de dos posibles muros de grandes dimensiones que se encuentran unidos lateralmente entre sí, de forma transversal, en la confluencia entre el perfil P15 (dirección A) y P9 (dirección B). El primero de ellos, con orientación N-S, se extiende durante 7 m y podría tener una puerta en P15 (dirección A), que lo dividiría prácticamente por su sección intermedia.

El segundo está construido con orientación NE-SO, paralelo al actual graderío sur de la plaza y con una longitud de 14 m, lo cual lo convierte en la estructura más relevante en cuanto a tamaño de todas las que se han documentado en la investigación. Como sucede en el caso previo, podría tener una puerta en P7 (dirección B), que lo dividiría a tres cuartas partes de su inicio. La figura 120 muestra los perfiles P2, P3, P4, P5, P6, P7, P8 y P9 de la dirección B de medida. En ella puede observarse la correspondencia espacial entre las zonas anómalas de interés, indicadas con rectángulos rojos, con la representación georreferenciada de la situación del probable muro sobre una fotografía de la zona sur de la plaza de toros.
6. Monumento Histórico-Artístico Nacional de Las Virtudes

Figura 120. Zona plaza de toros. Perfiles B-2-B, B-3-B, B-4-B, B-5-B, B-6-B, B-7-B, B-8-B y B-9-B. A la izquierda, radargramas obtenidos al sur de la zona de exploración. Los recuadros en rojo sobre cada radargrama indican la posición de la anomalía analizada. En la fotografía inferior aparece, en color rojo, la interpretación georreferenciada de los posibles muros detectados a partir de los registros de georradar.

En este caso, la aparición de estos posibles muros separados a más de 20 m de los que se sitúan en la zona de los soportales y norte de la plaza de toros, así como la orientación N-S de uno de ellos y la distinta cota de altura a la que se han evidenciado los restos, permiten suponer la presencia de un segundo edificio independiente del que consideramos que existe en las zonas de exploración A y B (zona norte). Este edificio podría continuar hacia el este y sur del subsuelo de las gradas, con la posibilidad de prolongación por debajo de la plaza hasta los jardines.

Se han detectado dos anomalías del tipo II en el cuadrante noroeste de la plaza (ver figura 118). La interpretación de las mismas es compleja. Aparecen bien definidas lateralmente en los radargramas. La primera de ellas se localiza en el metro 13 del perfil P4 (dirección A), a una profundidad de 0,5 m, la segunda, en el metro 7 del perfil P6 (dirección A), a una profundidad de 2 m.
Por estos motivos, podemos considerar que podría tratarse de elementos arquitectónicos aislados, como restos de mampostería o posibles fustes de columnas como las que se descubrieron, conforme se nos indicó en las fases anteriores a la investigación de campo, en las obras de acondicionamiento previas de la plaza. Estas columnas podrían pertenecer a las galerías porticadas originales que fueron desmanteladas cuando se construyeron las gradas en el siglo XIX (López-Mencher, 2015).

Las anomalías de tipo III han sido las más numerosas en este sector (ver figura 118). Se localizaron en la práctica totalidad del subsuelo, en especial en la zona central y al sur de la plaza. Se caracterizan por una modificación considerable del esquema del radargrama por cambio en la secuencia de reflexión.

Aunque en los radargramas aparezcan definidas de manera idéntica, pensamos que la naturaleza de estas anomalías se corresponde con dos tipologías diferenciadas. Las del subtipo IIIA se corresponderían con zonas en las que se produjo algún tipo de movimiento del terreno geológico natural, que incluso pudo ser extraído y rellenado por aportes de materiales alóctonos, tanto de carácter geológico como antrópico (zanjas). Este subtipo sobresale por presentar anomalías con una importante continuidad subsuperficial, con un mínimo longitudinal de unos 4 m y un máximo de 16 m por cada perfil en cada uno de los perfiles en los que se detectaron.

Este tipo de anomalía se ha detectado en tres zonas (ver figura 118). La primera zona, al suroeste de la plaza de toros, abarca unos 35 m² y está comprendida entre los perfiles P11-P15 (dirección A) y los perfiles P11-P19 (dirección B). La segunda, la más extensa, se sitúa en la zona central, cuenta con desarrollo hacia el norte, alcanza unos 42 m² de superficie y está acotada entre los perfiles P2-P10 (dirección A) y los perfiles P7-P13 (dirección B). La tercera, al sureste de la plaza de toros, abarca unos 31 m² y se encuentra comprendida entre los perfiles P10-P15 (dirección A) y los perfiles P1-P6 (dirección B).

Por otro lado, la segunda tipología, subtipo IIIB, se correspondería con materiales procedentes de derrumbes de muros, con una composición física idéntica a la de los posibles muros a los que son adyacentes. Tienen unas dimensiones de entre 1 y 3 m, y, tal y como puede observarse en la figura 118, siempre aparecen cercanas a las anomalías del tipo I, identificadas como posibles muros.
Por lo tanto, la interpretación conjunta de los resultados que se han obtenido en las zonas de exploración A y B, parece indicar que en el subsuelo inmediato de esta zona se conservan restos arqueológicos de dos edificaciones distintas (ver en la figura 121). La primera, ubicada en el cuadrante noreste de la plaza de toros y soportales, estaría conformada por varias unidades funcionales de uso o vivienda y podría haber sido desmantelada parcialmente por las obras de edificación de la ermita en la Edad Media. El otro inmueble estaría situado en el cuadrante sureste del albero, a unos 20 m de distancia de la anterior, y se prolongaría bajo los graderíos sur y este de la plaza.

Figura 121. Posición georreferenciada de las posibles estructuras detectadas en las zonas de exploración A y B.

6.6.1.3. ZONA C

La investigación geofísica realizada en el sector ubicado junto a la entrada oeste del santuario, a los pies de la nave principal, estuvo especialmente dirigida a la comprobación del estado y dimensiones del *pulvino* en posición estratigráfica. Las hipótesis de partida eran tres. Que esta pieza cilíndrica se emplazara sobre una plataforma rectangular para conferir solidez a su cimentación. Que no se empleara ningún tipo de base para su colocación, sino que, previa excavación, se hubiera
instalado y enterrado parte de su cuerpo varias decenas de centímetros, con un posterior refuerzo lateral con material de relleno compactado. Por último, que el elemento arquitectónico funerario se asentara de forma somera sobre el actual suelo mediante una unión de cemento u otro tipo de mortero.

Esta zona de la ermita posee un suelo muy plano compuesto por baldosas cerámicas cuadrangulares de arcilla cocida, que se extienden por el resto de la nave principal hasta la reja de entrada al altar mayor. En este lugar las baldosas son de piedra pulimentada hasta el retablo situado tras el altar.

Tras plantear la cuadrícula de trabajo, el pulvino quedó inserto en un espacio delimitado por cuatro perfiles, P1, P2, P9 y P10. En los tres primeros, los resultados fueron negativos. Sin embargo en el inicio del perfil P10, junto la cara norte del pulvino (ver la figura 122), se ha obtenido una anomalía de baja resolución con una profundidad total de unos 0,40 m desde la superficie. Esta singularidad de tipo I detectada únicamente en uno de los puntos adyacentes a la pieza arqueológica de los cuatro perfiles ejecutados, hace inferir que esta anomalía manifestada en el subsuelo pudo tener su origen en un reflejo lateral del cuerpo cilíndrico del pulvino.

Por lo tanto, se ha considerado que si en el resto de perfiles no se han observado evidencias arquitectónicas o constructivas de ningún tipo sobre las que el pulvino pudiera estar asentado, a modo de base o cimentación, el mismo se encontraría alojado en una cavidad excavada en la tierra y rellena con un material con una composición geológica similar a la matriz sobre la que se asienta. La cavidad mediría aproximadamente 0,40 m y nos daría una idea de las dimensiones de la parte de este elemento funerario romano que se conservaría en el subsuelo.
No se han detectado indicios de enterramientos en esta zona. Las únicas anomalías que se han obtenido estuvieron originadas por un cambio en la compacidad de los estratos inmediatos del subsuelo en dos puntos concretos y a una profundidad de unos 0,30 m. Estas estarían probablemente producidas por algún trabajo de rehabilitación puntual sobre las zonas mencionadas. Como se puede observar en la figura 122, estas anomalías de tipo III se detectaron en torno al metro 5 del perfil P5, medido en dirección A, y al metro 3 del perfil P13, ejecutado en dirección B.

6.6.1.4. ZONA D

La zona de investigación D corresponde con el presbiterio y el altar. El objetivo específico de esta prospección era detectar la presencia de estructuras funerarias subterráneas, de envergadura y abovedadas.

Con el equipo de prospección no se ha localizado ningún elemento con estas características, tampoco se han observado reflexiones de entidad o de carácter lineal continuo. Las anomalías más relevantes detectadas (ver figura 123) están situada entre los metros 1 a 2, y 5 a 6 del perfil P1, y entre los metros 2 a 3, y 5 a 6 del perfil P2. Las anomalías son del tipo I, de alto contraste y situadas a unos 1,10 m de profundidad. Se interpretan como dos estructuras con orientación E-O. Situada junto al inicio de la escalera de acceso al altar, presenta unas dimensiones rectangulares de 1,90 x 0,90 m.
Figura 123. Situación de la anomalía tipo I detectada en la zona de exploración D. A la derecha, radaragramas obtenidos en el presbítero con la anomalía señaladas en rojo y azul. Perfiles D-1-A y D-2-A.

El tamaño de dichas anomalías y su situación en el presbítero han permitido interpretarla como posibles estructuras funerarias. Como se puede observar en la figura 124, están situadas a 1,5 m de la pared norte, y 2 m de la pared sur, respectivamente, lo que hace que no estén alineadas con el altar, con lo que son únicas en su tipología en el conjunto del interior de la ermita.

Figura 124. Detalle del emplazamiento de la posible estructura funeraria en la zona del presbítero.
6.6.1.5. ZONA E

La ampliación que la ermita sufrió en su lado noreste en el siglo XVII para albergar la sacristía-camarín supuso la modificación interior del edificio primitivo. La galería subterránea que se construyó en su lado norte de forma perimetral para solventar problemas de humedades, habría quedado en parte inserta dentro de los muros que se levantaron a raíz de dicha ampliación.

Sobre la base de esta disposición arquitectónica, se ha actuado con el georradar de manera vertical con una toma exhaustiva de datos en dos puntos. En primer lugar, sobre los muros que se encuentran en el exterior de la ermita en este sector, cuya fábrica está constituida por sillares tallados en las esquinas y por paramentos de mampostería separados por rafas de ladrillos. Se ha actuado, en segundo lugar, sobre el muro interior, levantado con mampostería trabada con mortero de cal. Este muro está situado en la pared norte de la galería construida para evitar las humedades. El fin de de esta exploración era documentar una posible cámara de aire que en origen perteneció a la galería subterránea y que permanecería oculta debido a su ubicación entre los dos muros exteriores y el muro interior (ver figuras 125 y 126).

Figuras 125 y 126. Fotografías con la disposición de los perfiles en la zona de exploración E. En rojo se indica la misma anomalía detectada en la zona interior y exterior del área de examen.

En el muro interior se ha observado una anomalía en los puntos de cruce de los perfiles P3 y P4 de la dirección A de medida, con los perfiles P5 y P6 de la dirección B (ver figura 125).

En el muro interior se ha observado una anomalía en los puntos de cruce de los perfiles P3 y P4 de la dirección A de medida, con los perfiles P5 y P6 de la dirección B (ver figura 125).
En el muro exterior norte se detectó la misma anomalía marcada en el muro interior, en los perfiles P6 y P7, sobre un respiradero que se encuentra junto al suelo de la calle (ver figura 126). Tras realizar mediciones con cintas métricas, se ha deducido que la anomalía del muro interior se corresponde con dicho conducto puesto que aparece en el metro 3.70, tomando como referencia de medición el umbral de la puerta de acceso a la galería. Estas medidas coinciden con las tomadas desde el exterior del edificio para este elemento.

En los perfiles P2, P3 y P4 del muro exterior oriental, se ha detectado una leve anomalía que está relacionada con el muro interior ya que está dispuesta perpendicularmente a éste. Más allá de esta zona y hasta la esquina, los radargramas son continuos. Lo mismo ha sucedido en la pared exterior norte, en la que los radargramas han sido nuevamente horizontales hasta la boca de rejilla del respiradero.

El hecho de que los radargramas sean continuos (ver figura 127), supone que el material que se encuentra en la zona de investigación, tras los muros, es homogéneo y constante. Esto puede indicar que entre el muro interior y los dos muros exteriores existe una posible habitación tapiada llena de aire cuyo eventual respiradero hacia el exterior sería la rejilla que se encuentra en la pared norte.

Figura 127. Radargrama del perfil de la zona exterior E-2-A. El recuadro rojo indica la posible cámara de aire. Las líneas azules señalan el límite de los muros que la contienen.

6.6.1.6. ZONA F

En la fachada sur de la plaza de toros existen dos vanos cegados, levantados con arcos escarzanos de lajas de piedra de cuarcita colocadas verticalmente y con jambas abocinadas, que pudieron formar parte de un conjunto de puertas de entrada a la plaza.
Estos ingresos pertenecerían a una primera fase arquitectónica de la misma y quedaron tapiados tras las remodelaciones que se hicieron a los largo del siglo XIX.

La presión de las cargas trasversales con origen en la incorporación de las gradas y sus posibles rellenos empleados para su edificación, obligó a la construcción de contrafuertes en los muros exteriores, junto a los vanos cegados.

Con la investigación desarrollada con el GPR en esta zona, se ha tratado de determinar si efectivamente la cimentación del tendido se llenó con material de desecho procedente del proceso de remodelación de la plaza durante el siglo XIX, o si en la zona de las puertas existe, entre éstas y las gradas, una cámara de aire asociada arquitectónicamente a los antiguos soportales desmantelados en este sector para el levantamiento del graderío.

La investigación en cada uno de los vanos consistió en la realización de 4 perfiles paralelos entre sí y paralelos a la superficie del terreno, y uno transversal, como se observa en las figuras 128 y 129.

Figuras 128 y 129. Fotografías con la disposición de los perfiles ejecutados en la zona de exploración F. Abajo radargrama del perfil F-3-A de la fachada sur plaza de toros - puerta cegada este.
Los radargramas obtenidos son continuos y en ellos no se aprecian anomalías (ver figura 129). Pueden darse dos interpretaciones a este hecho. La primera indicaría que el material que se encuentra tras las puertas y los muros de la plaza puede ser material de relleno con una composición homogénea y en el que no se utilizaron elementos arquitectónicos aislados como fustes de columnas desmontadas, piedras de entidad, sillares, etc. La segunda interpretación significaría que existe un medio aéreo o espacio sin colmatar a modo de cámara de aire.

6.6.1.7. ZONA G

La investigación de la zona ajardinada que se encuentra al este y sur del conjunto patrimonial de Las Virtudes, se proyectó para determinar la presencia de elementos arqueológicos en posición primaria, o aislados en posición secundaria, en el subsuelo inmediato a los estratos superiores. Dentro de la zona ajardinada se seleccionó la zona del “humilladero”, un área amplia y única en este sector, plana y sin vegetación superficial que pudiera interferir en la investigación.

Los datos recogidos con el georradar a lo largo de los doce perfiles que se han realizado en forma de cuadrícula rectangular, permitieron documentar varios puntos donde existen reflexiones subterráneas bien definidas lateralmente debido a la presencia de posibles estructuras subsuperficiales y/o de posible material constructivo con origen arquitectónico (ver figura 130).
Las anomalías de tipo I que presentan estas posibles estructuras se han observado en los radargramas de ocho de los perfiles realizados. Las siete primeras anomalías se han localizado alineadas en los perfiles P1, P2, P3, P4, P5, P6 y P7 de la dirección A de adquisición de datos. Todas se sitúan a una profundidad de 0,40 m. Puede corresponderse por su continuidad espacial no rectilínea como un posible muro con tendencia curva en su construcción, o como un posible suelo o pavimento, bien delimitado, que podría continuar en dirección norte y sur de la cuadrícula de trabajo.

La octava anomalía de este tipo se ha detectado a 5,5 m del perfil P2, junto al humilladero, con una profundidad de unos 0,35 m. Por su cercanía al humilladero y tras comprobar que en algunas zonas de la parte baja de la estructura se aprecia una base pétrea sobre la que se asienta el mismo, se piensa que son reflexiones provocadas por un reflejo lateral de esta plataforma colmatada, que podría continuar hasta los 0,30 – 0,40 m de profundidad (figura 131)

Por otra parte, se aprecian dos importantes alineaciones anómalas que pueden corresponderse con muros orientados N-S, paralelos y separados entre sí unos 7 m aproximadamente, situados en los metros 2,5 y 10,5 de los perfiles P1, P2, P3, P4, P5, P6 y P7 de la dirección A de medida. Se ubican a una profundidad de 0,40 m, con 0,80 m de grosor. En este sentido hay que señalar que durante la legislatura municipal de 2007 a 2011 se realizaron excavaciones para la instalación de acometidas eléctricas que discurren entre el cuadro eléctrico situado junto a la puerta principal de acceso a la plaza de toros (situado unos 90 m al norte del sondeo) y la alberca de la Alameda (localizada unos 35 m al suroeste del sondeo), para el abastecimiento eléctrico de la bomba impulsora que extrae agua de la alberca para riego de la Alameda, y del alumbrado público de los jardines, por lo que estas alineaciones anómalas también podrían corresponderse con las zanjas y sistema de cableado eléctrico instalado en esta zona.

Varias son las anomalías de tipo II. Sólo se han localizado en la dirección A de medida (O-E). Se distribuyen espacialmente sin un patrón definido, por lo que se infiere que son elementos arqueológicos o arquitectónicos en posición derivada, como los documentados en varios lugares del paraje de Las Virtudes. Se corresponden con las anomalías situadas en los perfiles P1, P4 y P7.

Las anomalías de tipo III han sido escasas en este sector, y se han caracterizado por una perturbación del valor normal de los estratos en esos puntos, lo que indica una remoción
del terreno, o una falta de uniformidad en las propiedades geológicas del suelo de esa zona debido a un aporte de material alóctono. Se han observado en los perfiles P3, P4, P5, P6 y P9 a una profundidad de entre 0,20 m a 0,70 m.

Esta es un área relevante a nivel arqueológico ya que las anomalías que se han detectado, en concreto de su lado oeste, indican la posible presencia de una estructura antrópica, con una importante continuidad lineal y proyección hacia el norte y sur de la zona de exploración, y dos posibles muros o zanjas para cableado eléctrico, paralelos entre sí, que avanzarían hacia el norte y sur de la zona del humilladero. También parecen revelarse un número importante de posibles elementos arquitectónicos provenientes de otros puntos de la zona, probablemente de las obras realizadas en la plaza de toros en el siglo XIX, que demolieron los soportales para la instalación de los tendidos.

6.6.2. TOMOGRAFÍA ELÉCTRICA

6.6.2.1. ZONAS A - B

La investigación mediante tomografía eléctrica en la galería porticada y plaza de toros ha consistido en la ejecución de 4 perfiles o secciones, denominados respectivamente L-A y L-B (plaza de toros) y L-C y L-D (galería porticada). Estos perfiles se midieron con las configuraciones dipolo-dipolo con separación interelectródica de 1,5 metros y separación entre perfiles de 2 metros (ver figura 112). A partir de estas medidas se han realizado las correspondientes secciones de resistividad 2D y modelos 3D por yuxtaposición e interpolación de los datos de las mismas.

Los perfiles de inversión de resistividad (secciones 2D) realizados se muestran en las figuras 132 a 135. Las secciones muestran una estructura general del subsuelo formada por un sustrato rocoso caracterizado por unos valores de resistividad superiores a 75 ohmios por metro, representado por los colores verdes, amarillos y rojos. La parte superior de este sustrato rocoso (techo) aparece, según los diferentes puntos, entre los 2,5 m y los 6 de profundidad decreciendo hacia el interior de la plaza de toros. El sustrato rocoso se presenta como una superficie de erosión en paleorrelieve que se extiende hasta la máxima profundidad de investigación, 9,5 m. Por encima del material
rocoso se distingue un material caracterizado por sus bajos valores de resistividad, que varían entre 35 y 50 $\Omega \cdot m$, y representado por colores azules. Debe corresponder con arcillas, limos y arenas depositadas sobre el sustrato rocoso de forma natural y/o antrópica, añadidos para conseguir la nivelación de la zona. El espesor de estos materiales varía entre los 2,5 y los 6 metros. Intercalados en estos materiales superficiales, se encuentran restos de posibles estructuras enterradas que destacan por sus relativos altos valores georresistivos comprendidos entre 100 y 210 ohmios por metro ($\Omega \cdot m$). Se representan por colores amarillo-verdosos, amarillos, naranjas y rojos.

![Figura 132. Perfil de tomografía eléctrica L-A.](image)

El perfil L-A (figura 132) muestra una zona anómala principal con unos valores de resistividad relativamente altos, entre 140 y 170 $\Omega \cdot m$, entre los metros 13,5 y 18 (electrodos 10 y 13), a una profundidad de entre 0,40 y 1,2 m. Dentro de este perfil se diferencian, igualmente, zonas o puntos de resistividad intermedia, entre 80 y 140 $\Omega \cdot m$, aislados. Están situados en la vertical del metro 10,5 y entre los metros 19,5 y 21, y 21 y 22,5. Aparecen a una profundidad variable entre 0,5 y 1,1 m. Tienen dimensiones cercanas al metro.

![Figura 133. Perfil de tomografía eléctrica L-B.](image)

En la sección L-B (figura 133) se observa una anomalía alargada en color amarillo de resistividad media (100 $\Omega \cdot m$) en el metro 1,5 que buza hacia el oeste. Se diferencia también una zona principal caracterizada por sus altos valores resistivos, entre 180 y 210 $\Omega \cdot m$. Está situada entre los metros 21 y 25,5. Presenta un espesor de hasta 1,5 metros. Al igual que en el perfil anterior, también se detectan puntos aislados de valores de resistividad moderadamente alta, de 80 a 120 $\Omega \cdot m$. Están situados en la vertical de los metros 10,5 a 12, 13,5, 15, 18, 27 a 28,5 y 31,5. Aparecen a una profundidad 190
variable entre 0,40 y 1,5 m. Tienen dimensiones variables entre 0,5 y 1,5 m y espesores inferiores al metro.

Por último, también se observan dos pequeñas zonas anómalas de resistividad intermedia (entre 100 y 120 Ω.m), colores verdes y verde-amarillentos, situadas a 0,40 m de profundidad en los metros 15 a 16,5 y 19,5. Son semejantes a las descritas en el perfil L-A, aunque de menor entidad.

Figura 134. Perfil de tomografía eléctrica L-C.

En la sección L-C, figura 134, se aprecia una anomalía bien definida al inicio, en el metro 1,5, con una resistividad de 110 Ω.m, y techo a 0,40 m de profundidad. El perfil muestra una zona anómala continua, que se extiende desde el metro 9 al 16,5. Presenta una resistividad intermedia, entre 80 y 180 Ω.m. La profundidad de aparición varía desde 0,30 a 1,5 m. Entre los metros 22,5 al 30 se observa un conjunto discontinuo de puntos anómalos, con valores de resistividad medios-altos, situados entre 0,4 y 1,2 metros de profundidad y con dimensiones máximas de 1-1,3 metros. Como en los perfiles anteriores, todas estas zonas anómalas están envueltas por materiales de resistividades menores comprendidas entre 60 a 90 Ω.m, posiblemente derrumbes de mampostería.

Figura 135. Perfil de tomografía eléctrica L-D.

En la zona inicial del perfil L-D (figura 135) se muestra una anomalía relevante con unos valores de resistividad elevada, superiores a 200 Ω.m, en el metro 1,5 (electrodo 1), con unas dimensiones aproximadas de 1 metro de ancho, techo a 0,40 m de la superficie, y base a 1,2 m de profundidad. La sección presenta una anomalía principal en cuanto a dimensiones y resistividad (de 110 a 200 Ω.m), entre los metros 13,5 y 15,
extendiéndose ya de forma aislada a los 16,5 y 18. Al igual que en las secciones anteriores, también aparecen puntos aislados de alta resistividad y dimensiones y profundidad semejantes, en el extremo oriental del perfil, entre los metros 24 al 33.

Para obtener una visión conjunta de las anomalías detectadas, se ha elaborado una secuencia de imágenes con los perfiles ordenados según su orden de medición, en los que se señalan las principales singularidades resistivas, tal y como se observa en la figura 136.

Del análisis de los cuatro perfiles se deduce que el subsuelo de la zona de la plaza de toros es homogéneo. Aparecen cuatro anomalías con continuidad en la práctica totalidad de los perfiles.

La anomalía A destaca en el extremo oeste de los perfiles L-B, L-C y L-D. Se caracteriza por situarse a una profundidad de 0,40 m y presenta un espesor de 0,90 m. Por sus dimensiones y alineamiento se puede interpretar como un posible muro perpendicular a las secciones tomográficas.

Las anomalías B, C, y D, se observan en la zona central de los perfiles. Se detectan elementos anómalos discontinuos, en forma de rosario, que pueden interpretarse como zonas de pavimento antiguo o bien como restos de mampostería dispersos en el relleno.

La aparición continuada a la misma profundidad de dos anomalías significativas con
casi un metro de grosor en los metros 13 y 21 al 22 de las secciones, parece indicar que se corresponden con los restos de una estructura de dirección perpendicular a la dirección de medida. En ambos casos no se aprecia con claridad su geometría. En la zona más cercana al metro 21 es más ancha y profunda, con bordes poco nítidos, alcanzando un espesor de 1,2 m aproximadamente.

Se han generado tres bloques diagrama 3D en los que pueden observarse las anomalías definidas. Dos de ellos se han realizado directamente a partir de la medición mediante el dispositivo *mixed-gradient* de los perfiles L-A y L-B y L-C y L-D (figuras 137 y 138). Un tercer bloque diagrama 3D se ha generado interpolando los valores interelectródicos de los cuatro perfiles (figuras 139).

Figura 137. Bloque diagrama 3D construido a partir de los Perfiles L-A y L-B. Destaca, en colores verdosos, una zona de anomalía superficial situada entre los metros 13-22. Obsérvese la falsa anomalía, colores amarillos y verde, en el extremo del bloque producida por la ausencia de datos.
Figura 138. Bloque diagrama 3D construido a partir de los Perfiles L-C y L-D en el que se aíslan (en color amarillo) y modelizan alguno de los elementos (restos) que han generado las anomalías de resistividad.

6.6.2.2. ZONA F

La metodología inicial de investigación se ha basado en la aplicación de la tomografía eléctrica en aquellos puntos en los que la investigación previa con georradar hubiera detectado anomalías de tipo I. Pese a que en la fachada sur de la plaza de toros (vanos tapiados) no se obtuvieron zonas anómalas con esas características, se realizó un perfil de tomografía eléctrica sobre la misma. El objeto era determinar el comportamiento de esta técnica sobre este tipo de materiales y, si fuera posible, determinar la presencia o ausencia de relleno entre el muro y los graderíos sobre la base de su resistividad eléctrica.

Con estos objetivos se ha ejecutado, a una altura sobre el suelo de 1,10 m, un perfil sobre la pared donde se encuentra la puerta tapiada situada hacia el este con 14 electrodos, con un espaciado inter-electródico de 0,5 m y una longitud de 7 m. Los datos se han medido mediante la configuración dipolo-dipolo.

Las mediciones han aportado altas resistencias de contacto, superiores a 250.000 Ω.m. El software ha procesado éstos registros como erróneos, siendo desechados en su totalidad. Estas resistencias de contacto son debidas a la imposibilidad de introducir correctamente los electrodos en el muro debido su naturaleza constructiva, debiéndose situar los electrodos en intersticios generados por la desaparición de la argamasa que traba los mampuestos de los muros y siempre de forma muy superficial. El resultado es que la mayoría de los electrodos presentaban una notable falta de contacto con el muro.

Se pretende, en futuras investigaciones, solucionar este problema inyectando un compuesto de relleno para las fisuras, como por ejemplo lodo bentonítico, que debe permitir el paso de la corriente eléctrica a la estructura sobre la que se investiga.

6.6.2.3. ZONA G

La investigación mediante tomografía en los jardines ha consistido en la ejecución de 6 perfiles o secciones. Los perfiles de inversión de resistividad realizados se muestran en la figuras 142 a 146.

Las secciones de tomografía se han configurado con una dirección E-O. Comportan 14 electrodos cada una, con una distancia interelectródica de 1 m y una longitud de 13 m.
(ver figura 113). Se midieron empleando dos tipos de dispositivos, dipolo-dipolo y mixed-gradient.

Se trata de una zona donde se registran bajas resistividades en los materiales. Los perfiles muestran una estructura general del subsuelo formada por un sustrato arcilloso-arenoso caracterizado por unos valores de resistividad variables entre 35 y 60 ohmios por metro, representado por los colores azules y verdes. Este material se debe corresponder con arcillas, limos y arenas, con abundante materia orgánica y grado de saturación alto, de origen natural y/o antrópico, añadidos para conseguir la nivelación de la zona. El espesor de estos materiales se extiende hasta la máxima profundidad de investigación, 3 m. Las zonas de mayor resistividad, anomalías, presentan valores de resistividad comprendidos entre 60 y 170 ohmios por metro. La naturaleza de los cuerpos que generan estas anomalías debe ser rocosa aunque de litología poco resistiva, como por ejemplo caliza o caliza marmórea alterada.

La interpretación de las investigación geoeléctrica realizada en esta zona es más perceptible a partir de los bloques 3D generados para cada tipo de dispositivo empleado. A partir de estos bloques 3D es posible generar secciones (slices) según las tres dimensiones del espacio lo que facilita la visualización de las zonas anómalas tanto en posición como su geometría.
Figura 140. Secciones obtenidas a partir del bloque 3D de los perfiles medidos con el dispositivo *mixed-gradient*.
Figura 141. Secciones obtenidas a partir del bloque 3D de los perfiles medidos con el dispositivo dipolo-dipolo.

En ambos bloques (figuras 140 y 141) se observan dos anomalías o zonas anómalas. La primera, y mayor en dimensiones, está situada en el borde noroeste de zona de investigación. La segunda, diametralmente opuesta a la anterior, en el borde sureste de la misma. Ambas presentan una geometría paralelepípédica muy marcada aunque probablemente esté condicionada por el programa de interpolación.

La posición y dimensiones de la primera cambian ligeramente en ambos bloques debido a los algoritmos de interpolación y medida utilizados por ambos métodos. Pueden
6. Monumento Histórico-Artístico Nacional de Las Virtudes

estimarse unas medidas de 2 x 1 x 1,5 m para la primera, y de 1 x 1 x 1 m para la segunda. Según estas figuras, las anomalías se encontrarían en superficie o muy cercanas a ella, aunque es probable que este dato se deba a un efecto aberrante del programa, debiendo encontrarse su coronación o techo a 0,5 m de la superficie.

Figura 142. Perfil de tomografía eléctrica L-1.

En la sección L-1 (figura 142) se observa una anomalía principal alargada en color rojo de 60 Ω.m de resistividad, en los metros 1 a 4 (electrodos 2 a 5), con base situada entre 0,60 y 0,70 metros de profundidad. Se diferencian también tres eventos anómalos caracterizados por valores resistivos comprendidos entre 50 y 60 Ω.m. Están situados en la vertical de los metros 6, 8 y 11. Se disponen a una profundidad similar, con techo muy somero. Tienen dimensiones variables entre 0,7 y 0,9 m y espesores inferiores 0,50 m.

Figura 143. Perfil de tomografía eléctrica L-2.

En el perfil L-2 (figura 143) se observan dos zonas anómalas principales, la primera, es una anomalía subvertical con geometría cuadrangular, comprendida entre los metros 3 y 4, con base profunda a 1,1 m, y con una resistividad superior a 60 Ω.m. Y una segunda entre los metros 9 y 10, de baja resistividad (60 Ω.m) con una estructura subhorizontal observable mediante un color rojizo, con coronamiento a 0,10 m.

Figura 144. Perfil de tomografía eléctrica L-3.
En la sección L-3, figura 144, se aprecia una anomalía superficial bien definida en la zona central del perfil, en los metros 5 a 7, con una resistividad de $60 \ \Omega\cdot m$, y base a 0,60 m de profundidad. Por otro lado, se distinguen al inicio y final del perfil, en el metro 2 y en los metros 9 a 10, y 11 a 12, tres anomalías de dimensiones contenidas y resistividad entre 50 y $60 \ \Omega\cdot m$, a idénticas cotas superficiales. Como en los perfiles anteriores, todas estas zonas anómalas están envueltas por materiales de resistividades menores comprendidas entre 35 y $45 \ \Omega\cdot m$, de nuevo el sustrato arcillo-arenoso.

El perfil L-4 (figura 145) es muy similar al analizado anteriormente. Las principales anomalías presentan unos valores resistivos bajos, de $60 \ \Omega\cdot m$, y se sitúan entre los metros 2 y 3, 5 y 7, y 11 a 12. Las dos primeras con una cota comprendida entre 0,10 y 0,40 m de profundidad, y la tercera con base a 0,9 m. Se observa una anomalía subvertical a 6 metros del inicio del perfil con posible origen geológico, caracterizada en color anaranjado, con $55 \ \Omega\cdot m$ de resistividad. Se distingue de las anteriores por la cota a la que se registra, a más de 1,5 m de profundidad.

La última de las secciones ejecutadas en la zona del humilladero se corresponde con L-6 (figura 146). Se aprecian dos zonas anómalas superficiales en color rojo con unos valores de resistividad entre 50 y $60 \ \Omega\cdot m$, entre los metros 1 y 3 (electrodos 10 a 13), y 5 a 6, a una profundidad de entre 0,40 y 1,3 m. Dentro de este perfil se diferencia, igualmente, una zona de resistividad de $60 \ \Omega\cdot m$, con una geometría subhorizontal y bordes verticalizados bien definidos. Se extiende durante más de 3 metros entre la vertical de los metros 4 y 7. Aparece a una profundidad variable de 0,7 en sus extremos, y 1,1 m en su zona central. Tiene un espesor superior a los 2 metros y se desarrolla...
hasta la máxima profundidad de exploración, 2,90 m. Puede corresponderse con un sustrato rocoso natural de litología poco resistiva.

Para obtener una visión conjunta de las anomalías detectadas, se ha elaborado una secuencia de imágenes con los perfiles ordenados según su orden de medición, en los que se señalan las principales singularidades resistivas, tal y como se observa en la figura 147.

Como puede observarse en los perfiles realizados, el subsuelo de la zona G-jardines es uniforme. Se registran cinco anomalías, dos con continuidad en la totalidad de los perfiles realizados (anomalías A y C), y tres (anomalías B, D y E) con correspondencia lineal en al menos tres secciones eléctricas. En general se caracterizan por los bajos valores resistivos de los materiales que las conforman y su posición espacial somera.

Las anomalías A y C sobresalen en las zonas oeste y central de los perfiles, con tamaños que en ocasiones llegan a los dos metros de longitud, representándose como elementos subhorizontales con una geometría alargada y una base bien definida, con muro a 0,50 – 0,60 m la anomalía A, y entre 0,35 y 0,45 m la anomalía C. A partir del trazado rectilíneo y
la continuidad espacial en dirección N-S de estas anomalías, cuyas dimensiones laterales fluctúan entre los 0,80 y 2 m según el perfil tomográfico, pueden interpretarse como dos posibles muros o estructuras antrópicas longitudinales, envueltos puntualmente por materiales constructivos procedentes de sus propios derrumbes, aumentando de esta manera en determinados sectores su grosor desde su tamaño original hasta los 2 metros.

Los registros anómalos B, D y E por sus dimensiones, alineamiento N-S, y geometría con bordes nítidos y verticalizados, se pueden interpretar como tres posibles muros u otro tipo de estructuras antrópicas lineales de entre 0,80 y 1 m de grosor, con coronamiento situado a escasa profundidad y fondo con base máxima a 0,40 m (anomalía D) y 0,90 m (anomalías B y E). Las anomalías B y D no se reflejan en el perfil de tomografía L-4.

Las anomalías obtenidas con las medidas de resistividad en esta zona coinciden en gran parte con las detectadas mediante GPR. Esta es un área relevante a nivel arqueológico en la que se han detectado posibles estructuras y una cantidad importante de posibles elementos arquitectónicos aislados.

6.6.3. NANOTEM

La zona del conjunto de Las Virtudes en la que se ha empleado el sistema nanoTEM se corresponde con la plaza de toros (ver la figura 114), lugar donde se han detectado anomalías con GPR y tomografía eléctrica. Esta zona de investigación se ha seleccionado principalmente por dos motivos: primero, porque las características físicas de la misma eran favorables para la experimentación con los diversos modos de operación del equipo, y segundo, porque, a partir de las distintas configuraciones realizadas en el equipo, permitía comparar los resultados obtenidos con los datos registrados por los otros dos métodos geofísicos aplicados.

El objetivo principal de la investigación con esta técnica es comprobar su aplicación a la prospección arqueológica, nunca realizada anteriormente. Se trata así de determinar su bondad o no, su grado de aplicabilidad, sus limitaciones y ventajas, y el dispositivo a emplear.

El área que se ha definido para la experimentación con el nanoTEM se situó sobre los puntos anómalos detectados con el georradar en el cruce de los perfiles P1, P2 y P3 de la dirección de medida A, con los perfiles P4, P5, P6 y P7 de la dirección de medida B, y entre los electrodos 5 – 10 y 9 – 14 de las líneas de tomografía L1 y L2 respectivamente.
La metodología de trabajo ha consistido en la ejecución de un perfil fixed-loop y diferentes sondeos electromagnéticos en dominio de tiempo (sedt) con dispositivo tradicional in-loop. El perfil fixed-loop se midió con una espira emisora fija de 5 x 5 m y una espira receptora (antena) de 2 x 2 m móvil con desplazamiento anterior, central y posterior al emisor. Los sondeos electromagnéticos en dominio de tiempo (sedt), se midieron en un punto fijo con diferentes configuraciones (dimensiones) de emisor y receptor.

El perfil de fixed-loop realizado presenta unos resultados ininteligibles. Se detecta la interferencia entre emisor y receptor especialmente en las medidas en las que ambas espiras coinciden o están muy próximas. Por ello desechamos el empleo de este dispositivo en futuras prospecciones arqueológicas.

Por el contrario los sondeos electromagnéticos en dominio de tiempo (sedt) con dispositivo tradicional in-loop con diferentes dimensiones sí han sido positivas. Se ha comprobado que las dimensiones óptimas para un sedt en un terreno como el existente en el yacimiento son de espira emisora de 2 x 2 m y antena receptora de 1 x 1 m. Las medidas obtenidas (figura 148) son muy limpias y sin apenas ruido de acoplamiento. La interpretación de la curva de decaimiento frente a tiempo medida se ajusta muy bien a la teórica. Los valores de interpretación de resistividad frente a profundidad se corresponden con la obtenida con las medidas de resistividad realizadas (tomografía eléctrica). Dados los resultados obtenidos y la relativa alta velocidad de adquisición de datos y de procesado de los mismos, se puede ser optimista de cara a la empleo de esta técnica en futuras prospecciones arqueológicas. Para ello se pretende construir un bastidor desmontable, en PVC, que albergue tanto el emisor como el receptor y que, una vez montado en campo, pueda desplazarse fácilmente por el mismo, tomándose medidas a intervalos fijos. Con estas medidas, podrán construirse perfiles o secciones, mapas de isovalores a diferentes profundidades y bloques 3D.
Figura 148. Sondeo electromagnético en dominio de tiempo (sedt) realizado con configuración emisor/antena de 2 x 2 m – 1 x 1 m. Nota: la profundidad está multiplicada por 10.

6.7. DISCUSIÓN Y CONTRASTE DE RESULTADOS

La investigación efectuada en el Monumento Histórico-Artístico Nacional de Las Virtudes tiene como objetivo delimitar las zonas con presencia de estructuras antrópicas, y comprobar la validez del uso combinado de métodos geofísicos eléctricos y electromagnéticos en el yacimiento, con el fin de desarrollar futuras intervenciones arqueológicas en las áreas de mayor interés. La exploración geofísica ha permitido determinar los sectores en los que se registran una cantidad importante de elementos anómalos. Con estos datos se pretende caracterizar la disposición espacial y naturaleza física de las anomalías documentadas en la prospección geofísica, sobre la base del uso combinado de georradar y tomografía eléctrica, y su contraste a partir de excavaciones arqueológicas sistemáticas. Para ello se expondrá de manera pormenorizada un análisis de cada una de las zonas en las que se ha excavado, cotejando los resultados con los obtenidos mediante la exploración geofísica, con el fin de determinar la idoneidad o carencias de los métodos y configuraciones empleadas en un yacimiento arqueológico con las particularidades arqueológicas y geológicas propias de Las Virtudes.

El método de trabajo ha consistido en una excavación de varios sondeos arqueológicos manuales (figura 149) en la zona norte de la plaza de toros, en el interior de la ermita, junto al pulvino, y en la zona oeste de los jardines-humilladero, mediante el levantamiento de estratos geoarqueológicos, desde el más reciente hasta el registro con
mayor antigüedad o un nivel estéril. En las zonas de exploración A-soportales y D-altar, no se han realizado excavaciones arqueológicas.

6.7.1. ZONA B

Con la excavación de las catas arqueológicas desarrolladas sobre la arena de la plaza de toros, se trataba de localizar nuevas estructuras arquitectónicas anexas al edificio religioso. El objetivo principal no era el de delimitar completamente el inmueble registrado mediante la investigación geofísica inicial, sino documentar la orientación espacial real del posible edificio, su conexión arquitectónica con el paramento sur de la ermita, y la caracterización de las unidades estratigráficas subsuperficiales del sector noreste del coso. Además, se pretendía documentar cómo la construcción y explanación de la plaza había afectado a esos “rastreros de edificios antiquísimos” que refieren las Relaciones Topográficas de 1575 (Campos, 2009), y a los niveles deposicionales.
constructivos asociados a éstos, producidos durante la Edad Media. Por otro lado, la excavación desarrollada se dirigió a localizar vestigios de una posible necrópolis, relacionada con los huesos aparecidos durante diversas obras de acondicionamiento y mantenimiento en esta zona del conjunto patrimonial.

La secuencia estratigráfica registrada a partir de la excavación es diversa. De techo a muro se observa un primer nivel de albero formado por arcilla arenosa fuertemente compactada, de grano muy fino, de coloración amarillenta y de composición muy homogénea con 0,05 m de grosor, que se corresponde con el actual nivel de uso del coso. Bajo éste, otra capa de nivelación de albero de 0,10 m que resulta virtualmente idéntico al anterior, si bien conserva una coloración amarillenta menos intensa. Ambos niveles de albero están separados por una discontinuidad muy evidente, que demuestra que han sido apisonados en momentos diferentes.

Bajo el estrato descrito se documentó otro relleno algo menos compacto de 0,10 m de espesor, con abundante proporción de gravas finas y algunos cantos rodados. Se trata de una capa de nivelación previa a la colocación del primer nivel de albero, y debió de ser generada durante los trabajos de restauración de 1984 o inmediatamente después.

La cuarta unidad estratigráfica está formada por tierra arcillosa muy compacta de color marrón rojizo oscuro, mezclada con algunos fragmentos de teja, cantos rodados cuarcíticos pequeños dispersos, algunos fragmentos de cerámica vidriada de cronología contemporánea, y diversos residuos industriales. Su grosor es de 0,05 m, con superficie uniforme y patinada por el uso.

La superficie de arrasamiento descrita apareció bajo el estrato anterior. Consiste en un relleno masivo de nivelación de 0,25 m formado por tierra arcillosa rojiza de grano fino y textura plástica y muy compacta, mezclada con una proporción muy alta de esquirlas muy pequeñas de esquisto local de estructura laminar que cuenta exclusivamente con algunos fragmentos dispersos de teja y de hueso humano. Su posición dentro de la secuencia cronológica del yacimiento permite interpretarlo como el relleno constructivo de nivelación aportado sobre el sustrato de ruinas precedente del coso taurino construido en este sector hacia finales del siglo XVII o principios del siglo XVIII.
Este estrato descrito apareció encima de la sexta unidad estratigráfica, con 0,30 m de grosor y similar composición, aunque notablemente más compacto y de tonalidad más oscura, cuya superficie parece patinada por el uso, y podría corresponderse con un nivel de ocupación asociado al edificio del que formaron parte los muros exhumados.

El séptimo estrato, de 0,30 m de grosor, es inmediatamente inferior al anterior. Presenta una textura muy compacta, una tonalidad nítidamente más oscura, e incluye cierta cantidad de cantos rodados cuarcíticos pequeños, diversos fragmentos de material constructivo y cerámica con cronología comprendida entre los siglos V y VIII.

El estrato antrópico más profundo tiene un espesor de 0,20 m. Se caracteriza por una tonalidad amarillenta muy característica que se debe probablemente a la presencia de cierta proporción de limonita en su composición. La presencia de cierta cantidad de esquirlas de esquisto, unida a la casi total ausencia de intrusiones orgánicas y culturales, y al hecho de que se localiza directamente sobre el sustrato geológico de la zona, permite interpretarlo como una fase de degradación de este último.

La superficie del sustrato geológico afloró en el sector central del sondeo 1 a 1,30 m de profundidad. Se trata de un sedimento arcilloso masivo de coloración parda, con nítido matiz grisáceo, y de textura plástica muy compacta. Carece de intrusiones orgánicas y antrópicas, y presenta en su composición una muy elevada proporción de microláminas de esquisto, procedentes sin duda de la erosión de elementos rocosos del entorno próximo. Se trata de un sustrato de origen sedimentario, aportado probablemente por el arroyo de Las Virtudes. Su superficie, sensiblemente uniforme y horizontal en el tramo sondeado, sirvió de asiento de cimentación para la construcción de los muros documentados. El perfil estratigráfico de la zona norte de la plaza, puede observarse en la figura 150.
Tras excavar estas capas estratigráficas, se han alcanzado las estructuras arqueológicas (figura 151). Se han documentado dos muros de mampostería parcialmente excavados, que continúan dentro de los perfiles norte y sur de excavación, y dos tumbas de fábrica, una de ellas con cubierta, adosadas al muro situado en el lado oeste del sondeo (figuras 151 y 152).

Estas unidades arquitectónicas funerarias se asientan sobre el sexto estrato antrópico descrito. Sin embargo, la cara oeste del muro documentado en la zona central del sondeo (muro este), apoya sobre el nivel natural, por lo tanto, en esta zona se han agotado las secuencias estratigráficas arqueológicas hasta llegar al sustrato geológico.
Figura 151. Ortofoto 3D de la zona de exploración B concluidos los trabajos de excavación arqueológica.

Sobre la superficie del sustrato geológico se construyeron, sin mediación de fosa de cimentación, los dos grandes muros de mampostería exhumados durante la excavación de los sondeos 1 y 2. Se trata de dos muros paralelos entre sí, y virtualmente idénticos en cuanto a materiales, aparejo, técnica constructiva y dimensiones.

Ambos están alineados en dirección norte-sur, y separados por una distancia constante de 2,58 m. Tienen entre 0,60 y 0,64 m de grosor (estas pequeñas variaciones son consecuencia de deformaciones posteriores a su destrucción), y su longitud excede los límites de las áreas sondeadas. En el caso del muro este, ha sido exhumado un tramo de 6 m de longitud (equivalente a la suma de la anchura del sondeo 1 más la longitud total del sondeo 2), en tanto que en el caso del muro oeste tan sólo se puso al descubierto un tramo de 2 m de longitud (coincidente con la anchura del sondeo 1). En el interior del
sondeo 1 pudo documentarse el alzado completo de la cara oeste del muro este, que ha conservado una altura de 1 m.

Ambos muros están construidos con mampostería careada de piedra local, a base de bloques prismáticos de esquisto de contorno irregular y tamaño mediano. Los bloques que conforman la estructura están trabados con tierra arcillosa local de coloración grisácea. Las juntas entre bloques, se presentan ocasionalmente enripiadas con pequeñas láminas de esquisto. Ambos muros presentan una superficie de arrasamiento horizontal y uniforme, situada a unos 0,30 m de profundidad con respecto a la superficie actual de uso del coso taurino.

En el espacio comprendido entre los muros se documentaron dos enterramientos paralelos y contiguos entre sí, y alineados en dirección E-O. Ambos enterramientos se encuentran adosados a la cara oriental del muro oeste. De ellos, finalmente sólo fue excavado el más septentrional, dado que el otro rebasaba los límites del sondeo hacia el sur, lo que imposibilitaba su excavación completa.

El enterramiento excavado fue efectuado en el interior de una fosa practicada al efecto en los rellenos preexistentes. Tiene planta rectangular alargada en dirección este-oeste, cuenta con 1,50 m de longitud, 0,85 m de anchura, y 0,50 m de profundidad. Sus paredes norte, sur y este fueron revestidas al interior con muretes de contención construidos a base de lajas y mampuestos de esquisto, con algunos cantos rodados cuarcíticos aislados, trabados con tierra arcillosa. El límite occidental de la fosa, correspondiente a la cabecera del enterramiento, coincide con la cara oeste del muro. La tumba descrita apareció desprovista de su cubierta original, que a juzgar por los restos de la tumba contigua, y por los fragmentos aparecidos en su relleno interior, pudo haber estado constituida por lajas grandes de esquisto de contorno irregular. El relleno del interior de la tumba estaba formado por tierra arcillosa semicompacta de color pardo claro.

En la figura 152 se observa la disposición combinada de los métodos geofísicos empleados en la investigación. Las anomalías geofísicas detectadas en el sector norte de las cuadrículas de trabajo mediante la prospección, han podido constatarse a partir de la excavación arqueológica desarrollada en esta zona. Los estratos superficiales del albero caracterizados por materiales nivelados compuestos por arcilla arenosa y abundante proporción de gravas finas con algunos cantos rodados, que cubren la totalidad del área investigada desde la superficie a 0,30 m de profundidad, en los radargramas ocupan la totalidad de las imágenes desde su cota inicial real a 0,30 m de profundidad, coincidiendo con exactitud con los datos de excavación. Bajo estos estratos superficiales se observa en los radargramas un primer cambio de unidad reflectora horizontal a 0,25 m – 0,30 m, que coincide con el estrato definido como la superficie de arrasamiento y nivelación de las estructuras arqueológicas (figura 153).
Los coronamientos de los muros se registran a 0,30 m, dispuestos sobre la rasante del estrato anterior. Sus reflexiones cubren la secuencia de radar hasta 1 m de profundidad, cuando su cota inferior real en el punto de contacto con el nivel geológico se encuentra a 1,30 m. La anchura real de estos muros varía entre los 0,60 y 0,65 m. Estos datos se corresponden con los registros obtenidos con georadar, existiendo una diferencia de 0,10 m sobre el grosor efectivo de los muros (figura 154).
Figura 154. Relación espacial entre las unidades constructivas exhumadas con las anomalías electromagnéticas. Vista sobre ortofoto 3D. Arriba, segmento del perfil P1 (B-1-A) entre los metros 8 a 15. Debajo, segmento del perfil P2 (B-2-A) entre los metros 19 a 27. (A) Rojo: muro oeste. (B) Azul: muro este. Verde: proyección georreferenciada de los perfiles de GPR P7 y P8.

En el caso de las tumbas, se repite la cota superior real de 0,30 m documentada en los muros, que coincide con lo observado en el radargrama P7. El evento hiperbólico que las caracteriza se representa en el registro GPR hasta 0,90 m de profundidad, produciéndose por tanto, una diferencia positiva de 0,40 m en relación con la cota inferior real sita a 0,50 m. Las estructuras funerarias se encuentran unidas por su parte central mediante un murete de mampostería, por lo que la anchura real total de ambos
enterramientos hasta el perfil sur del sondeo arqueológico es 1,3 m. Este dato se aproxima a los registros obtenidos con georradar, existiendo una diferencia de 0,15 m sobre su tamaño lateral combinado. Diferencia que se corresponde con la parte sur de la tumba sin excavar, parte no exhumada y oculta dentro del perfil estratigráfico (figura 155).

Por lo tanto, la posición espacial y geometría de los elementos arqueológicos, especialmente del coronamiento de los muros y enterramientos, coincide con gran precisión con la ubicación definida por el GPR. La diferencia espacial de las distintas estructuras tiene una variación lateral de menos de 0,15 m (figuras 154 y 156). En este
sentido, las diferencias entre los resultados son pequeñas, y se encuentran dentro de los límites habituales para este tipo de método electromagnético.

Los perfiles tomográficos 2D han permitido obtener una visión del subsuelo de esta zona del yacimiento con un alto nivel de precisión. Se han identificado correctamente las distintas zonas en las que se albergan estructuras arquitectónicas y materiales de relleno constructivo asociado. Se ha observado que cuando el suelo que envuelve los restos arqueológicos es poroso, con baja saturación, y se compone por materiales arcillosos mezclados con mampuestos de esquisto, su resistividad es muy similar a la de las unidades constructivas adyacentes, dificultando la delimitación y visualización de los bordes de los muros y tumbas, especialmente del muro este. Como puede observarse en el perfil L-A, la presencia del muro este está atenuada en la sección, debido posiblemente a una baja resistividad (85 \(\Omega \cdot m \)) en su zona sur, idéntica a la de los derrumbes y capas que lo rodean (ver figuras 157 y 158). Sin embargo, en el perfil L-B es perfectamente visible (figura 158). En el bloque 3D generado a partir de la interpolación de las cuatro secciones 2D se ha observado como en la zona correspondiente a la sección sur del muro este, se produce una disminución en la resistividad de los materiales, que coincide con el metro en el que el muro corta...
perpendicularmente el perfil tomográfico. Para obtener una mejor visualización de este fenómeno, se ha procedido a aislar en la imagen tridimensional los materiales con mayor conductividad, eliminando las zonas más resistivas (entre 90 y 245 Ω.m) (figura 157). En este sentido hay que señalar que las dimensiones laterales de las zonas anómalas no aumentan con respecto a las estructuras documentadas en la excavación.

![Figura 157. Bloque 3D realizado a partir de las secciones L-A, L-B, L-C y L-D en el que se aíslan (en color verde) los materiales con baja resistividad. Con un recuadro en color rojo se señala la zona correspondiente a la sección sur del muro este excavado en el sondeo 1.](image)

Por otro lado, la posición subvertical de las estructuras arquitectónicas y de los paquetes de relleno constructivo se corresponde con el metro indicado en cada sección eléctrica. Quedan definidas entre los metros 20,5 a 22,5 de la sección L-A, y 21 a 24 m de la sección L-B (figura 158). En el caso del perfil L-B, en el que se representan los dos muros, aparecen separados por 2,80 m, distancia próxima a los 2,58 m reales obtenidos en la excavación, existiendo una diferencia total de 0,22 m.
En cuanto a la ubicación en profundidad de las anomalías en las secciones, la cota del coronamiento de las estructuras, y de los derrumbes, difiere con los datos aportados en la excavación en menos de 0,10 m, lo que supone un error relativo bajo.

La base de las anomalías se representa en los perfiles ligeramente a menor profundidad que la real. En el caso del muro este, único excavado hasta el nivel geológico, la cota real en profundidad es de 1,30 m, y en el perfil L-B se dispone a 1,15 m de profundidad máxima. Lo mismo sucede con el enterramiento, cuya base se sitúa a 0,50 m, observándose su muro en las imágenes tomográficas a 0,40 m. En la figura 159 se aprecian las diferencias entre las cotas superiores e inferiores reales de las estructuras tras la excavación arqueológica, en contraste con las alturas de coronamiento y base reflejadas a partir de las mediciones eléctricas.
Figura 159. Arriba, perfil de tomografía L-B. Abajo, detalle del mismo metro 13 a 20. Se han señalado en rojo sobre el perfil las cotas reales inferior (CIR) y superior (CSR) de las estructuras arqueológicas exhumadas. En negro se señala las cotas inferior (CIP) y superior (CSP) de las anomalías en el perfil. En azul se encuadran las anomalías murarias (A y C), y el enterramiento (B).

Esta correspondencia volumétrica y espacial también se advierte en los bloques 3D generados sobre esta zona de la plaza de toros, donde el espesor y la profundidad de la base de las anomalías difieren con los datos aportados por la excavación arqueológica, en menos de 0,15 m de grosor y entre 0,10 a 0,20 m de profundidad total con la configuración *mixed gradient*. Sin embargo, se aprecia una diferencia espacial subvertical considerable, las tres estructuras aparecen desplazadas de su posición original 0,50 m hacia el lado este del registro 3D (figura 160).
La investigación geofísica mediante el uso combinado de métodos eléctricos y electromagnéticos en la plaza de toros, ha permitido demostrar la existencia de estructuras arqueológicas en el subsuelo de esta zona de Las Virtudes. Para la construcción de estas estructuras se han empleado materiales locales con características físicas equivalentes a las de las capas de relleno que las albergan, y que colmatan el área excavada. Estas unidades estratigráficas proceden principalmente de la disgregación natural de los muros visigodos, y su posterior arrasamiento debido a las obras de construcción y acondicionamiento de la plaza en épocas moderna y contemporánea. Esta similitud compositiva de los materiales no ha repercutido en la obtención de registros geofísicos anómalos, que son suficientemente identificables como para visualizar la presencia de estructuras antrópicas en los diferentes perfiles. Así pues, las estructuras exhumadas se corresponden casi exactamente con tres de las principales anomalías hiperbólicas detectadas por el georradar en este sector del yacimiento durante las prospecciones geofísicas previas, que predijeron casi sin margen de error tanto su posición exacta, como sus dimensiones aproximadas, si bien, en su profundidad total se
advierte en relación con la profundidad real de excavación, una diferencia superior a 0,30 m en el caso del muro este, y 0,40 m para la tumba.

Con la tomografía eléctrica la separación de las interfaces rellenos – estructuras están poco definidas. Se observan correctamente las estructuras arquitectónicas por el aumento de las resistividades, pero los bordes de los muros comprendidos en la zona central anómala de los perfiles quedan difuminados. Es complejo determinar la zona exacta de contacto o adosamiento entre estratos y alineaciones constructivas. Por otra parte, la coincidencia espacial y el tamaño de los elementos anómalos en comparación con el posicionamiento y espesor real de las estructuras, tiene un escaso margen de error, inferior a 0,30 m en la mayoría de los casos estudiados. En esta zona su posición en el subsuelo se representa con un elevado nivel de efectividad en relación con los restos arqueológicos excavados. Estos datos contrastan con los obtenidos mediante el bloque 3D medido a partir de la configuración mixed gradient, en el que las construcciones presentan un importante rango de variación en su ubicación de 0,5 m en dirección este.

6.7.2. ZONA C

Con la ejecución del sondeo en el interior de la ermita, se ha tratado de documentar el estado de conservación real del pulvino localizado en la zona oeste del edificio. Para ello se ha realizado una excavación de pequeñas dimensiones, de 1 m x 0,75 m, con el objetivo de liberar la pieza por todos sus lados.

La secuencia estratigráfica de este sondeo es sencilla y homogénea, todo en capas horizontales, sin elementos materiales arqueológicos asociados. La unidad estratigráfica superior se compone por un suelo de baldosas de barro cocido que rodea al pulvino y que se extiende por toda la nave de la ermita. Estas baldosas de forma cuadrangular y 25 cm de lado presentan una profundidad de 3 cm. Esta superficie embaldosada cubre a la segunda unidad, se trata de una capa de nivelación de 0,10 m que sirve de base para la primera unidad, formada por tierra suelta de color pardo con presencia piedra caliza y de fragmentos de esquistos procedentes de la degradación del sustrato geológico natural. La tercera y última unidad se sitúa bajo la anterior. Se corresponde con el nivel geológico formado por la roca madre de aspecto pizarroso. El pulvino apoya
directamente sobre este nivel y adapta su forma a la pendiente natural del terreno que desciende paulatinamente de cota en dirección oeste-este. La diferencia de cota dentro del sondeo en el nivel geológico oscila entre los 2 y los 3 centímetros (figura 161).

Figura 161. Detalle corte estratigráfico zona pulvino.

Durante la fase de exploración e interpretación inicial de resultados obtenidos con georradar en esta zona, la leve anomalía detectada en el lado norte de la pieza arquitectónica funeraria romana, se interpretó por su cercanía lateral a ésta, como un posible reflejo lateral del cuerpo cilíndrico del pulvino, introducido y asentado a modo de base o cimentación en una pequeña cavidad de aproximadamente 0,40 m. Esta interpretación se ha podido modificar a partir de la combinación de los registros geofísicos con los datos aportados por la excavación arqueológica. Se ha observado que la anomalía generada en el lateral del cilindro se ha producido por la leve reflexión procedente del contraste entre dos piedras calizas unidas entre sí, de 20 cm de lado, dispuestas sobre el nivel geológico natural, de litología diferente (figura 162).

Por otro lado, la anchura del elemento reflector representado en el radargrama es idéntica a la real, cercana a 0,20 m. La posición espacial de la anomalía en el radargrama P10 (C-10-B), concuerda con la ubicación precisada por los datos de la excavación arqueológica (figura 162). Sin embargo, su cota superior real se encuentra a 0,10 m, y en los radargramas se representan a 0,35 m, a la misma cota del nivel geológico. Es decir, tanto las piedras calizas como el nivel natural se han registrado a 0,25 m por debajo de su cota real. Se puede observar como parte de la energía generada por el pulso electromagnético ha continuado su propagación hacia el subsuelo, generando reflexiones hasta 1,20 m de profundidad. En este tipo de caso, en el que los objetos detectados mediante georradar quedan a escasa distancia de la superficie, y se
hospedan en un estrato arenoso, poco compacto, y con escasa humedad, la antena con frecuencia de 250 MHz no discrimina correctamente su cota superficial real, situándola en el radargrama a 0,25 m por debajo de la altura registrada en la excavación. Así pues, la antena con la que se ha investigado permite una correcta localización de formaciones y anomalías someras en medios físicos con las características descritas, pero con escaso nivel de detalle en la determinación de su altura para las capas más superficiales.

6.7.3. ZONA G

La intervención arqueológica de excavación se planteó en la Alameda que rodea el santuario, dentro de la zona ajardinada del mismo, y más concretamente en torno al altar del humilladero que se levantó en este sector del yacimiento en el s. XVIII.

El objetivo del sondeo efectuado era liberar la parte inferior del basamento de piedra de dicho altar, que permanecía parcialmente enterrado, y comprobar la naturaleza de las anomalías detectadas en el subsuelo por la prospección geofísica previa en este sector G, que parecían indicar la existencia de estructuras enterradas. El sondeo en cuestión se planteó con unas dimensiones de 6 m de longitud (en dirección E-O) por 4 m de anchura (en dirección N-S), dejando el altar centrado en la mitad oriental del área sondeada. En su interior se documentó una estratigrafía lineal cuyo desarrollo de techo a muro es el siguiente:

El nivel de uso actual de este sector de la Alameda está configurado por el estrato identificado como nivel superficial del sondeo. Se trata de un relleno de nivelación, tal vez aportado intencionadamente en una época reciente para regularizar la superficie de tránsito. Se trata de una capa continua de alrededor de 0,15 m de espesor formada por tierra arcillosa parda de color marrón rojizo oscuro, compacta, con elevada proporción de materia orgánica en su composición (humus de origen vegetal). Presenta, además, numerosos fragmentos de teja, incluidos algunos de tegula romana.

La segunda unidad, localizada inmediatamente debajo del nivel superficial y sobre la superficie del relleno de nivelación, se documenta en el cuadrante suroriental del sondeo. Se trata de una capa de 0,10 de espesor formada casi exclusivamente por arena de sílice amarillenta, suelta, de grano medio y composición muy homogénea, cuya excavación ha aportado numerosos fragmentos de teja y cerámicas vidriadas de
cronología moderna. Podría corresponderse con el nivel de uso de la Alameda precedente al actual, que pudo haber estado revestido con arena suelta para evitar el embarrado del terreno en época de lluvias.

La tercera capa es un estrato masivo de nivelación que contiene restos antrópicos, y que por lo tanto se formó en época histórica, en un momento en todo caso anterior a la construcción de la Alameda, ya en época moderna, y también anterior a la construcción de la calzada documentada en el tercio occidental del solar, que podría datar de época medieval. Cuenta con alrededor de 0,20 m de espesor, y está formado por tierra arcillosa de color rojizo oscuro, semicompacta, porosa, de grano grueso y composición muy homogénea. Contiene algunas piedras cuarcitas pequeñas y medianas en estado natural, algunos fragmentos de teja, y muy pocos fragmentos de cerámica. Se encuentra profusamente colonizado por las raíces del arbolado circundante, lo que dificultó notablemente su excavación arqueológica. Cubre a la cuarta unidad, se trata de un estrato sedimentario geológico de 0,20 m formado por tierra arcillosa de coloración rojiza clara con matices amarillentos, con algunos bloques dispersos de piedra cuarcita en estado natural. Es completamente estéril desde un punto de vista arqueológico, y parece rellenar una vaguada producida por escorrentía natural de las aguas del arroyo en la superficie del estrato subyacente.

La base de la intervención lo ocupa la quinta unidad formada por una sucesión continua de delgadas láminas horizontales de arcilla amarillenta de grano medio, semicompacta, con abundante proporción de gravas finas, alternadas con vetas también muy delgadas y horizontales de limos arcillosos de tonalidad grisácea, grano muy fino y textura jabonosa. Este estrato es estéril en cuanto a material arqueológico, y se formó a partir de los sucesivos aportes y sustracciones generados por el aluvión de las aguas del arroyo de Las Virtudes, cuya margen izquierda discurre en la actualidad a apenas 30 m al este del área sondeada. El perfil estratigráfico de la zona del humilladero, puede observarse en la figura 163.
Tras la retirada de la primera unidad estratigráfica, se han alcanzado las estructuras arqueológicas, y una instalación de abastecimiento eléctrico. Se ha identificado un nivel de pavimento empedrado correspondiente probablemente al trazado del camino previo a la actual carretera de Las Virtudes, y el propio altar del humilladero. No se han identificado, en cambio, restos atribuibles al posible edificio asociado al altar (figura 164).

En el tercio occidental del sondeo se ha documentado sobre la tercera unidad estratigráfica descrita, un pavimento empedrado que podría corresponderse con la calzada de un camino anterior o coetáneo a la construcción de la actual Alameda, que fue sembrada en época moderna. El pavimento apoya sobre una solera constructiva formada por tierra arcillosa de color pardo claro con matiz amarillento, compactada, de grano fino y composición muy homogénea. Presenta una elevada proporción de gravas finas y piedras cuarcitas pequeñas que parecen formar parte del preparado constructivo de la solera. Su superficie, homogénea y horizontal, sirvió de apoyo y de fijación para las piedras que conforman la calzada, cuya impronta queda marcada nítidamente en la arcilla de la solera.

Sobre la capa constructiva de nivelación descrita, fue construido el empedrado, constituido por piedras cuarcitas angulosas en estado natural, de pequeño y mediano tamaño (de entre 0,10 y 0,30 m de lado), con predominio de las primeras. Las piedras están colocadas en formación compacta, en una única tanda, y distribuidas en aparejo abiertamente irregular, sin que en el área documentada sea reconocible ningún tipo de alineación. Están trabadas con arcilla rojiza oscura, y conforman un pavimento continuo de superficie horizontal, si bien en la actualidad se presenta abrupta e irregular, lo que
es consecuencia, sin duda, de deformaciones posteriores por compresión diferencial de los rellenos subyacentes. Pese a las irregularidades de su superficie, el empedrado descrito posee una innegable naturaleza constructiva. Podría corresponderse con los restos de la calzada del antiguo trazado del camino de Andalucía, reemplazado en la actualidad por la carretera local CR-6102, que discurre unos 30 m más al este.

En la figura 165 puede observarse la distribución integrada de los métodos geofísicos aplicados en la exploración. Los eventos anómalos detectados en la mitad oeste de la zona del humilladero, han podido constatarse a partir de la excavación arqueológica desarrollada en este sector. Los estratos superficiales de uso antrópico caracterizados por materiales nivelados de relleno, formados por tierra arcillosa y una importante proporción de materia orgánica, que cubren la totalidad del área investigada desde la superficie a 0,35 m de profundidad, en los radargramas ocupan la totalidad de las imágenes desde su cota inicial real a 0,35 – 0,40 m de profundidad, coincidiendo con exactitud con los datos de excavación. Bajo estas capas superficiales puede reconocerse en los registros de radar un primer cambio de reflector. Se trata de un medio continuo poco profundo en posición horizontal con leves cambios oblicuos a 0,40 m, que se mantiene con precisión como una banda estrecha de 0,20 m de espesor, coincidente con los estratos definidos como niveles geológicos estériles (figura 166). Los cortes estratigráficos negativos en este horizonte antrópico arenoso se encuentran bien definidos vertical y lateralmente. Tal es el caso de la trinchera excavada para la conducción de la acometida eléctrica, representada en los radargramas por un elemento hiperbólico bien definido sin reflexiones asociadas en profundidad (figuras 164 y 166);
el negativo de la zanja generado por el corte de las capas de tierra arcillosa, relleno por el mismo material extraído durante las obras y por el cableado eléctrico, se aprecia en los registros con unas dimensiones casi exactas respecto a las documentadas en la excavación. Por peligro de electrocución se ha decidido no excavar hasta la base de la canalización eléctrica, con lo que no se han podido conseguir datos reales sobre su cota total en profundidad. Sin embargo, la cota superior del cableado que en la excavación se ha mediado a 0,40 m de profundidad, en los radargramas se observa a 0,40 m, de manera que existe una importante correspondencia entre los resultados obtenidos mediante GPR y excavación arqueológica para este tipo de estructuras antrópicas en medios físicos y profundidades como las indicadas (figura 166).

La cota cero del suelo de mampostería nivelado se registra según excavación arqueológica a 0,15 m de profundidad, y se dispone bajo la unidad estratigráfica uno. Las reflexiones que se han obtenido de esta estructura sobresalen en su zona oeste por un elemento hiperbólico de 0,35 m de grosor muy marcado y verticalizado, con un recorrido en altura que se representa en los radargramas casi hasta la rasante del suelo.
actual de la zona del humilladero. A continuación se define correctamente una sección reflectora subhorizontal continua de 1 a 1,4 m de longitud, según el perfil de georradar analizado, que se corresponde con la calzada de piedra. Sus reflexiones cubren la secuencia del radargrama con un espesor de 0,20. Los datos geofísicos se aproximan a los registros obtenidos con la excavación. La hipérbola que caracteriza el inicio de la estructura se representa en el registro GPR a 0,10 m por encima de su profundidad real. Cuando la hipérbola se suaviza y el suelo se representa horizontalmente, la cota superior de la construcción se sitúa a 0,20 m por debajo de la real. Sin embargo, la anchura total de la calzada documentada mediante georradar coincide con la hallada en la excavación (figura 167).

La fuerte alteración que el pavimento ha sufrido en varios de sus puntos debido a las recientes obras de apertura de zanjas, se representa mediante la anomalía descrita anteriormente para esta canalización (figura 166). Esta alteración se registra en el radargrama mediante un repentino cambio entre ambas unidades contiguas, visualizable en la transformación de la reflexión horizontal, que define el pavimento, hacia una hipérbola de ramas aplanadas (figura 167).
Figura 167. Correspondencia entre las estructuras excavadas respecto a los registros obtenidos mediante georadar: Arriba, perfil G-3-A (P3). Rojo: pavimento empedrado. Magenta: acometida eléctrica. Debajo, en verde proyección georreferenciada del perfil GPR posicionado sobre la excavación del sector occidental de la zona de exploración G. Obsérvese señalado en rojo el pavimento, y en magenta la prolongación hacia el sur de la zanja para el cableado eléctrico que corta el suelo de piedras.

Del humilladero edificado en los jardines se ha conservado in situ el altar construido en mármol gris. La excavación arqueológica ha permitido liberar la base del altar que se encontraba colmatada. Esta base sostiene todo el conjunto, aunque se apoya sobre una cama de ladrillo y arena poco sólida. La basa se corresponde con un cimacio moldurado de planta rectangular (1,03 m x 0,79 m x 0,18 m), trabajado por sus cuatro caras con suaves rebajes circulares en sus cuatro esquinas. Esta pieza sustentante es muy parecida a la tabla superior del altar.

Durante la fase de prospección se pudo obtener el registro de una anomalía correspondiente a la esquina enterrada del noreste de la base de la estructura religiosa. La excavación arqueológica ha confirmado este punto. La anchura de la sección de la pieza atravesada por el perfil de GPR es similar a la anomalía generada en el radargrama, cercana a 0,20 m. La ubicación de la anomalía en el radargrama P2
concierta con la ubicación precisada por los datos de la excavación arqueológica (figura 168). No obstante, su cota superior real se encuentra a 0,05 m, y en los radargramas se representa a 0,35 m. Es decir, se han registrado a 0,30 m por debajo de su cota real. La reflexión de la onda electromagnética ha generando una secuencia anómala hasta 0,60 m de profundidad, cuando su cota máxima real en profundidad es de 0,35 m, cimentación de ladrillos incluida.

Esta carencia en la precisión subvertical proporcionada por la antena con frecuencia de 250 MHz en relación con los objetos situados a escasos centímetros de la superficie se ha vuelto a poner de manifiesto para esta zona de estudio. Por tanto se ha observado que con la antena utilizada existe una variación en profundidad de 0,30 m con respecto a la cota superficial real de los objetos materiales cuando quedan a escasa distancia de la
superficie, su composición litológica es marmórea, y se encuentran albergados en estratos de tierra arcillosa poco compacta, húmeda y rica en materia vegetal. Por el contrario, se ha documentado una concordancia vertical precisa entre las estructuras registradas mediante prospección geofísica y la excavación arqueológica (figura 169).

![Figura 169. Posición del perfil GPR G-3-A y la sección de tomografía L-4 en relación a la zona excavada. Rojo: pavimento empedrado. Magenta: canalización eléctrica.](image)

Las secciones 2D de tomografía han permitido evidenciar la existencia de una calzada que cruza la zona de investigación en dirección N-S, una instalación de servicios eléctricos soterrados mediante un sistema de conducción lineal excavado por medio de una zanja, con la misma dirección y adyacente al camino anterior, así como un suelo de arena de sílice de uso antropológico sobre el que se asienta la cimentación del altar (figura 169). Del análisis combinado de los resultados arqueológicos y geofísicos se determina que las estructuras de este sector del yacimiento, cubiertas por estratos principalmente de tierra arcillosa, se representan nítidamente en los diferentes perfiles, con una leve disminución lateral en las dimensiones de su tamaño de entre 0,10 y 0,20 m para la zanja, de 0,10 y 0,30 m para el suelo de arena de sílice, y de 0,20 a 0,90 m en el caso del camino de mampostería. Esta fluctuación en el tamaño de las anomalías ha provocado que el pavimento de piedras y la zanja eléctrica en los perfiles L-2 y L-3 se representen separados por una corta distancia de 0,30 a 0,50 m, cuando la zanja corta verticalmente al suelo por su lado este. La posición real de las estructuras se corresponde con el metro indicado en cada sección eléctrica para cada anomalía (figura 169).
Como puede observarse en los distintos perfiles, la presencia del firme de cantos y el suelo de arena de sílice está bien definida en las imágenes, aun con una baja resistividad de sus materiales (en ambos casos 60 Ω.m), similar a las capas que los envuelven (ver figuras 147 y 169). La visualización de estas estructuras horizontales también se advierte en los bloques 3D generados en esta zona a partir de las configuraciones dipolo-dipolo y mixed gradient (figura 170). Puede observarse cómo los contornos de los volúmenes generados se aproximan a las dimensiones y posición en el subsuelo de las estructuras reales. También se ha podido localizar la pérdida de material constructivo de mampostería en borde sur del pavimento, aunque no se aprecia la ruptura lineal de la estructura por la excavación de la zanja en su lado este.

La representación de los suelos no ha quedado completamente nivelada de manera horizontal, observándose una ligera distorsión en el relieve a partir de leves curvas y pliegues en las imágenes generadas, que difieren con los datos aportados en la excavación, donde la topografía de las estructuras es plana. Tampoco se observa una correcta discriminación lateral entre ambos suelos, que se representan solapados y de manera continua aun con materiales constructivos diferentes, efecto que puede deberse a su idéntico valor resistivo. El único cambio en la continuidad de los suelos se ha representado por la base del altar, con una resistividad 10 Ω.m inferior a la de las anteriores estructuras. Esta cimentación se caracteriza con un tamaño similar al real, pero desplazada 0,50 m hacia el oeste (figura 170).

En cuanto a la ubicación en profundidad de las anomalías en las secciones, se representan a ras de la cota cero, por lo que la cota del coronamiento de las estructuras documentadas en la excavación diverge con respecto a los datos aportados por la exploración geofísica en menos de 0,20 m. Sin embargo, la base de las anomalías se ha situado en los perfiles a mayor profundidad que la real, aumentando artificialmente su espesor. En el caso del pavimento, la cota real en profundidad es de 0,35 m, y en los perfiles se dispone entre 0,45 y 1,05 m de profundidad máxima. Lo mismo sucede con el suelo de arena, cuya base se sitúa a 0,20 m, observándose su base en las imágenes tomográficas a 0,70 m. En la figura 171 se aprecian las diferencias entre las cotas superiores e inferiores reales de las estructuras tras la excavación arqueológica, en 234
contraste con las alturas de coronamiento y base reflejadas a partir de las mediciones eléctricas.

La aplicación integrada del georradar y la tomografía eléctrica en los jardines de Las Virtudes ha permitido corroborar la presencia de evidencias arqueológicas a escasa profundidad en esta zona del yacimiento. Se trata principalmente de estructuras horizontales con edad histórica fabricadas con distintos materiales como mampostería, arena compactada y piedra marmórea, construidas con funciones diferentes; niveles de suelo ligados a uso antrópico, y una base de cimentación para el pedestal religioso. También se documenta una zanja para servicios municipales de factura reciente que corta verticalmente a las anteriores. Esta diferencia en la composición de los materiales ha facilitado la detección de registros anómalos identificables con estructuras antrópicas en los diferentes perfiles, ubicándose su posición y dimensiones con un alto nivel de precisión, así como unas medidas muy aproximadas de su cota superior en profundidad en relación con la profundidad real de excavación, con una diferencia inferior a 0,20 m en el caso del pavimento empedrado, de 0,30 en el supuesto de la base del altar, y de menos de 5 cm para la zanja.

Sin embargo, debido a la falta de la calidad en la obtención de datos en capas muy someras por parte de la antena de 250 MHz, para el suelo apisonado de arena de sílice no se ha podido establecer una conexión precisa entre los datos aportados por los radargramas con los obtenidos mediante la excavación arqueológica, con el fin de
determinar si el patrón horizontal de reflexión visualizado en los registros se corresponde exactamente con este piso, o por el contrario, representa la suma de éste más el resto de unidades estratigráficas que lo preceden hasta los niveles geológicos.

El correcto posicionamiento espacial de las distintas estructuras también se ha demostrado con el método eléctrico que, en cambio, ha perdido efectividad en la caracterización volumétrica de los elementos arqueológicos, principalmente de los suelos, cuyas dimensiones laterales se han reducido entre 0,30 y 0,90 m según el perfil ejecutado. Adicionalmente, se ha manifestado por parte del software de inversión la dificultad de reflejar la ruptura de una estructura horizontal positiva por el corte longitudinal de una estructura vertical negativa, como son la zanja rellena y el pavimento empedrado, generándose de manera artificial espacios inexistentes entre ambas, cuando realmente se encuentran adosadas, así como una sobredimensión del espesor en profundidad de éstas. Los bloques 3D han reconstruido el subsuelo de un modo aproximado al real, pudiéndose conseguir modelos válidos de las unidades horizontales caracterizadas por su escaso grosor y su ubicación somera, aunque con ciertas carencias, principalmente en la delimitación de sus superficies de contacto, que se muestran embebidas, y en la escasa nitidez de sus bordes perimetales, difuminados o directamente perdidos en ciertos puntos.
CAPÍTULO 7. CONJUNTO ARQUEOLÓGICO CASTILLO DE LA ESTRELLA

7.1. CONTEXTO GEOGRÁFICO E HISTÓRICO

El castillo de Montiel o de La Estrella es uno de los conjuntos históricos más relevantes de la región. El 12 de marzo de 2014 la Dirección General de Cultura de la Junta de Comunidades de Castilla-La Mancha inició el expediente para su declaración como Bien de Interés Cultural con categoría de Monumento.

El castillo de La Estrella se emplaza junto al núcleo urbano de Montiel, sobre un cerro testigo a 965 m de altitud, formado geológicamente por areniscas y lutitas arcillosas, con un techo de calizas tobáceas. Se trata de un punto estratégico con un amplio control visual del territorio, grandes desniveles en todos sus flancos, y rodeado por el río Segurilla en sus lados norte y este, que actúa como defensa natural.

Figura. 172. Localización y vista general del Conjunto Arqueológico Castillo de La Estrella en el término municipal de Montiel (Ciudad Real). © Instituto Geográfico Nacional de España.

El municipio de Montiel se sitúa en el sector surooriental de la provincia de Ciudad Real, en la extensa altiplanicie del Campo de Montiel, que con una superficie de más de 4000 km² se localiza entre las provincias de Ciudad Real y Albacete. La geomorfología de este territorio se constituye por afloramientos mesozoicos triásmicos y jurásicos. Destaca por las numerosas elevaciones a modo de montículos, su horizontalidad orográfica con leves ondulaciones por efectos de la erosión, y un buzamiento del terreno hacia el oeste, donde en su parte más occidental, la media de altitud es de 850 m. En su zona oriental se llegan a superar los 1000 m de altitud, y al sur y sureste se delimita por los relieves
de la Sierra de Alcaraz y Sierra Morena, donde la altitud media es superior a los 1200 m.s.n.m (Serrano de la Cruz, 2013). La hidrografía de la zona se compone por pocos ríos pero de cauce regular a lo largo del año como son el Jabalón, Guadalén, Guadalmena y Azuer (Gallego, 2014).

Las pruebas de la ocupación antrópica de este territorio desde la prehistoria son abundantes. Así los primeros registros se datan en el Achelense, documentado en las terrazas del río Jabalón y en el nacimiento del río Villanueva, donde los útiles más representativos son los bifaces amigdaloides, hendedores y los triedros (Serrano, 2000). Este enclave es significativo por los materiales arqueológicos calcolíticos y del bronce, que se observan en superficie. Son en su mayoría piezas cerámicas bruñidas, con carena central o baja y perfil en “S”, y líticas de silex como puntas de flecha, láminas y fragmentos de cuchillos (Molero y Gallego, 2013). Pero lo más relevante es, sin duda, el importante papel desempeñado como centro político y militar en época medieval. Primero como hisn islámico, y posteriormente como encomienda cristiana de la Orden de Santiago en el siglo XIII. La superficie total que alcanza el conjunto se calcula en casi 9 hectáreas de terreno entre villa medieval y recinto murado.

En la zona pueden observarse otros enclaves arqueológicos con distintas cronologías, fundamentalmente investigados y documentados en los últimos veinte años mediante diversas campañas de excavación y prospección arqueológica, lo que demuestran el continuo poblacional del territorio montieleño. Ejemplos significativos son la ciudad ibero-oretana de Mentesa (Villanueva de la Fuente) (Benítez de Lugo y Álvarez, 2004), la villa romana de La Ontavia (Terrinches) (Benítez de Lugo, 2011), la villa de la Fuente del Lobo (Puebla del Príncipe – Villamanrique) (Benítez de Lugo, 2011), los enterramientos tardoantiguos del Talar de la Vega y Mentesa Oretana (Villanueva de la Fuente) (Benítez de Lugo y Rodríguez, 1999; Benítez de Lugo et al., 2011), y la necrópolis visigoda de las Eras (Alhambra) (Serrano y Fernández, 1990).

Entre los siglos X-XI el castillo actúa como un hisn organizador de los territorios aledaños, además de tener una función defensiva militar. Su valor político-militar radicará en el dominio de las distintas vías de comunicación que se extienden por la zona: el camino de Cuenca a Granada, la vía de Mérida a Levante y el camino de Alcaraz a Úbeda. La población dependiente del castillo tendría un carácter rural, diseminada en pequeñas alquerías (Molero y Gallego, 2013). Junto con los husun de
Alhambra y Eznavexor formarían una destacada demarcación administrativa para este territorio con centro en la fortaleza de Montiel (Matallanes, 1999).

Diversos autores coinciden en señalar un importante vacío en la documentación histórica medieval en esta zona hasta el siglo XIII (Moya-Maleno, 2015; Gallego y Lillo, 2012; Molero y Gallego, 2013). Desde la caída de Toledo en 1085 bajo el poder de la Corona de Castilla, el Campo de Montiel se militariza. No será hasta después de la batalla de las Navas de Tolosa en 1212 cuando este territorio quede bajo la influencia de la Orden de Santiago. Se funda con sede en el castillo de La Estrella la Encomienda de Montiel, desde la que se potencia la repoblación de la zona, convirtiéndose en el referente político, administrativo y económico de estas tierras (Molero y Gallego, 2013).

La nueva situación política y social del siglo XIII supone que los castillos y fortificaciones de la zona del Campo de Montiel adquieran una especial importancia, debido tanto a su funcionalidad militar, como de ordenación del territorio. Es a partir de este momento cuando el complejo recibe un importante impulso constructivo por parte de la Orden de Santiago, tras la donación del rey Fernando III en 1227. Posteriormente se crea una encomienda en esta fortificación.

La villa medieval de Montiel se extendió por la ladera sureste del cerro, ya que es en esta zona donde las pendientes son menos pronunciadas, para posteriormente desplazarse a su ubicación actual (Molero y Valle, 2013).

Se trata de una fortaleza muy potente, con más de 5.000 m de recinto murado. Según Gallego (Gallego, 2005; Gallego y Lillo, 2012) en la fortificación se pueden distinguir tres zonas o recintos bien delimitados, que además conservan restos estructurales en superficie en diversos sectores. Estructuralmente se distingue el *hisn* islámico, el castillo de la Orden de Santiago y la villa medieval de Montiel, donde se localiza el edificio de la iglesia de la Virgen de La Estrella.

El primer recinto defensivo se corresponde con el trazado de la cerca urbana que rodeaba la villa y que se distribuye por el lado sur del cerro. Con origen en la torre del homenaje, la cerca se construye con encofrados de mampostería arenisca, continuando por la zona de la media ladera hasta llegar a la Iglesia de Nuestra Señora de La Estrella, desde donde asciende en dirección noreste.
En esta zona comprendida en la media ladera sur, se ubicaba la villa medieval de Montiel. Junto al actual depósito de agua se ha excavado parte del edificio de la Iglesia Parroquial de la Virgen de La Estrella. Se trata de un inmueble con planta rectangular de más de 15 m de longitud y orientación hacia el este, que posiblemente contó con tres naves. En torno a la iglesia se ha detectado una necrópolis de época bajomedieval, donde se han exhumado un conjunto de enterramientos con distintas tipologías (Molero y Gallego, 2013).

En la ladera sureste del cerro se observa un cambio en la topografía del terreno que se asocia con el camino de acceso a la villa y al castillo. Este camino se adapta a las curvas de nivel para salvar la pendiente en este sector, lo que se aprecia en ortofoto como una estructura artificial en forma de “W”.

El castillo está rodeado por el segundo recinto defensivo, que cuenta con una longitud mural fortificada de 288 m. Amador Ruibal (1984) lo definió como “Sector Exterior”. Se corresponde con la fortificación islámica, construida en diferentes fases. La primera etapa se localiza en la zona sur, en el sector de la denominada “puerta de palo”, con una cronología de finales del emirato e inicio del califato cordobés. En este sector las estructuras se encuentran muy derruidas, con cimentación sobre los niveles naturales de roca. La siguiente fase de construcción del hisn se ejecuta entre los siglos X y XI, y se corresponde con la mayor parte del antemuro, que se fabrica de mampostería a espiga y apoya sobre los niveles geológicos de roca. Según Molero y Gallego (2013) todas estas estructuras serán modificadas a finales del siglo XI y durante el siglo XII mediante un conjunto de murallas de tapial de tierra y Torres de flanqueo, localizadas en la zona este y norte. Del período almohade destaca una gran torre hueca de tapial, conocida en las fuentes cristianas como “Torre del Gallo”, construida para controlar el acceso a la zona más elevada del cerro (Molero y Gallego, 2013).

El “Sector Interior” (Ruibal, 1984) o tercer recinto defensivo, se corresponde con el alcázar santiaguista. Se ubica en la parte superior del cerro, construyéndose en una sola fase un recinto interno de menor superficie en relación al hisn musulmán, con fábrica mediante sillares y mampostería de arenisca. Dentro del sector interior se documentan torres huecas cuadrangulares compartimentadas hasta en tres pisos interiores, y Torres macizas semicirculares que refuerzan todo el lado norte (Gallego y
Lillo, 2012). El acceso a este tercer recinto se realizaba a través de la denominada “puerta de hierro”, que se situaría entre un gran torreón cuadrangular del siglo XIII y una posible torre paralela a la anterior construida en el siglo XIV. A la torre del homenaje se accedía por la “puerta del patio”. Actualmente está colapsada, ocupa la zona oeste del cerro y se adapta a la morfología del terreno. Según Molero y Gallego (2013) podría ser independiente al resto del conjunto, con separación mediante muro y foso.

La fortaleza estuvo habitada hasta los primeros años del siglo XVI (Ruibal, 1984). En este momento la situación estructural del conjunto defensivo se encuentra en un estado de conservación deficiente, como se registra en las Relaciones Topográficas de Felipe II (Viñas y Paz, 1971):

“… el dicho castillo [...] de presente no tiene alcaide de residente y el cargo del lo tiene y siempre lo ha tenido el Comendador desta villa e antiguamente hasta que podía haber treinta años poco más o menos tiempo tuvo alcaide residente y en el había muchas armas de diferentes maneras e brojos de yerro e tiros de artillería todo para defensa de guerra e guarda del castillo e que todas estas armas e tiros faltan en la dicha fortaleza e los encasamientos de dentro donde había una cocina e otros aposentos e caballerizas todo esta hundido e dello falta mucha cantidad de madera, clavazón e ladrillos que no se sabe quien es a cargo dello …, e por descuido de los Comendadores e sus alcaides ha venido en quiebra e daño la dicha fortaleza e sus edificios …”

Desde el siglo XVII los habitantes de Montiel desmantelan la fortificación para el empleo de los distintos materiales de obra en la construcción de los nuevos edificios del pueblo.

En el siglo XVI la capitalidad del Campo de Montiel, que se mantuvo como unidad administrativa hasta el siglo XIX, pasa a Membrilla y posteriormente de manera definitiva a Villanueva de los Infantes, impulsándose la creación de ventas y aldeas, y apoyando el crecimiento de los pueblos existentes sobre la base de la antigua red de caminos. En la actualidad, la Diputación de Ciudad Real denomina con el nombre de Montiel a una de las comarcas en las que se divide la provincia, tal y como sucede en el caso de otros espacios provinciales singulares a nivel geológico, histórico,
geográfico y cultural, como por ejemplo, el campo de Calatrava (Serrano de la Cruz, 2013).

7.2. DEFINICIÓN DE LAS ÁREAS DE ESTUDIO

Como hemos señalado, en el yacimiento del castillo de La Estrella se realiza en la actualidad un importante programa de excavación arqueológica. Esta investigación ha posibilitado la identificación in situ de estructuras arqueológicas medievales islámicas (hisn), y medievales cristianas en varios puntos del cerro, en el área exterior del perímetro amurallado superior del castillo, y dentro de éste. Sin embargo, no se conocen con precisión muchas de las zonas exactas en las que se conservan restos arqueológicos en posición primaria, y por lo tanto, la superficie completa del yacimiento. Esta falta de registros puede complicar la planificación de futuras intervenciones arqueológicas o de obra civil. Los trabajos de prospección geofísica tienen por objetivo apoyar los estudios arqueológicos de prospección arqueológica, la excavación extensiva que se está realizando, y combinar todo ello con las fuentes documentales que se conservan para la fortaleza.

Con el fin de colaborar en la mejora del conocimiento subsuperficial del yacimiento, se seleccionaron diferentes puntos del entorno del castillo para la realización de los trabajos de prospección geofísica y arqueológica, pudiendo ver su disposición en la figura 173.
Zona A. Esta zona de exploración geofísica se localiza en el lado oeste del castillo propiamente dicho, y se corresponde con el alcázar construido por la Orden de Santiago. Se ubica en la cota más elevada del cerro y se adapta a la geomorfología del terreno. En este sitio donde se sitúa la torre del homenaje, se pretende en primer lugar, conocer las dimensiones exactas de la misma, así como el grosor y potencia de su muro de cierre este, colapsado y soterrado. En segundo lugar, permitirá documentar la existencia de la puerta del patio, que funcionaría según las fuentes archivísticas como un acceso principal a este recinto fortificado. Y, en tercer lugar, permitirá documentar otras posibles estructuras constructivas anexas, pertenecientes al entramado urbano militar de esta zona del yacimiento.
Figura 174. Vista del lugar elegido para ubicar la zona de exploración geofísica A.

Zona B. Esta zona de exploración geofísica se localiza en el lado este de la construcción santiaguista. Se encuentra junto a un gran torreón cuadrangular de sillarejo, construido posiblemente en el s. XIII, y a una posible torre gemela de éste, edificada en el s. XIV. Entre ambas se situaría la “puerta de hierro”, que daba acceso a este recinto según fuentes documentales.

Figura 175. Vista del lugar elegido para localizar la zona de exploración geofísica B.
Zona C. Esta zona de exploración geofísica tiene como principal objetivo documentar la continuidad del muro sur perteneciente a la nave central de la Iglesia del siglo XIII de Nuestra Señora de La Estrella, hasta su cierre con el testero del edificio, así como localizar posibles estructuras funerarias o arquitectónicas ubicadas al oeste de la misma.

Zona D. Esta zona de exploración geofísica se localiza en la ladera sureste del cerro, en un área conformada por un aterrazamiento artificial con origen en estructuras arqueológicas ubicadas en la subsuperficie. Aquí se pretende determinar la existencia del antiguo camino de acceso al castillo desde la villa medieval de Montiel que partía desde un punto muy próximo de la vía de Cuenca a Granada.
7.3. GEORRADAR

La investigación con georradar se desarrolló sobre todas las zonas de estudio definidas inicialmente. A la vista de los resultados obtenidos con el GPR, se seleccionaron las localizaciones en las que posteriormente se realizó la tomografía eléctrica.

En la zona de exploración geofísica A-torre del homenaje, el estudio consistió en la ejecución de catorce perfiles, todos separados entre sí 1 m. Se situaron en función de la topografía del terreno (figura 179) seis perfiles de 7 m en la parte superior, en un área amesetada delimitada por la proyección de los muros pertenecientes a la torre del homenaje, con más de 2 m de...
7. Conjunto Arqueológico Castillo de La Estrella

grosor, observables en superficie. Estos perfiles fueron medidos según la orientación NO-SE (dirección A). Otros ocho perfiles de 12 m (P6 a P9) y 15 m (P10 a P12), medidos según la orientación NE-SO (dirección B), fueron ejecutados en paralelo a la zona con pendiente, originada por el colapso de la torre. La longitud total de estos perfiles es de 157 m y abarcan una superficie de 93 m².

La numeración de cada perfil consta de la letra de la zona de exploración geofísica a la que pertenezca, número de perfil en esa zona y dirección de medida. Así el perfil A-1-A significa que es el perfil número 1, medido en la dirección A (NO-SE), de la torre del homenaje (zona de exploración A). Esta numeración se hace extensiva a cada una de las zonas de investigación indicadas.

La configuración de la antena del GPR en las zonas de trabajo A, B, C y D, se realizó mediante el software Spiview, en el modo DrySoil, en la totalidad de los perfiles, lo cual estima una velocidad de 50 ns que se traduce en un nivel de profundización en la exploración de 3,7 m.

En la zona de exploración geofísica B-puerta de hierro, se ejecutaron un total de 19 perfiles en una cuadrícula rectangular adaptada a la morfología de esta zona del castillo (figura 179). Estos se separaron entre sí 1 m, medidos según las orientaciones NO-SE (dirección A) y NE-SO (dirección B), a fin de obtener una caracterización doble de la zona. La longitud total de estos perfiles es de 157 m y con una cobertura superficial de 70 m².

En la zona de exploración geofísica C-Iglesia de Nuestra Señora de La Estrella, se ejecutaron 20 perfiles GPR, en dos sectores distintos: uno sobre el camino actual del castillo, junto a la excavación arqueológica de este inmueble, donde ejecutó una
cuadrícula rectangular de 5 x 3 m. El estudio consistió en la ejecución de diez perfiles, cuatro medidos según la orientación NO-SE (dirección A) y seis perfiles con orientación NE-SO (dirección B), con una separación de 1 m. La otra zona de trabajo se sitúa en el exterior del muro de cierre situado en el lado oeste del edificio. Se trazó una cuadrícula rectangular de 4 m x 4 m, con diez perfiles de prospección, cinco medidos según la orientación NO-SE (dirección A) y otros cinco perfiles con orientación NE-SO (dirección B), con una separación de 1 m. La longitud total de estos perfiles es de 78 m y la superficie explorada de 31 m².

Figura 180. Ubicación y orientación de los perfiles sistemáticos de GPR desarrollados al sur de la zona C-Iglesia de Nuestra Señora de La Estrella.

En la zona de exploración geofísica D-antiguo camino, se ejecutó una cuadrícula rectangular de 6 x 4 m. La investigación consistió en la realización de doce perfiles, medidos según la orientación N-S (dirección A) y E-O (dirección B), separados entre sí 1 m. La longitud total de estos perfiles es de 58 m y la superficie explorada de 24 m².
7. Conjunto Arqueológico Castillo de La Estrella

7.4. TOMOGRAFÍA ELÉCTRICA

La investigación geoeléctrica en este yacimiento consistió en la ejecución de 13 perfiles 2D medidos mediante las configuraciones dipolo-dipolo, Wenner-Schlumberger, *strong gradient*, y cuatro bloques 3D medidos con los arreglos *mixed gradient*, dipolo-dipolo 3D y *radial gradient* 3D. Tal y como se señala en la figura 182, estos perfiles se realizaron agrupados en cuatro zonas: torre del homenaje, puerta de hierro, Iglesia de Nuestra Señora de La Estrella y primitivo camino de acceso. Adicionalmente, los perfiles realizados en las zonas de exploración torre del homenaje, puerta de hierro y antiguo camino de acceso han sido indexados para obtener un modelo virtual 3D de cada uno de ellos. Su ubicación guarda relación con aquellas zonas en las que existía previsión de restos arqueológicos enterrados, o en las que existía una anomalía determinada por la investigación previa realizada por el georradar.
Figura 182. Vista general de las zonas en las que se realizaron las investigaciones sistemáticas con tomografía eléctrica (rojo). (A) Zona de exploración A. (B) Zona de exploración B. (C) Zona de exploración C. (D) Zona de exploración D.

La situación de los perfiles quedó referenciada mediante la determinación de las coordenadas de sus extremos. Como en el caso anterior, el objetivo de la realización de estos perfiles de tomografía eléctrica es, además de cruzar dos métodos geofísicos en una misma zona, determinar el comportamiento de las estructuras del yacimiento con este método, determinando el tipo de anomalías que éstas generan.

En la zona de la torre del homenaje, se ejecutaron un total de cuatro perfiles paralelos entre sí, de dirección SO-NE, de 28 electrodos cada uno, con espaciado inter-electródico de 1 m y separados entre sí 1,5 m. Conforman un rectángulo regular de toma de medidas de 27 m x 4,5 m. Y un bloque 3D con 56 electrodos (con punto inicial en el electrodo 15 del perfil de tomografía MO10) (figura 183).
Figura 183. Distribución de los perfiles de tomografía eléctrica en la zona de exploración A-torre del homenaje.

En la zona de la puerta de hierro, se realizaron un total de cuatro perfiles paralelos entre sí con separación de 1 m y dirección SE-NO, de 28 electrodos cada uno, con espaciado inter-electródico de 0,5 m. Conforman un rectángulo regular de toma de medidas de 13,5 m x 3 m. Con punto inicial en el electrodo 1 del perfil de tomografía MO1, se efectuó un bloque 3D con 56 electrodos. Posteriormente se realizó un segundo bloque 3D en el que se utilizó nuevamente como punto inicial el electrodo 1 del perfil MO1, pero en este caso se amplió la distancia interelectródica a 1 m, y la separación entre líneas a 2 m (figura 184).
Figura 184. Distribución de los perfiles de tomografía eléctrica en la zona de la puerta de hierro.

Sobre la zona sur de la iglesia, donde se encuentra el actual camino de acceso a la fortaleza, se realizó un perfil con 28 electrodos, con un espaciado inter-electrodico de 0,5 m y una longitud de 13,5 m.

En la zona del antiguo camino de acceso al castillo, se ejecutaron cuatro perfiles paralelos entre sí, con dirección E-O, de 28 electrodos cada uno, con espaciado inter-electrodico de 0,5 m y separados entre sí 1 m. Conforman un rectángulo regular de toma de medidas de 13,5 x 3 m. Con punto inicial en el electrodo 14 del perfil de tomografía MO6, se realizó un bloque 3D con 56 electrodos (figura 185).
7.5. RESULTADOS E INTERPRETACIÓN

7.5.1. GEORRADAR

La diversidad en la tipología estructural del conjunto arqueológico del castillo de La Estrella se encuentra muy definida según los distintos usos antrópicos de cada uno de los sectores del yacimiento. Las zonas sur y suroeste del cerro están caracterizadas en su mayoría por edificios y estructuras de uso civil como viviendas, suelos empedrados, espacios de necrópolis o un edificio para el culto. Con cota superior y en dirección norte se encuentra el imponente sistema de amurallamiento reforzado con numerosas torres de flanqueo, y el castillo propiamente dicho. Esta diversidad en la distribución constructiva de cada zona, tiene su reflejo en los restos enterrados en el subsuelo. Los derrumbes y cimentaciones de la zona superior del castillo, son más potentes en tamaño y profundidad que los que se pueden registrar en la antigua villa medieval.

Sobre la base de estas premisas, los radargramas del subsuelo de ambas zonas también son dispares: en las zonas de exploración A y B existe un mayor número de reflexiones por radargrama, originadas principalmente por los derrumbes laterales de los gruesos muros defensivos que apoyan sobre la roca tobácea. Por el contrario, en las zonas C y D los...
radargramas contienen menos anomalías, habitualmente asociadas a muros, tumbas o suelos, dispuestas sobre un suelo de arcillas.

7.5.1.1. ZONA A

Los trabajos de prospección geofísica ejecutados en esta zona se plantearon con el objetivo de determinar la localización exacta del alcázar santiaguista, y principalmente de la torre del homenaje. Según los responsables arqueológicos del yacimiento\(^5\), la ubicación de la estructura se debe corresponder con el sector occidental de la fortaleza. Esta área ocupa la cota más elevada del castillo, sobre un terreno en el que existe un gran montículo artificial con posible origen en el derrumbe de los muros de la torre del homenaje. Sobre el terreno se puede observar en superficie un gran muro de aproximadamente 2 m de ancho fabricado con mampostería arenisca trabado con un mortero de cal compacto y alguna hilada de ladrillo, así como restos de cimentaciones levantadas sobre la roca caliza. El conjunto de la torre del homenaje se completaría con un muro y un foso defensivo entre esta zona y el patio de armas del castillo.

Los registros obtenidos en esta zona con georradar son muy complejos, los potentes restos constructivos colapsados de la torre, conformados por grandes mampuestos y sillares de arenisca, provocan que la onda transmitida por la antena de 250 MHz sufra multitud de refracciones, obteniéndose unos radargramas donde las anomalías que generan las principales estructuras quedan atenuadas. En este sentido interpretamos que las principales anomalías hiperbólicas, se podría relacionar con gruesos muros enterrados o cubiertos prácticamente en su totalidad por los derrumbes antes descritos (figura 186).

\(^5\) Parte de la información descriptiva de las unidades constructivas y secuencias estratigráficas expuestas en la presente investigación ha sido proporcionada por el profesor Jesús Molero y David Gallego, arqueólogos codirectores de la intervención que se desarrolla en el Conjunto Arqueológico Castillo de La Estrella, a partir de las Memorias de trabajo de los años 2014 y 2015.

En la figura 187 se detalla la disposición de las anomalías sobre la cuadricula de trabajo.

Las anomalías de tipo I se han identificado en dos zonas bien delimitadas. La primera, en la zona oeste de la torre del homenaje, en torno a dos solo perfiles ejecutados en la dirección A, cuya orientación es SO-NE. En concreto, en el metro 4 del perfil P1, y a 1,5 m de P3. La segunda anomalía se ha localizado en los perfiles que cruzan al anterior en dirección B, con orientación NO-SE: a los 2,5 m del perfil P6, a 10 m del perfil P2, a 11 m del perfil P9, a 3 m de P10, a 3 m de P12, y en el metro 12 del perfil P13 (figura 188).
La disposición espacial en planta de estas anomalías indica una alineación a lo largo de al menos 7 m, por lo que se pueden corresponder con un muro con orientación NO-SE. La cota superior de las anomalías se detectó a una profundidad de entre 0,40 y 0,50 m de la superficie, y su base a unos 3,4 m.

La proyección de los muros que se encuentran en superficie, sobre la anomalía lineal descrita que cerraría el conjunto en su lado este, permite realizar un cálculo aproximado del tamaño de este recinto con tendencia rectangular de 7 m x 4 m. Podría abarcar una superficie de unos 28 m² considerando que el grosor del muro enterrado es similar al de los conservados en superficie.

La segunda zona en la que se han registrado anomalías de tipo I se sitúa en el sector este del área de investigación, bajo los perfiles ejecutados en la dirección B, cuya orientación es NO-SE. Se observan a los 8 m del perfil P6, 5 m de P7, 8,5 m de P8, 5,5 m de P9, 12 m de P10, 4 m de P11 y 13 m de P12. Las anomalías se sitúan en los radargramas a una profundidad de 0,45 m de su cota más somera y 1,70 m en la base (figura 188).
Como sucede en el caso anterior, los eventos anómalos siguen un patrón rectilíneo continuo con orientación NO-SE a lo largo de siete perfiles. La señal generada por esta posible estructura subterránea desaparece en el perfil 13, lo que parece indicar que en esta zona el muro finaliza. Las grandes dimensiones y anchura de las hipérbolas reflejadas en los radargramas, permite inferir que las estructuras enterradas se fabricaron con un tamaño considerable, con una finalidad eminentemente defensiva de esta zona del alcázar santiaguista. Por lo tanto, la torre del homenaje se remataría en su lado este con un muro de 7 m de longitud, con un refuerzo adicional defensivo de un antemuro muy potente a unos 6 m hacia el este. Entre ambas construcciones se observa un espacio diáfano, sin anomalías de tipo I, probablemente un patio que distribuye el recinto.
Según nuestras mediciones tendría una extensión al menos de unos 5 m en su lado sur, 9 m en el norte, y estaría flanqueado por los dos posibles muros definidos anteriormente. Esto representa dentro de la cuadrícula GPR una superficie delimitada para este espacio de 45 m², ampliables a la zona norte del área de exploración.

Se han detectado varias anomalías de tipo II en tres zonas distintas (ver figura 187). Las dos primeras se encuentran dentro del recinto de la torre del homenaje, en un estrato arqueológico muy superficial, con una cota de unos 0,30 m y sin apenas continuidad en profundidad. Se localizan en los metros 3 y 5 del perfil 1’B y no tienen continuación en ningún otro perfil realizado (figura 189). Por su escasa entidad lateral en los radargramas y su situación en una zona somera de relleno arqueológico, se puede deducir que se trataría de restos arquitectónicos procedentes de los muros o de la cubierta de la torre del homenaje, posiblemente un bloque de piedras o ladrillos unidos aún con el mortero, con el volumen suficiente para generar una pequeña anomalía. De este tipo de restos arquitectónicos existen varios ejemplos en la superficie de la zona de estudio, a menos de un metro del los perfiles P1´A y P1´B.

En la zona sur de la cuadrícula de trabajo se observan otras dos anomalías de tipo II, en el metro 6 del perfil P6 y a 7 m de P7, realizados en la dirección B de medida. Se extienden de forma paralela a lo largo de unos 2,5 m en ambos perfiles, y se sitúan en una cota profunda, a 2,50 m, con continuidad en profundidad hasta los 3,70 m (figura 190). Estas anomalías no se representan en los radargramas como una hipérbola o un conjunto aleatorio de reflexiones de onda, sino más bien como una pérdida en la señal de la misma. La onda discurre de manera continua a lo largo de los perfiles y al llegar a esta zona se atenúa. Este factor podría interpretarse como un pequeño recinto subterráneo donde además de existir restos físicos de relleno arqueológico, habría una pequeña
La tercera zona donde se registran anomalías de tipo II se ubica al norte, a 5 m del perfil P5, medido con dirección A, a 7 m de P12 y a 7 m del perfil P13, de la dirección B. Se trata de unas anomalías en las que la hipérbola aparece invertida, es decir, en los radargramas se observa una concavidad cuyos laterales tienen un techo a 0,20 m de profundidad, la base con cota a 1,20 m y una distancia entre ramas de aproximadamente 4 m (figura 191). En la zona superior del castillo, cerca de la torre del homenaje, se instaló una antena de comunicaciones en el siglo XX, hoy desmantelada. Estas anomalías podrían representar el lugar en el que se realizaron las excavaciones para su cimentación y soporte, con una zapata de unos 3 m x 4 m.
Las anomalías de tipo III han sido las más numerosas en este sector (ver figura 187). Se caracterizan por una continuidad horizontal o con una leve inclinación en la secuencia de reflexión de los radargramas (ver figura 191, metros 10 al 15). Se deben corresponder con materiales procedentes del desplome de los muros de la torre del homenaje, de la muralla de la fortaleza y del posible muro del patio, por lo tanto, con una composición física idéntica a la de estas estructuras. Tienen unas dimensiones longitudinales de entre 7 y 15 m, según el perfil de exploración, y ocupan la totalidad del espacio analizado, con una cota comprendida entre los 0,35 m y los 3,70 m de profundidad.

A la vista de los resultados que se han obtenido, podrían existir restos arqueológicos en el subsuelo de esta zona, definidos por dos posibles unidades murarias con carácter defensivo muy potentes, que dividirían el castillo santiaguista en dos ámbitos: el primero con inicio en el este, en el sector de la gran torre rectangular construida en el siglo XIII, abarcaría todo el patio de armas con una superficie aproximada según ortofoto de 1450 m2, y finalizaría en el primer muro detectado con georadar. Esta construcción podría tener una función de antemuro defensivo, a partir del cual, se inicia el segundo ámbito, con la torre del homenaje como edificio más simbólico del recinto.
Esta torre se situaría en la zona más occidental del cerro, sobre la roca, y según se interpreta en los radargramas, tendría una posible pared vertical conservada en subsuelo de al menos 3,5 m en su lado este. La planta de la fortificación parece disponerse de forma paralelepípédica, levemente más ancha al sur que al norte, sin división interna en habitaciones o estancias independientes.

En el pequeño patio situado entre el antemuro defensivo y la torre, se ha observado una posible cámara de aire, en parte colmatada por los derrumbes de las estructuras superiores. Se interpreta como una cúpula artificial u oquedad generada por restos constructivos de entidad, depositados sobre el terreno natural tras su desplome, y posteriormente cubiertos por sucesivas capas estratigráficas horizontales procedentes de la caída de los muros adyacentes. Otra interpretación de esta anomalía la define como un posible aljibe construido *ex profeso*, con una función de almacenamiento de agua, básica para la subsistencia de la guarnición en caso de asedio militar.

Figura 192. Posición georreferenciada de las posibles estructuras detectadas en la zona de exploración torre del homenaje.
7.5.1.2. ZONA B

El estudio de la zona que se encuentra al este del castillo medieval cristiano se proyectó para determinar la presencia de estructuras arquitectónicas defensivas soterradas en el subsuelo. El terreno en esta zona presenta una topografía amesetada en su zona central, y un pronunciado aterrazamiento en sus lados sur y este (ver figura 175). La hipótesis de trabajo era que sobre la superficie amesetada se situaran los lienzos norte y oeste de un torreón construido en el siglo XIV, así como cercanos a la curva que describe la terraza, los muros sur y este. Al noreste de la zona de investigación se conserva en la actualidad una gran torre rectangular datada en el siglo XIII, que según los responsables de los trabajos arqueológicos del yacimiento, podría servir como paralelo arquitectónico a la actualmente desaparecida. Entre ambas torres se debe situar una entrada al recinto denominada en las fuentes archivísticas como “puerta de hierro”.

Del análisis de los lienzos de la muralla sur y norte, y del resto de torres que conforman este recinto arquitectónico, se puede inferir que la fábrica del bastión objeto de estudio, podría componerse por mampostería y sillarejo de arenisca, trabado con un mortero pobre en cal.

El estudio de georradar se ha realizado sobre una cuadrícula rectangular con diecinueve perfiles, que como en el caso de la zona A, evidencian numerosas reflexiones de onda que dificultan la detección de anomalías primarias, lo que indica un subsuelo relleno por el material constructivo derrumbado de la torre, o de cualquier estructura arquitectónica cercana o aneja a la misma. En la figura 193 se detalla la disposición de los eventos anómalos sobre la cuadrícula de trabajo.
Las anomalías de tipo I se han registrado en todos los perfiles comprendidos en ambas direcciones de medida, cuyas orientaciones son NO-SE (dirección A) y NE-SO (dirección B). Mantienen alineaciones bien definidas y parecen estar asociadas lateralmente entre sí. Al sur de la zona de investigación se observa la primera anomalía, de 5 m de longitud, delimitada entre el metro 9 de los perfiles P3, P5 y P7, y a 1 m de los perfiles P4, P6 y P8, de la dirección de medida A, con orientación SO-NE. Se sitúa a una cota profunda, en torno a los 0,70 m – 0,80 m, con posible continuidad en dirección este de la cuadrícula de trabajo (figura 195). A este posible muro se le adosa una anomalía al sur, de 1 m de longitud, situada a 0,70 m de la superficie, a 4 m del perfil P18 y 3 m de P19 y que parece proseguir hacia el sur. Por su ubicación y dirección se puede corresponder con el lienzo de muralla que protege el flanco sureste de la fortaleza cristiana (figura 194).
Figura 194. Anomalía tipo I. Reflexión del posible lienzo sur de la muralla. Perfil B-19-B.

Destaca una segunda anomalía a 0,50 – 0,60 m de profundidad con más de 8 m de longitud en la zona oeste de la parcela de exploración, con orientación NO-SE (figura 195). Se adosa a la primera anomalía descrita en el metro 9 del perfil P3 (dirección A), desde donde avanza en dirección noroeste hasta el metro 1 del mismo perfil P3, y en la dirección de medida B, a 5 m de los perfiles P11, P13, P15 y P17, y a 2 m de P12 y P16. Se aprecia una discontinuidad de aproximadamente 2 metros de anchura en la zona intermedia de la anomalía, en el metro 2 del perfil 14.

La tercera anomalía de tipo primario se localiza en el límite norte, con un techo comprendido entre 0,80 – 0,90 m. Atraviesa completamente la cuadrícula durante 7 m en dirección SO-NE, con posible prolongación hacia los lados este y oeste. Se registra a 1 metro de los perfiles de la dirección A, P1, P3, P5 y P7, y a 9 m de P2, P4, P6 y P8 (figura 195).

El cuarto posible muro se observa al este, perpendicular al primer y tercer muro, al que corta en el metro 4 del perfil P10. No es completamente paralelo al muro oeste, pero por su situación podría tratarse del cierre este del conjunto arquitectónico, en este caso la torre tendría unas dimensiones de 8 m x 4 m y una superficie de 32 m². Si se considera la prolongación de los dos posibles muros norte y sur hacia el este, esta posible unidad muraria podría tener un uso de muro medianero o tabique, dividiendo el interior de la torre en dos estancias. En este supuesto la torre tendría unas dimensiones mínimas de 8 m x 5 m y comprendería un área de al menos 40m². El coronamiento de las distintas hipérbolas que
forman este alineamiento, se establece a unos 0,70 – 0,80 m y se orienta NO-SE (figura 195).

Estas cuatro alineaciones deben corresponderse con cuatro grandes muros de gran espesor. Dos de ellos, los situados al norte y sur de la cuadrícula de estudio, paralelos entre sí, con una separación de 8 m. Un tercero aparece en el lado oeste dispuesto perpendicularmente a los dos anteriores. En este posible muro destaca justo en su zona central un vano de unos dos metros de ancho. Puede tratarse de una puerta de acceso a la estructura arquitectónica desde el patio del castillo. El cuarto muro actuaría como cierre de la torre por el este o como muro divisor del espacio interior de la estructura defensiva.

Para finalizar, la última zona anómala primaria se observa al noreste de la cuadrícula, entre los perfiles P6 a P7 y P10 a P12. Por la continuidad subsuperficial de las anomalías, se aprecian dos posibles muros de unos 2 metros de longitud cada uno, con dirección NE-SO y SO-NE respectivamente, perpendiculares entre sí y con coronamiento a 0,80 m, tal y como
se observa en la figura 196. En los radargramas aparecen con menor entidad lateral que los muros de la torre. Parecen apoyar sobre los muros norte y este de la torre, a modo de pequeño habitáculo de 2 m x 2 m y 4 m² de superficie.

![Radargramas de la zona B]

Figura 196. Zona de exploración B. En rojo se señalan sobre los radargramas los posibles muros de la pequeña estancia situada en el sector noreste de la cuadrícula de trabajo. Perfiles B-7-A y B-11-B.

Las anomalías de tipo III se encuentran en la práctica totalidad del subsuelo de la zona B, dispuestas en los radargramas sobre las anomalías de tipo I y en torno a ellas, se caracterizan por una continuidad en la secuencia de reflexión de los radargramas. Al igual que en la zona A, deben corresponderse con materiales procedentes de derrumbes de muros. Tienen unas dimensiones longitudinales de entre 8 y 2 m, según el perfil de exploración (ver figura 193). Este paquete de relleno constructivo se distribuye sobre una profundidad comprendida entre los 0,10 m a 1,90 m.
A partir de la interpretación de las anomalías registradas en el subsuelo de la zona B (figura 197), se considera que pueden conservarse soterrados los cuatro muros de una torre de grandes dimensiones, cubiertos por un amplio derrumbe de material constructivo con procedencia en su propio desplome, y del lienzo de muralla sureste, hoy desaparecidos en superficie. Esta posible torre flanquearía el sector suroriental del castillo construido por la Orden de Santiago. Junto con la gran torre del siglo XIII, se erigiría, por lo tanto, una importante línea defensiva en este sector de la fortaleza, con cimentación sobre una curva de nivel topográficamente sobreelevada con respecto a la antigua construcción islámica.
7.5.1.3. ZONA C

La prospección geofísica que se ha llevado a cabo en esta zona tenía dos objetivos: en primer lugar, localizar en la zona sur de la iglesia, sobre el actual camino del castillo, el muro meridional de la nave sur o nave de la Epístola. Este muro se encuentra parcialmente excavado en su lado oeste. Su fábrica es de mampostería arenisca y mortero de cal, con una anchura de 1,5 m. En la prolongación de este muro hacia el este, se pudo levantar una puerta de acceso a la iglesia por este sector, actualmente desaparecida. Su conservación se presume en mal estado, arrasado hasta su cimentación, puesto que se ubica en una zona donde en el siglo XX se efectuaron obras de rehabilitación, rebaje de la cota del terreno, y engrosamiento del camino del castillo mediante maquinaria pesada.
En segundo lugar, el objetivo de la prospección era analizar el subsuelo de la zona exterior situada a los pies de la iglesia, lugar donde pudo situarse un campanario cuadrangular. Cabe destacar que en las excavaciones que se han realizado en el entorno de la iglesia, se ha documentado una necrópolis con tumbas medievales cristianas e islámicas con distintas tipologías. A partir de estas premisas, se ha trabajado en la localización de enterramientos principalmente caracterizados por su cierre mediante lápida, estructuras funerarias construidas con mampostería o ladrillo, y fosas simples en hoyo.

Esta es una zona compleja para el desarrollo de una investigación con georradar: la topografía, en su vertiente sur, presenta un importante desnivel vertical, y los muros conservados en superficie, al norte y oeste, limitan la posibilidad de trazar cuadrículas amplias de prospección. Sobre la base de estas particularidades geomorfológicas y estructurales, los registros de georradar permitieron verificar varios lugares donde existen reflexiones subterráneas. Aunque en ningún radargrama se han observado anomalías del tipo II y III que pudieran interferir en la señal, los eventos anómalos obtenidos son muy débiles, con mala definición lateral, y por tanto, difíciles de interpretar. Con las anomalías primarias se ha elaborado una planimetría para cada una de las dos zonas de estudio (figura 199).

Figura 199. Situación de las anomalías detectadas con GPR en la zona sur de la iglesia (izquierda) y a los pies del templo (derecha).

En la zona sur de la iglesia se observan diversas anomalías de tipo I, pudiendo subdividirse en anomalías con continuidad subsuperficial (I_A) y anomalías individuales (I_B).
Dentro del primer subtipo destaca una alineación de 3 m de longitud que atraviesa la cuadrícula de exploración en dirección E-O. Se registra entre los metros 3 y 4 de los perfiles P1 y P3, y a 2 m de P2 y P4, de la dirección de medida A, y en los metros 0 y 3 de P8, de la dirección B (figura 200). Este posible muro avanza en dirección este, hacia el testero del edificio. Los perfiles de georradar se han realizado a 1,5 metros del corte estratigráfico de la excavación, con lo que debe de corresponderse con el muro parcialmente excavado de la iglesia en su lado oeste.

Las dos alineaciones restantes sólo se han registrado en los metros 1 y 2 de los perfiles P3 y P4 de la dirección A, y a 1 m de P5 de la dirección B (figura 200). Por su alineamiento podría tratarse de dos pequeños muros, pero es complicado definir su naturaleza por la débil señal de sus de registros.

Las tres líneas de anomalías se encuentran someras, a 0,30-0,40 m de profundidad en su coronamiento, por unos 0,50 de profundidad de base en las dos estructuras pequeñas. Sin embargo, la base de la primera anomalía descrita, se sitúa a 0,60 m de profundidad: esto indica que debe tratarse de un elemento arquitectónico de mayor entidad que la segunda y tercera alineación, con una cimentación más potente.

Por otro lado, la segunda tipología, subtipo I_B, se correspondería con posibles estructuras independientes, con dimensiones de entre 1 y 2 m, cota de profundidad a 0,40 m, y escasa entidad en los radargramas obtenidos con la antena de 250 MHz (ver figura 201). Las excavaciones arqueológicas que se han realizado en la zona norte de la iglesia, y en las naves internas del templo, han permitido verificar una actividad funeraria importante, con diversos tipos culturales y morfológicos de enterramiento. Sobre la base de estos datos se puede inferir que las señales registradas se pueden corresponder con reflectores de escaso contraste, como por ejemplo, tumbas simples en fosas excavadas sobre el suelo natural y rellenas con el propio material geológico y antropológico de la zona. Se observan varios casos de este tipo de leves alteraciones en los radargramas, a 1 m del perfil P1, 3 y 5 m de P2, 1 m de P9 y 2 m de P10.
En la segunda zona de investigación, a los pies de la iglesia, no se han detectado anomalías del subtipo I_A. A la vista de los resultados, se deduce que al menos en el subsuelo inmediato situado al oeste del edificio, sobre una superficie de 16 m², no existen elementos arquitectónicos constructivos que pudieran indicar la existencia de un campanario anexo.

Las anomalías del subtipo I_B se caracterizan en los radargramas, al igual que junto al muro sur de la iglesia, por una señal de onda tenue, sin la clásica hipérbola bien definida, sino más bien como un leve cambio en la secuencia continua del patrón de reflexión. Por el contrario, cambia la disposición espacial en el subsuelo, con una diferencia de cotas de más de 0,50 m de profundidad, se localizan en este caso a 0,80 – 0,90 m. Estas características pueden observarse en la figura 202. La necrópolis excavada en la zona norte de la iglesia podría extenderse por este sector occidental. En este sentido, las anomalías descritas pueden corresponderse con diversos enterramientos humanos integrados en un gran espacio funerario que rodea al edificio cristiano.
La interpretación de los resultados obtenidos en ambas zonas mediante el estudio de georradar, muestra que el subsuelo del entorno de la Iglesia de Nuestra Señora de La Estrella fue utilizado como campo santo. Los radargramas no permiten obtener una caracterización cronológica o cultural de las anomalías detectadas, sin embargo, se puede deducir a partir de la señal producida por las anomalías, que ante la ausencia de reflectores importantes como lápidas de piedra que cubran los enterramientos, y a la vista de los resultados de las excavaciones arqueológicas efectuadas en otras zonas cercanas, la tipología más apropiada en la que encuadrar las posibles inhumaciones sería la de fosas o zanjas simples excavadas sobre la tierra. Estas fosas contarian con alguna laja de piedra o de cerámica en parte o la totalidad de su perímetro, y habrían sido rellenadas, con posterioridad, con material geológico natural de la zona, probablemente del mismo hoyo.

En cuanto al muro sur de la iglesia, hay que señalar que parece continuar al menos durante 3 metros en dirección este, pero está muy arrasado en altura en comparación con los muros exhumados durante las últimas campañas de excavación. Así mismo, se han detectado dos posibles muretes de poca entidad, con continuidad hacia el este. Por su potencia y cota, posiblemente sean posteriores al gran muro sur. Se fabricarían para obtener nuevas compartimentaciones o habitaciones dentro la gran nave de la Epístola, amortizando el espacio de este sector del edificio.
Es una zona en la que los derrumbes constructivos de mampostería son prácticamente nulos, esto puede deberse a las labores de nivelación y ensanchamiento del camino con maquinaria pesada durante el siglo pasado, que habrían limpiado y arrasado casi todos los depósitos conservados estratigráficamente en posición primaria hasta prácticamente la cota actual de uso, permaneciendo únicamente los niveles de cimentación de los muros. No se ha podido determinar la presencia de alguna discontinuidad que pudiera relacionarse con una puerta o vano de acceso por este lado del templo.

7.5.1.4. ZONA D

El trabajo de prospección realizado en la zona situada en la ladera sureste del cerro, se orientó a la comprobación de la existencia del primitivo camino de acceso desde la villa medieval de Montiel a la fortificación ubicada en la parte superior del yacimiento. La zona de investigación se sitúa sobre un área sin pendiente, nivelada, en una zona aterrazada, con una diferencia de altura de unos tres metros por debajo del camino actual. Actualmente se desconoce la anchura y trazado original de la vía, así como si existieron amurallamientos que reforzaran su defensa o parapetos porticados ligados al control del acceso a la fortaleza. Los trabajos se ejecutaron en el límite norte de las excavaciones arqueológicas desarrolladas en este sector, que han permitido la
documentación de zonas empedradas bastante degradadas, compuestas por un nivel de mampuestos de arenisca y caliza de tamaño medio y pequeño sin desbastar, relacionadas con zonas de paso, y algunos muros que posiblemente flanquearían el camino, permitiendo el aterrazamiento del terreno para salvar el desnivel.

La cantidad de registros anómalos obtenidos por la exploración que se ha efectuado con el GPR en esta zona es escaso. Al igual que en la zona C, los eventos anómalos obtenidos son muy débiles, poco definidos, de hecho, en ningún radargrama se han observado anomalías del tipo II y III. Con las escasas anomalías primarias obtenidas, se ha elaborado una planimetría para esta zona. En la figura 204 se detalla la disposición de las anomalías sobre la cuadrícula de trabajo.

Figura 204. Ubicación de las anomalías detectadas con GPR en la zona del antiguo camino de la villa medieval.

Las anomalías del tipo I no se representan por formaciones de hipérbolas sólidas, sino por leves alteraciones de escasa amplitud, pero que puede indicar un contraste entre las propiedades electromagnéticas de los materiales en contacto. Al sur de la zona de prospección, las excavaciones arqueológicas han revelado la existencia de socavones en zonas empedradas del firme, ruptura del suelo arqueológico mediante el vaciado de
tierras para construcción de silos de almacenaje, incluso varios enterramientos sobre la teórica superficie del primitivo camino medieval.

Estas alteraciones en los radargramas se localizan en ambas direcciones de medida y siempre a una cota cercana a los 0,50 m (figura 205). Se pueden interpretar en su mayoría como pequeñas áreas donde ha desaparecido la capa de material superficial utilizada para la fábrica del posible camino, a modo de baches, que dejarían al descubierto el suelo geológico natural en esos puntos. Estos cambios en el patrón de reflexión se localizan a 1 metro del inicio de los perfiles P5, P6 y P9.

![Figura 205. Radargramas de los perfiles D-5-A y D-6-A del la zona de exploración D. El recuadro rojo indica la posible fractura sobre la estructura horizontal del camino.](image)

También se observa un segundo modelo en la ruptura de la continuidad de los radargramas, similar al del caso descrito anteriormente, pero con una leve continuidad subvertical en las reflexiones dentro de zonas muy definidas, que podrían
corresponderse con silos, hoyos excavados *ex profeso*, posteriores a la construcción del camino, con un posible uso de almacenamiento, colmatados con materiales distintos a los materiales encajantes que los albergan. Se sitúan al inicio del perfil P8, y en su metro 5, a 1 m de P11, y a 6 metros de P12 (figura 206).

![Figura 206. Zona camino medieval. Perfil D-8-B. En rojo se indican la posición de los posibles hoyos colmatados en los metros 0 y 5.](image)

Sobre la base de los resultados obtenidos, se puede interpretar que en la zona de estudio debe conservarse una sección del antiguo camino medieval, degradado en varios puntos por la posible presencia de hundimientos donde se ha podido perder el empedrado original, y por pequeños agujeros rellenos de materiales alóctonos, excavados en los niveles geológicos naturales, probablemente estructuras de almacenamiento tipo silo.

No se han documentado alineaciones murarias, ni estructuras arquitectónicas relacionadas con la construcción del aterrazamiento que se observa en la superficie del terreno en su zona este, destinadas al refuerzo del camino para salvar la pendiente lateral en este sector de la ladera.

7.5.2. TOMOGRAFÍA ELÉCTRICA

Como se describió en apartados anteriores, en el conjunto arqueológico del Castillo de Montiel se han realizado 13 perfiles y cinco bloques 3D de tomografía eléctrica agrupados en cuatro zonas, torre del homenaje, puerta de hierro, en el entorno de la Iglesia de Nuestra Señora de la Estrella, y en el antiguo camino medieval de la villa hacia el castillo, elegidas por corresponderse con zonas de anomalía del georradar. Los perfiles de tomografía se configuraron según las distintas zonas, con diversas distancias
interelectródicas y una longitud suficiente para poder detectar muros con unas dimensiones métricas, con una resistividad teórica superior a los 100 ohmios.metro (Ω.m).

A continuación se muestran los resultados de los perfiles realizados de forma gráfica. Las zonas con las mayores resistividades registradas quedan destacadas por sus colores rojos o rojo-amarillos. Estas zonas de mayor resistividad o zonas anómalas, deben corresponder según en la posición en la que se encuentran y la forma en planta a las estructuras de interés arqueológico motivo de esta investigación.

7.5.2.1. ZONA A

La investigación mediante tomografía eléctrica en esta zona ha consistido en la ejecución de un bloque 3D denominado MO53D, y 4 perfiles o secciones, denominados MO10, MO11, MO12 y MO13. Estos perfiles se midieron con las configuraciones dipolo-dipolo 3D, radial gradient 3D, dipolo-dipolo, Wenner-Schlumberger y strong gradient, con separación interelectródica de 1 metro y separación entre perfiles de 1,5 metros (ver figura 183). A partir de estas medidas se han realizado las correspondientes secciones de resistividad 2D.

Los perfiles de inversión de resistividad (secciones 2D) realizados se muestran en las figuras 206 a 209. Las secciones muestran una estructura general del subsuelo formado por un sustrato geológico homogéneo caracterizado por unos valores resistivos superiores a 1000 Ω.m, representado por el color rojo en la base de los perfiles, que debe corresponder con un crestón de calizas tobáceas sobre el que se asientan las estructuras. La parte superior de este sustrato (techo) aparece, según los diferentes puntos, entre 3 y 6,9 metros de profundidad. Continúa esta unidad hasta la máxima profundidad de investigación, 8,7 m. Sobre el material arqueológico se distingue un material caracterizado por valores de resistividad bajos, que varían entre 15 y 60 Ω.m, representado por colores azules, y valores medios, que varían entre 70 y 190 Ω.m, representado por colores verdes y amarillos. Debe corresponder con depósitos antrópicos procedentes de los derrumbes de los muros desplomados, compuestos por mampostería y morteros descompuestos. El espesor de estos materiales varía entre 0,20 y 4,1 m. Intercalados en estos materiales superficiales, se encuentran restos de posibles estructuras enterradas que destacan por sus altos valores resistivos comprendidos entre 350 y 1000 Ω.m. Se representan por colores naranja y rojo.
El perfil MO10 (figura 206) muestra una zona anómala principal con unos valores de resistividad relativamente altos, entre 800 y 1000 Ω.m, entre los metros 13 y 18 (electrodos 16 a 19), a una profundidad de entre 0,30 y 0,40 m, con unas dimensiones aproximadas de 1 metro de ancho, techo a 0,30 m de la superficie, y base a 2,1 m de profundidad. Dentro de este perfil se diferencian, igualmente, tres zonas de resistividad elevada, entre 750 y 1000 Ω.m, en los metros 1 y 2, 6 y 8, y del 10 al 11, y un punto de resistividad intermedia, entre 250 y 360 Ω.m, en los metros 4 y 5 de la sección, todos con una profundidad de entre 0,40 y 0,60 m.

El perfil MO11 (figura 207) es muy similar al analizado anteriormente. Las principales anomalías presentan unos valores resistivos elevados, entre 800 y 1000 Ω.m, y se sitúan entre los metros 1 y 2, 14 y 16, y en el 20. Todas con una cota comprendida entre 0,40 y 0,80 m de profundidad. Se observa una anomalía a 5 metros del inicio del perfil, caracterizada en color anaranjado, con 380 Ω.m de resistividad. Se distingue de las anteriores por la cota a la que se registra, a más de 2 m de profundidad.

En el perfil MO12 (figura 208) se observan dos zonas anómalas principales, la primera, muy potente, comprendida entre los metros 13 y 22, con una forma horizontal alargada con base profunda a 3,5 m, y con una resistividad comprendida entre 950 y 1000 Ω.m.
Y una segunda entre los metros 8 y 10, de elevada resistividad (en torno a los 750 Ω.m) con una estructura subhorizontal observable mediante un color naranja rojizo, con coronamiento a 0,30 m. Por otro lado, se distinguen al inicio del perfil, en el metro 1 y en el metro 5 dos anomalías de dimensiones contenidas y resistividad media (330 Ω.m), a distintas cotas. La primera, somera, con arranque a 0,30 m, la segunda más profunda, con techo a 2,2 m. Como en los perfiles anteriores, todas estas zonas anómalas están envueltas por materiales de resistividades menores comprendidas entre 150 a 260 Ω.m, de nuevo los derrumbes de mampostería arenisca.

![Figura 209. Perfil de tomografía eléctrica MO13.](image)

La sección MO13 (figura 209) se sitúa en el límite norte de la zona de exploración. En este perfil se destaca nuevamente la zona anómala central (metros 11 a 22), manteniéndose la alta resistividad (1000 Ω.m) y la profundidad base de la posible estructura en torno a 3,5 m. Desde el inicio del perfil avanzando en dirección oeste (metro 1 al 10), hay varias anomalías en color anaranjado con resistividades medias y elevadas (de entre 350 a 620 Ω.m). Presentan formas alentejadas y se disponen entre 0,10 y 2,3 m de profundidad. Se siguen detectando en la totalidad del perfil los paquetes constructivos derrumbados, desde la superficie hasta los 3,9 m en algunos puntos, con resistividades comprendidas entre 15 y 210 Ω.m.

Para obtener una visión conjunta de las anomalías detectadas, se ha elaborado una secuencia de imágenes con los perfiles ordenados según su orden de medición, en los que se señalan las principales singularidades resistivas, tal y como puede observarse en la figura 210.

Del análisis de los cuatro perfiles se deduce que el subsuelo inmediato de la zona de la torre del homenaje es homogéneo. Aparecen seis anomalías con continuidad en la práctica totalidad de los perfiles.

Se pueden distinguir dos tipos de anomalías según la posición espacial que ocupan en las líneas eléctricas. En primer lugar, las que situadas entre los 0 y 2 metros de profundidad. Se corresponden con las anomalías A, C, D y E. Por sus dimensiones y alineamiento, las anomalías A, C y D, se pueden interpretar como tres posibles muros potentes de entre 1 m y 2 de grosor. La anomalía D no se refleja en el perfil de tomografía MO13. Si se consideran las descripciones documentales sobre la arquitectura del alcázar santiaguista, puede deberse a la existencia de una posible puerta o pasillo en esta zona, con acceso a un patio ubicado frente a la torre principal de la fortaleza.

La anomalía E destaca en la zona central de los cuatro perfiles. Debe corresponderse con una estructura arquitectónica ciclópea, posiblemente con el muro de cierre este de la torre del homenaje. No se conoce en el yacimiento arqueológico ningún elemento constructivo de tal envergadura. Los muros conservados en la superficie de este sector del castillo no sobrepasan los 2 m de anchura. Se puede deducir que este posible muro de cierre de la torre puede estar cubierto y flanqueado por un derrumbe considerable, compuesto por un material...
constructivo de características resistivas similares a las de sus materiales de fábrica (figura 211).

Figura 211. Subsuelo oriental zona A. Simetría axial a partir del bloque 3D MO53D. Recuadro azul: posible muro este de la torre. Recuadro magenta: derrumbes asociados.

En segundo lugar, se distinguen anomalías con techos por debajo de los 2 metros. En este sentido, la anomalía B se sitúa entre los metros 3 y 5 de los cuatro perfiles, mantiene un patrón lineal y una resistividad elevada, por encima de 330 Ω.m, y diferente de los materiales que la albergan, con resistividades inferiores a 200 Ω.m. Por la profundidad a la que se encuentra, y sus valores resistivos, puede tratarse de un posible recinto subterráneo, aljibe o habitación de almacenaje, colmatado por el desplome de los posibles muros A y B (figura 212). La anomalía F tiene desarrollo lineal en los cuatro perfiles y se ubica entre los metros 15 y 19. Destaca por su baja resistividad, inferior a 20 Ω.m. Puede corresponderse con una estructura negativa rellena por materiales arcillosos.
7.5.2.2. ZONA B

La investigación mediante tomografía eléctrica en esta zona ha consistido en la ejecución de tres bloques 3D denominados MO13D, MO23D y MO33D, y 4 perfiles, designados MO1, MO2, MO3 y MO4. Estos perfiles se midieron con las configuraciones dipolo-dipolo 3D, radial gradient 3D, dipolo-dipolo, Wenner-Schlumberger y strong gradient, con separación interelectródica de 0,5 metros y separación entre perfiles de 1 metro. Para el bloque MO33D se trabajó con distancia interelectródica de 1 metro y separación entre perfiles de 2 metros (ver figura 184). A partir de estas medidas se han realizado las correspondientes secciones de resistividad 2D.

Los perfiles de inversión de resistividad (secciones 2D) realizados se muestran en las figuras 213 a 216. La corta distancia interelectródica empleada ha permitido una correcta caracterización del sustrato arqueológico superficial, con escasa penetración
hasta la base geológica de esta zona del cerro, compuesta por roca caliza con resistividad superior a 450 $\Omega\cdot$m. Se localiza a partir de 2,50 m de profundidad. Las secciones muestran una estructura general del subsuelo formado por una estratigrafía arqueológica caracterizada por unos valores resistivos comprendidos entre 315 y 1100 $\Omega\cdot$m, representado por los colores naranja y rojo en los perfiles, que debe corresponder con restos de posibles estructuras enterradas, observables hasta la máxima profundidad de investigación, 3,2 m. Por encima del material arqueológico se distingue un material caracterizado por valores de resistividad bajos, que varían entre 45 y 90 $\Omega\cdot$m, representado por colores azules, y valores medios, que varían entre 90 y 170 $\Omega\cdot$m, representado por colores verdes y amarillos. Debe corresponder con depósitos antrópicos procedentes de los derrumbes de los muros colapsados, compuestos por mampostería y morteros disgregados. El espesor de estos materiales varía entre 1 y 2,45 metros.

Figura 213. Perfil de tomografía eléctrica MO1.

El perfil MO1 (figura 213) muestra dos zonas anómalas relevantes con unos valores de resistividad elevada, entre 600 y 1100 $\Omega\cdot$m, entre los metros 4 y 7 (electrodos 8 a 15), a una profundidad de entre 0,80 y 1,60 m, con unas dimensiones aproximadas de 1,2 metros de ancho, techo a 0,80 m de la superficie, y base a 2,1 m de profundidad. Dibujan un buzamiento hacia el sur de la sección. Dentro de este perfil se diferencia, igualmente, una segunda zona de resistividad elevada (entre 500 y 650 $\Omega\cdot$m), en la zona norte del perfil, en su metro 11.

Figura 214. Perfil de tomografía eléctrica MO2.

En la sección MO2 (figura 214) se aprecian dos zonas anómalas bien definidas. En la zona intermedia del perfil se observan dos cuerpos anómalos con techo a 0,90. La primera se
corresponde con los metros 4 al 6 del perfil, con geometría alargada, y una leve inclinación hacia el inicio de la sección. La segunda, es una anomalía subvertical situada en el metro 7,5. La elevada resistividad de los materiales es similar en ambos casos (420 a 550 Ω.m).

En una cota inferior, debajo de las anomalías descritas, se observa una tercera anomalía con resistividad superior a los 500 Ω.m en el metro 6, a más de 2,50 m de profundidad, que continúa más allá del borde inferior de la zona de estudio. Se puede corresponder con el sustrato geológico calizo presente en la zona superior del cerro, sobre el que se apoyan las cimentaciones de los muros perimetrales de la fortaleza.

La segunda zona anómala se enmarca entre los metros 10,5 y 11,5. Mantiene la altura de cota con respecto a las anomalías centrales, con unos valores de resistividad elevados, comprendidos entre los 400 a 550 Ω.m.

El perfil MO3 (figura 215) es semejante al anterior perfil descrito en cuanto al número de anomalías y su ordenación espacial. Difieren las resistividades, que reducen su valor general una media de 100 Ω.m. En la zona central existen dos anomalías a 0,90 m de profundidad, la primera se extiende del metro 4 al 6 de la sección, con alta resistividad de 470 Ω.m. La segunda se ubica en la vertical del metro 7 del perfil, con un valor máximo de resistividad de 280 Ω.m. Por debajo de éstas, a más de 2,5 m se aprecia el nivel natural tobáceo.

Entre los metros 10,5 y 12 de la sección (electrodos 22 al 25) se registra una anomalía subhorizontal, con techo a 0,75 m, base en 1,10 m y valores resistivos medios comprendidos entre 330 y 460 Ω.m.
La sección MO4 (figura 216) corresponde a la última de las secciones realizadas en la zona de la puerta de hierro. En dicha sección se aprecian nítidamente zonas subhorizontales de resistividad media y alta (250 a 310 Ω.m.) con una profundidad máxima de 2,60 m, situadas en los metros 4,5 a 8, y 10,5 a 12. Y anomalías de menor entidad, dispuestas entre la superficie y 0,50 m de profundidad, como las detectadas en los metros 4,5, 5,5, 9, y 10,5 con valores resistivos menores de 180 a 200 Ω.m. Los derrumbes constructivos, representados en color verde y azul, abarcan el subsuelo desde el inicio del perfil hasta el metro 6, con valores resistivos de 55 a 130 Ω.m, envolviendo al resto de las posibles estructuras antrópicas.

Para obtener una visión conjunta de los eventos anómalos detectados, se ha elaborado una secuencia de imágenes con los perfiles ordenados según su orden de medición, en los que se señalan las principales singularidades resistivas, tal y como se muestra en la figura 217.
Figura 217. Zona puerta de Hierro. Secuencia con los perfiles 2D de tomografía eléctrica. Perfiles MO1, MO2, MO3 y MO4. Las anomalías se remarcan en color negro.

Como puede observarse en los perfiles realizados, el subsuelo de la zona B-puerta de hierro es uniforme. Se registran tres anomalías con continuidad en la totalidad de los perfiles.

Las anomalías A y B sobresalen en la zona central de los perfiles. Se caracterizan por situarse a una profundidad similar (entre 0,80 y 0,90 metros), aunque la anomalía A buza en diagonal hacia la parte inferior sur de las cuatro secciones, con posible continuidad en la zona oscura de la toma de datos. La anomalía A es potente, con más de 1,3 m de grosor y una geometría horizontal alargada. La anomalía B se caracteriza por una disposición vertical, y menor envergadura lateral, inferior al metro. Se ha documentado en otras zonas de la parte superior de la construcción militar cristiana cómo en ocasiones los lienzos de la muralla, y algunas de las paredes de las torres perimetrales se desploman, además de en los habituales microderrumbes de mampostería, en grandes bloques de mampuestos trabados, que permanecen articulados en posición estratigráfica tras su caída. Sobre la base de estos registros arqueológicos y a la vista de los distintos perfiles de tomografía eléctrica, las anomalías A y B se interpretan como la cimentación de un posible muro de mampostería (anomalía B) y su derrumbe asociado (anomalía A). Este colapso de material constructivo habría cedido hacia el lado sur en forma de un gran bloque agrupado. Como se puede observar en las imágenes obtenidas con las configuraciones 3D, el muro parece avanzar alineado en dirección O-E (figura 218).
Figura 218. Vista general de las anomalías detectadas al sur de la zona B a partir de un bloque 3D medido mediante configuración radial gradient. Recuadro rojo: posible muro. Obsérvese los derrumbes asociados a su alrededor. La anomalía azul en el extremo sureste de la imagen se relaciona con el inicio de un talud arcilloso en esta zona del yacimiento.

Otro elemento anómalo importante es el C, registrado al final de las cuatro secciones de tomografía en el metro 10,5. Su coronamiento coincide con el de las anomalías A y B. Geométricamente su extensión lateral aumenta en los perfiles desde el oeste (MO1) hacia el este (MO4), con bordes poco nítidos y verticalizados. La alineación de la anomalía C en los cuatro perfiles, permite suponer que se trata de un posible muro, separado a unos 5,5 metros de la posible estructura arquitectónica caracterizada por la anomalía B.

Las anomalías D y E se registran únicamente en el perfil MO4. La falta de datos geofísicos continuados sobre estas anomalías en el resto de perfiles tomográficos, impide poder realizar una interpretación fiable sobre la posibilidad de que se trate de pequeños muros u otro tipo de estructuras antrópicas. Por su resistividad comprendida entre los 200 y 250 \(\Omega \cdot m \), y su situación espacial somera, pueden corresponderse con bloques constructivos de mampostería trabada con mortero, de escaso tamaño, y dispersos en el paquete arqueológico de derrumbes.
7.5.2.3. ZONA C

La investigación mediante tomografía eléctrica en esta zona ha consistido en la ejecución un perfil, denominado MO5. Este perfil se midió con las configuraciones dipolo-dipolo y Wenner-Schlumberger, con separación interelectódica de 0,5 metros. A partir de estas medidas se ha realizado la correspondiente sección de resistividad 2D.

El perfil de inversión de resistividad realizado se presenta en la figura 7.48. La sección muestra una estructura general del subsuelo formado por un sustrato geológico homogéneo caracterizado por unos valores resistivos inferiores a 50 Ω.m, representado por el color azul en la base de los perfiles, que debe corresponder con las lutitas sobre las que se asientan las estructuras. La parte superior de este sustrato (techo) aparece, según los diferentes puntos, entre la misma superficie y los 1,2 m de profundidad. Continúa esta unidad hasta la máxima profundidad de investigación, 2,5 m. Por encima del material geológico se distingue un material caracterizado por valores de resistividad medios, que varían entre 120 y 160 Ω.m, representado por el color verde. Debe corresponderse con estratos arqueológicos procedentes de derrumbes de muros desplomados cercanos exhumados mediante excavación arqueológica, compuestos por mampostería arenisca y caliza. El espesor de estos materiales varía entre 0,40 y 1 m. Envueltos en estos materiales superficiales, se encuentran restos de posibles estructuras enterradas que destacan por sus altos valores resistivos comprendidos entre 250 y 840 Ω.m. Se representan por colores amarillo, naranja y rojo.

En el perfil MO5 (figura 219) se destacan claramente tres zonas anómalas en colores amarillo y rojo. La primera, se sitúa al inicio del perfil (oeste), bien acotada lateralmente entre el metro 0 y 0,5, con techo a 0,20 m de la superficie, presenta unos valores de resistividad de 250 Ω.m. La segunda anomalía principal tiene un valor de resistividad idéntico a la anterior (250 Ω.m.). Se encuentra entre los metros 7,5 y 9 (electrodos 16 a 19), a una profundidad somera de 0,10 m, con unas dimensiones aproximadas de 0,90 m.
de espesor. Geométricamente sus bordes están bien definidos, con mayor anchura en la base que en su coronamiento. Describe un leve buzamiento hacia el oeste de la sección. En el extremo este del perfil, entre el metro 11,5 y 13,5, se diferencia una zona de alta resistividad (840 Ω.m) a 0,20 m de profundidad. Es una anomalía subhorizontal, alargada, que parece continuar hacia la zona límite de exploración, en dirección norte.

La disposición perpendicular de la sección respecto a varios muros exhumados en esta zona, hace suponer que las anomalías detectadas pueden relacionarse con la prolongación de estas estructuras arquitectónicas por el subsuelo de la zona sur de la iglesia y el actual aterrazamiento del camino de servicio del castillo en su lado sur.

7.5.2.4. ZONA D

La prospección eléctrica en esta zona ha consistido en la ejecución de un bloque 3D denominado MO43D, y 4 perfiles o secciones, denominados MO6, MO7, MO8 y MO9. Estos perfiles se midieron con las configuraciones dipolo-dipolo 3D, radial gradient 3D, mixed gradient, dipolo-dipolo y Wenner-Schlumberger, con separación interelectródica de 0,5 metros y separación entre perfiles de 1 metro (ver figura 185). A partir de estas medidas se han realizado las correspondientes secciones de resistividad 2D.

Los perfiles de inversión de resistividad ejecutados se muestran en las figuras 220 a 223. Las secciones muestran una estructura general del subsuelo formado por un sustrato geológico homogéneo caracterizado por areniscas y arcillas con unos valores resistivos comprendidos entre 60 y 130 Ω.m, representado por el color azul en la base de los perfiles. La parte superior de este sustrato (techo) aparece bien definido a 1,9 metros de profundidad. Continúa este estrato hasta la máxima profundidad de investigación, 2,5 m. Sobre el material geológico se distingue un material caracterizado por valores de resistividad medios y altos, representado por colores amarillo, naranja y rojo, que varían entre 220 y 430 Ω.m. Debe corresponderse con las posibles estructuras antrópicas. El espesor de estos materiales varía entre 0,70 y 1,1 m. Sobre estos materiales arqueológicos, se encuentra un paquete poco resistivo, representado en color azul, verde y amarillo, con zonas en las que aumenta su resistividad (de 60 a 180 Ω.m),
posiblemente constituido por materiales geológicos y restos arqueológicos derivados de su posición primaria, procedentes de cotas superiores de la ladera del cerro.

Figura 220. Perfil de tomografía eléctrica MO6.

En el perfil MO6 (figura 220) se observa una franja anómala subhorizontal anaranjada en la totalidad de la sección, desde el metro 1,5 al 12, con una resistividad media de 300 \(\Omega \cdot m \), techo a 0,60 m y base a 1,30. Por otro lado, dentro de esta anomalía destacan en sus extremos dos zonas con alta resistividad (350 a 410 \(\Omega \cdot m \)), la primera entre los metros 1,5 a 5,5, y del metro 9 al 12, la segunda. Desde la superficie hasta el metro 0,55 de profundidad, se registra un estrato continuo, de baja resistividad (70 a 90 \(\Omega \cdot m \)), que cubre la anomalía longitudinal de forma homogénea durante los 13,5 m del gráfico.

Figura 221. Perfil de tomografía eléctrica MO7.

Al igual que en el anterior perfil, se observa una zona de elevada resistividad (en torno a los 390 \(\Omega \cdot m \)), a profundidad media (0,65 m), localizada entre los metros 1,5 y 3. Se detectan también zonas de resistividades menores (190 a 230 \(\Omega \cdot m \)) subparalelas a la superficie en la zona central del perfil, desde el metro 5 al 8,5. A partir de este punto aumenta constantemente la resistividad hasta 390 \(\Omega \cdot m \) en el extremo este de la sección (metro 13). Estas anomalías se encuentran dispuestas bajo materiales arcilloarenosos y arqueológicos poco resistivos (75 a 130 \(\Omega \cdot m \)), depositados en esta zona por arrastre desde niveles superiores del yacimiento.

Figura 222. Perfil de tomografía eléctrica MO8.
El perfil MO8 (figura 222) muestra dos zonas anómalas principales, la primera con tendencia subvertical, comprendida entre los metros 3 y 5, base a 1,3 m, con una resistividad de 280 Ω.m. Y una segunda entre los metros 8 y 12, de elevada resistividad (en torno a los 400 Ω.m) con una estructura subhorizontal observable mediante un color naranja rojizo, con coronamiento a 0,65 m. Por otro lado, se distingue como el paquete superior que apoya sobre las zonas de resistividad elevada, observado en todos los perfiles entre la superficie y los 0,60 m de profundidad, aumenta los valores de resistividad hasta los 170 Ω.m entre el metro 5,5 al 10,5 de la sección. Se trata de nuevo de los materiales procedentes del cerro en posición derivada por escorrentías.

La última de las secciones ejecutadas en la zona del antiguo camino medieval se corresponde con MO9 (figura 223). Se aprecian nítidamente dos zonas de resistividad alta (430 Ω.m.), bien definidas lateralmente, con una profundidad máxima de 1,50 m, situadas en los metros 7,5 a 9,5, y 10,5 a 12,5. Y una anomalía horizontal de menor entidad en la zona inicial del perfil, situada entre los 0,65 y 1,25 m de profundidad, con valores resistivos de 200 a 270 Ω.m.

Para obtener una visión conjunta de las anomalías detectadas, se ha elaborado una secuencia de imágenes con los perfiles ordenados según su orden de medición, en los que se señalan las principales singularidades resistivas, tal y como se observa en la figura 224.
La disposición subsuperficial de los eventos anómalos registrados mantiene un patrón continuado en los cuatro perfiles ejecutados. Se observa una persistencia en la horizontalidad y cota de los posibles estratos arqueológicos soterrados. Así pues, se han caracterizado cuatro anomalías principales definidas como A, B, C y D. En los tres primeros casos (A, B y C) parecen tener un mismo grosor, cercano a los 0,70 m, el techo a 0,65 m y la base sobre el nivel geológico entre 1,40 y 1,50 metros. En la zona oeste de los perfiles, desde el inicio hasta el metro 5, existe una buena definición de la base, coronamiento y alineación de los materiales con resistividad elevada. Sin embargo, en la zona central de las secciones, se reduce la resistividad de las anomalías, representándose en las imágenes rupturas puntuales en la capa subparalela. Esta reducción de los valores de resistividad y detalle de las anomalías, reivindica progresivamente en la zona este de las secciones tomográficas, donde la resistividad vuelve a ser elevada. En la sección MO9 la anomalía C aparece disgregarse en una segunda anomalía D que ocupa una franja de 1 metro de longitud, entre los metros 8 y 9, que parece tener un reflejo alineado en los mismos metros de MO8, por lo que puede corresponderse con un muro o refuerzo lateral del camino situado al sur de la zona de estudio.
La prolongación descrita en los perfiles de las anomalías más resistivas en un sector del yacimiento en el que la topografía está aterrazada artificialmente, junto con los datos obtenidos mediante excavación arqueológica, que indican la existencia de una posible vía empedrada, hacen suponer que en la zona investigada puede conservarse un posible camino o suelo con unas características físicas distintas a las del medio arcilloso que lo alberga (figura 225).

7.6. DISCUSIÓN Y CONTRASTE DE RESULTADOS

La investigación efectuada en el Castillo de La Estrella tiene como objetivo delimitar las zonas con presencia de estructuras antrópicas, y comprobar la validez del uso combinado de métodos geofísicos eléctricos y electromagnéticos en el yacimiento, con el fin de desarrollar futuras intervenciones arqueológicas en las áreas de mayor interés. La exploración geofísica ha permitido determinar los sectores en los que se registran...
una cantidad importante de elementos anómalos. Con estos datos se pretende caracterizar la disposición espacial y naturaleza física de las anomalías documentadas en la prospección geofísica, sobre la base del uso combinado de georradar y tomografía eléctrica, y su contraste a partir de excavaciones arqueológicas sistemáticas. Para ello se expondrá de manera pormenorizada un análisis de cada una de las zonas en las que se han realizado excavaciones arqueológicas, contrastando los resultados con los obtenidos mediante la exploración geofísica, con el fin de determinar la idoneidad o carencias de los métodos y configuraciones empleadas en un yacimiento arqueológico con las particularidades arqueológicas y geológicas propias del Castillo de Montiel.

El método de trabajo ha consistido en una excavación en área de la zona occidental del castillo, de las zonas sur y oeste de la iglesia, y del antiguo camino de acceso, mediante el levantamiento de estratos georradar y tomografía eléctrica, desde el más reciente hasta el registro de mayor antigüedad o un nivel estéril. En la zona B-puerta de hierro no se ha realizado ninguna excavación arqueológica.

7.6.1. ZONA A

En la campaña de excavación se trataba de delimitar completamente la estructura de la torre del homenaje, así como localizar el foso que la separa de la zona central de la fortaleza. Además, se pretendía documentar si los niveles de derrumbes de la torre producidos al final de la Edad Media se encontraban en posición primaria o estaban alterados por remociones posteriores del terreno.

Los distintos niveles estratigráficos registrados a partir de la excavación son homogéneos. De techo a muro se observa un primer estrato de cubierta vegetal con 0,10 m de grosor, formado por tierra marrón, textura arenosa y escasa compactación. Bajo éste, una segunda unidad estratigráfica compuesta por arenas amarillentas que colmaron los derrumbes de la torre tras su colapso, dispuesta sobre la práctica totalidad de la excavación, con 0,20 m de grosor. A continuación aparece un tercer estrato de derrumbe muy potente, se corresponde con un gran colapso de los muros de la torre hacia la zona del patio del castillo. Su potencia buza de oeste a este, de 3,20 m a 0,30 m de profundidad. Se constituye por gran cantidad de sillarejos de arenisca, restos disgregados de mortero de cal, y ladrillos. La cota final de la excavación es el recinto
interior de la torre del homenaje, que se caracteriza por un amplio patio con una cota en profundidad a 3,50 m, cuya estratigrafía no se ha agotado (ver figura 226).

Una vez retiradas estas capas, se ha obtenido una visión general del complejo arquitectónico, que destaca por un gran edificio en la zona oeste, asociado a la torre del homenaje, una zona intermedia abierta a modo patio, con una superficie de más de 140 m², un posible aljibe en la zona sur del patio, y un muro al este que separa esta zona del resto del castillo, como puede observarse en la figura 227.
El muro de cierre exhumado de la torre (figura 228, color rojo), se caracteriza por conservar una altura máxima de 3,4 m, que desciende progresivamente en dirección sur hasta los 2,1 m, una longitud de 9,1 m, y grosor de 1,8 m. Su fábrica se compone por mampostería y sillarejo de arenisca trabada con mortero de cal. El muro parapeto (figura 228, color verde) que separa el recinto de la torre del homenaje del resto del castillo santiaguista, se construye con los mismos materiales que la torre. Sus dimensiones son 2,20 m de altura, 7,8 m de longitud, y 1,7 m de ancho. Se le adosa un muro (figura 228, color verde) de sillarejo en arenisca en su lado norte que finaliza en una puerta. Las dimensiones de este muro son de 1,60 m de altura, 2,6 m de longitud, y 1,7 m de anchura (figura 228, color azul).
Como se observa en la figura 227 derecha, los perfiles de georradar y tomografía no se encuentran completamente solapados. El acusado desnivel topográfico afectó a la toma de medidas con GPR debido a su desplazamiento lateral, debiendo adaptar su zona de trabajo a la curva de nivel, lo que ha impedido la alineación de las cuadrículas de prospección para ambos métodos.

La mayoría de las anomalías detectadas mediante la exploración geofísica, han podido constatarse a partir de la excavación arqueológica desarrollada en esta zona (figura 230). Son significativos los potentes paquetes de derrumbes compuestos por roca arenisca y en menor medida ladrillo que cubren la práctica totalidad del área investigada. En los radargramas cubren la totalidad del espectro desde su cota inicial real a 0,40 m de profundidad, hasta la máxima profundidad de estudio (3,7 m). Además, sobre estos derrumbes se observa un horizonte de reflexión continuado y horizontal que se corresponde con el paquete de arenas amarillas de 0,30 m de espesor. Los cortes estratigráficos negativos en este horizonte antrópico de mampostería con litología arenisca cubierto por la capa arenosa amarillenta, se encuentran bien definidos tanto lateralmente como en profundidad. Tal es el caso de la zapata para la cimentación de la antena en la zona superficial del castillo (figuras 229 y 230); el negativo del foso
generado por el corte en los derrumbes de arenas y sillares se aprecia en los radargramas con unas dimensiones casi exactas respecto a las documentadas en la excavación. Sin embargo, la base del hoyo que en la excavación se ha medido a 0,90 m de profundidad, en los radargramas se observa a 1,20 m, con una secuencia añadida de reflexiones en profundidad que alcanzan los 2 metros.

En cuanto a los muros del recinto de la torre del homenaje, existe una correspondencia en la relación cotas excavación-radargramas. En todos los casos las estructuras exhumadas se han situado a una profundidad de 0,45 m, a excepción de los puntos en los que los muros estaban arruinados, donde ésta experimentó un aumento extrapolable a los radargramas. Por otra parte, la anchura real de estos muros varía entre los 1,7 y 2 m. Estos datos no se han correspondido en ningún caso con los registros obtenidos con georradar, existiendo una diferencia de entre 0,30 y 1,3 m sobre el grosor efectivo de los muros (figura 230).

La posición espacial de los elementos arqueológicos, especialmente del coronamiento de los muros, coincide con gran precisión con la ubicación definida por el GPR. La diferencia espacial de las distintas estructuras tiene una variación lateral de menos de 0,50 m según el caso (figuras 230 y 231).

En este sentido se debe señalar la relación observada entre los cambios subhorizontales en las reflexiones de onda en los puntos donde existe un estrato homogéneo de derrumbe, y zonas abovedadas con cámaras de aire. Es el caso del posible aljibe cubierto por 2,6 metros de material constructivo y morteros de cal y yeso deshechos, cuya señal aparece en la zona inferior de los radargramas a una cota de 2,5 m de profundidad, es decir, con una diferencia real de 0,30 m (figura 230).

Los perfiles 2D de tomografía han permitido obtener una visión del subsuelo del yacimiento en esta zona con bastante precisión horizontal. Se han caracterizado correctamente las distintas tipologías basadas en el binomio estructuras arquitectónicas-collapsed murarios. Se ha observado que cuando existe un derrumbe muy potente tanto en altura como en espesor, compuesto por grandes sillares de arenisca y morteros de cal disgregado, como el documentado mediante excavación en la zona del patio, los muros cubiertos por esta unidad pierden nitidez lateral en el perfil, aumentando considerablemente su tamaño como anomalía resistiva en comparación con el muro arqueológico real. Por el contrario, la posición subvertical de las estructuras
arquitectónicas y de los paquetes de relleno constructivo se corresponde exactamente con el metro indicado en cada sección eléctrica (figura 232).

En cuanto a la ubicación en profundidad de las anomalías en las secciones, la cota del coronamiento de los muros, y de los derrumbes, difiere con los datos aportados en la excavación en unos 0,10 a 0,20 m según la anomalía, lo que supone un error relativo bajo. Sin embargo, la base de las anomalías se representa de forma más somera que la real. En el caso del muro de cierre de la torre del homenaje, la cota real en profundidad es de 3,40 m, y en los distintos perfiles se dispone entre 0,50 y 2,10 m de profundidad máxima. Lo mismo sucede con el muro oriental del recinto, cuya base se sitúa a 2,20 m, observándose en los perfiles a 0,80 y 1,10 m de profundidad. En la figura 7.61 se aprecian las diferencias entre las cotas superiores e inferiores reales de las estructuras tras la excavación arqueológica, en contraste con las alturas de coronamiento y base reflejadas a partir de las mediciones eléctricas.

Figura 232. Arriba en azul el muro arqueológico de la torre del homenaje ©, y muro oriental del recinto (A). Abajo perfil de tomografía MO13. Se han señalado en negro sobre el perfil las cotas reales inferior (CIR) y superior (CSR) de las estructuras arqueológicas exhumadas. En verde se señala las cotas inferior (CIP) y superior (CSP) de las anomalías en el perfil. En azul se encuadran las anomalías estructurales (A y C), y el derrumbe de sillarejo de arenisca y mortero de cal disgregado (B).

Estas discrepancias volumétricas y espaciales también se advierten en los bloques 3D (figura 233) medidos sobre el muro de la torre del homenaje y su derrumbe asociado, donde el espesor y la profundidad de la base de las anomalías difieren con los datos.
aportados por la excavación arqueológica, en 1,1 m de grosor y 1,20 m de profundidad total con la configuración radial gradient. También hay una diferencia de 0,20 m de grosor y 0,80 m de profundidad total con la configuración dipolo-dipolo 3D.

Figura 233. Bloque 3D MO53D medido con las configuraciones dipolo-dipolo 3D (izquierda) y radial gradient 3D (derecha). En magenta se recuadra la cota base Z en la que se representan las anomalías en el software de inversión de tomografía.

A partir del análisis de los resultados geofísicos y arqueológicos se deduce que existe una coincidencia vertical entre las distintas tipologías anómalas descritas para el GPR, y las anomalías visualizadas en las secciones de tomografía eléctrica. Su posición en el subsuelo encaja espacialmente con los restos arqueológicos exhumados. Sin embargo, existe una diferencia considerable en las características observadas en los registros geofísicos con respecto a la realidad estructural del yacimiento. Esta distorsión se encuentra principalmente en la identificación de las anomalías en volumen y profundidad de su base, llegando en ambos métodos geofísicos a diferir en hasta 1,30 m sobre las dimensiones reales de los objetos. Puede deberse a las alteraciones generadas en la reflexión y refracción en la onda del georradar a través de los potentes estratos de derrumbe, muy homogéneos, formados por materiales pétreos de grandes dimensiones, y a la similar resistividad de éstos con respecto a las estructuras arquitectónicas de esta zona del castillo, que quedan envueltas en su totalidad por dichos derrumbes, dificultando su caracterización.
7.6.2. ZONA C

Con la intervención arqueológica en este sector se trató de ampliar la excavación del flanco sur de la iglesia, arrasada hasta las cimentaciones por maquinaria pesada en los trabajos de acondicionamiento desarrollados en el camino en el siglo XX, así como delimitar hacia el oeste la necrópolis islámica anterior a la construcción de la iglesia medieval. La excavación desarrollada en el espacio situado a los pies del templo, se dirigió a localizar nuevas estructuras arquitectónicas anexas al edificio religioso, y a constatar las dimensiones de la necrópolis por este lado.

Los distintos niveles estratigráficos registrados a partir de la excavación son diferentes en ambas zonas. Al sur de la iglesia, de techo a muro se observa un primer estrato perteneciente al nivel de uso del actual camino del castillo, con 0,15 m de espesor, formado por tierra arcillosa marrón, textura arenosa y alta compactación. A continuación, una segunda unidad estratigráfica compuesta por un revuelto de arenas pardas y material cerámico con origen en el terreno removido por la maquinaria pesada, dispuesto sobre la totalidad de la excavación, con 0,30 m de grosor. Por debajo aparece un tercer estrato arcilloso y compacto de 0,30 m. Se corresponde con nivel de uso funerario islámico. La estratigrafía arqueológica se agota en este último estrato, observándose un sustrato geológico natural de lutitas de color rojo vinoso.

La estratigrafía de zona oeste del edificio se explica de techo a muro por un primer estrato de cubierta vegetal con 0,20 m de espesor, formado por tierra marrón, textura arenosa y escasa compactación. Una segunda unidad estratigráfica compuesta por un nivel de tierra rojiza, muy arcillosa y prensada, con 1,10 m de grosor. En su interior se documentan materiales constructivos y cerámicos arrastrados desde la parte superior del cerro. Esta unidad estratigráfica no se ha agotado arqueológicamente en profundidad. Los perfiles estratigráficos de las dos zonas investigadas pueden observarse en la figura 234.
Tras retirar estas primeras capas, se han alcanzado las estructuras arqueológicas principales. Se concretan en el lado sur por la continuación del muro sur de la iglesia en dirección este, dos hiladas de piedras paralelas que podrían pertenecer a dos muretes o a las paredes de un enterramiento arrasado, y varias tumbas en hoyo que cortan el nivel geológico del suelo. En el lado oeste continúa la necrópolis, compuesta por un conjunto de tumbas articuladas alrededor de una tumba principal de fábrica.

El muro de cierre de la nave de la Epístola, actual muro sur de la iglesia (figura 237, color rojo), se caracteriza por conservar una altura máxima de 0,40 m en su zona oeste. Por su arrasamiento superior mediante la maquinaria pesada descansa su coronamiento bruscamente en la zona de prospección geofísica en dirección este hasta los 0,20 m, posee una longitud superior a los 8 m, y grosor de 1,5 m. Su fábrica se compone por mampostería de toba autóctona y arenisca sin desbastar, trabada con mortero muy rico en cal. Las dos pequeñas estructuras alineadas paralelamente a este gran muro, en su...
lado norte, se disponen con orientación este-oeste. Se construyen con mampostería arenisca trabada con mortero de barro y yeso. Sólo conservan una hilada de piedra de 0,10 m de potencia, y una longitud de 1,5 m (ver figura 236. En la figura 237 no aparecen indicadas las hiladas; debido a su mal estado de conservación se retiraron con el fin de avanzar hacia los estratos funerarios inferiores de esta zona del yacimiento).

Figura 236. Detalle de las dos estructuras paralelas fabricadas mediante hiladas de mampostería y mortero de barro. Nótese su arruinado estado de conservación.

La necrópolis sur se compone de varias tumbas. En la zona coincidente con la cuadrícula de investigación se han documentado cuatro enterramientos (figura 237, color verde) con individuos adultos e infantiles. Se trata de inhumaciones con una tipología de bañera y tendencia elipsoidal, excavadas sobre las lutitas naturales, y rellenas con el mismo material geológico removido previamente. Las dimensiones longitudinales varían entre 0,80 y 1,70 m, con una profundidad máxima de 0,40 m. En la necrópolis oeste se han excavado varios enterramientos. En la zona analizada mediante la exploración geofísica destaca una tumba de buena labra (figura 237, color azul), realizada en sillares de arenisca, con la cubierta perdida. Sus dimensiones son de 2,80 m x 1,6 m x 0,55 m. A sus pies se conserva un enterramiento infantil de 0,70 m x 0,30 m x 0,20 m y uno adulto de 1,50 m x 0,45 m x 0,30 m (figura 237, color magenta).
En la figura 235-derecha puede observarse cómo en la zona sur de la iglesia se han podido combinar los métodos del georradar y la tomografía eléctrica. El único perfil de resistividad ejecutado en esta zona de exploración C, se solapa sobre el perfil P8 de GPR, con continuidad hacia el este.

Las anomalías detectadas mediante la exploración geofísica han podido constatarse a partir de la excavación arqueológica desarrollada en esta zona. En la zona oeste del edificio, la cubierta vegetal y el estrato arcilloso con fragmentos cerámicos y constructivos alcanzan una profundidad total de 1,30 m. En los radargramas este paquete se representa hasta una profundidad máxima de 1 m, a partir de donde parece haber un cambio en la composición del horizonte reflector subsuperficial. Esta diferencia de 0,20 m reales entre cotas también se observa en el coronamiento de las tumbas excavadas, ubicadas a una profundidad de 1,30 m y representadas en los radargramas entre 0,90 y 1,10 m (figura 239). Es interesante destacar que la tumba de mampostería no se ha registrado en ninguno de los cinco perfiles medidos en dirección A (P1 a P5), trazados transversalmente a la estructura, aun conservando varias hiladas de sillares. La tumba se encontraba colmatada por material de relleno arcilloso con mampuestos de arenisca, arrastrado desde la parte superior del cerro. Este paquete estratigráfico tiene la misma composición física que los materiales que la albergan.
Figura 238. Detalle de los perfiles GPR posicionados sobre la tumba de mampostería registrada al oeste de la iglesia. Izquierda, tumba delimitada y sin excavar. Obsérvese la composición de los materiales que la colmatan y el relleno que la envuelve. Derecha, tumba excavada con fábrica de sillares en posición primaria.

Sólo se han obtenido anomalías tenues del enterramiento en los perfiles P6 y P7, medidos en paralelo a la estructura. Tampoco se ha detectado con georradar el enterramiento en fosa simple con individuo adulto ubicado a los pies de la tumba principal.
Por otro lado, la anchura de las estructuras funerarias representadas en los radargramas es idéntica en ambos casos, cercana a 1 metro. Los datos aportados por la excavación indican una diferencia de anchura inferior a 0,60 m reales respecto a la tumba principal, y un aumento de 0,70 m respecto a la infantil (figura 239). La base en profundidad y la posición espacial de cada anomalía en la vertical de cada radargrama, concuerda con la ubicación precisada por los datos de la excavación de ambas estructuras funerarias (figuras 239 y 240).
Figura 240. Detalle de la excavación arqueológica. En azul se señala la disposición espacial georreferenciada de los perfiles de georradar C-B-5-A y C-B-6-B. En magenta se señalan los reflectores de las tumbas detectadas con correspondencia anómala en los radargramas (ver figura 239).

En la zona sur del templo, los estratos someros compuestos por materiales arenosos removidos que cubren la práctica totalidad del área investigada desde la superficie a 0,40 m de profundidad, ocupan la totalidad de los radargramas desde su cota inicial real a 0,40 m de profundidad, coincidiendo con exactitud con los datos de excavación (figura 241). Bajo estos estratos superficiales se observan los coronamientos de las anomalías estructurales a una misma cota, en torno a 0,40 m. Estos datos obtenidos con georradar concuerdan con la cota superficial del muro, y las tumbas exhumadas. Sin embargo, en el caso de las hiladas paralelas de piedras su cota superior real se encuentra a 0,15 m, y en los radargramas se representan a 0,40, es decir, a la profundidad del resto de las anomalías registradas. En este supuesto, en el que las estructuras arquitectónicas quedan a escasos centímetros de la superficie, albergadas dentro de un estrato arcillo-arenoso, compacto, y con escasa humedad, la antena con frecuencia de 250 MHz no discrimina correctamente la cota superficial real de las estructuras antrópicas, ubicándolas en los radargramas a 0,25 m por debajo de la altura registrada en la excavación.
La distribución de las anomalías en los radargramas se corresponde espacialmente con las distintas estructuras localizadas en la excavación con una diferencia lateral inferior a 0,20 m. La apertura de las ramas de las hipérbolas que definen las anomalías, indican el tamaño de los objetos enterrados. En el caso de esta zona de estudio concuerdan con el volumen de la unidad mural sur y de las tumbas de la necrópolis con un error inferior a 0,20 m (figura 241).

La sección 2D de tomografía ha permitido documentar la prolongación del muro sur de la iglesia hacia el este, así como dos de los muros situados en el testero del edificio, que se prolongan en dirección el sur cortando el perfil eléctrico perpendicularmente (figura 241). Del estudio combinado de los resultados arqueológicos y geofísicos se determina que las estructuras arquitectónicas de este sector del yacimiento, que están cubiertas por estratos principalmente arenosos, con derrumbes de mampostería asociados poco potentes, se representan nítidamente en el perfil, con un leve alargamiento lateral en las dimensiones de su tamaño de entre 0,10 y 0,30 m. De los tres muros reflejados en el perfil, la posición espacial de los situados al inicio y final del mismo, se corresponde con la posición real de los muros exhumados. Sin embargo, el muro destacado en la
zona central de la sección, se observa a 0,40 m desplazado hacia el final del perfil en relación a su posición arqueológica real (figura 241).

En cuanto a la ubicación en profundidad de las anomalías en la sección, sólo se puede contrastar la cota del coronamiento del muro sur de la nave de la Epístola (único excavado), y de los estratos que lo envuelven. En este sentido hay que señalar que coincide con los datos aportados en la excavación, es decir, tanto en los resultados tomográficos como arqueológicos su cota superior se sitúa a 0,40 m. La base de la anomalía se representa 0,20 m más profunda que la cimentación real del muro. En la figura 242 puede observarse la correcta caracterización en altura, tamaño y profundidad de la anomalía en comparación con la estructura excavada.

A partir del análisis conjunto de la exploración electromagnética y eléctrica, se deduce que ha sido posible detectar restos arqueológicos enterrados bajo la superficie de esta zona del yacimiento. La excavación arqueológica confirma este punto, ya que mediante este proceso se han localizado un elevado número de enterramientos desconocidos. La
coincidencia espacial entre las anomalías visualizadas en los radargramas y el perfil de
tomografía en comparación con la ubicación real de las estructuras, tiene un escaso
margen de error, inferior a 0,20 m en la mayoría de los casos estudiados. Su posición en
el subsuelo se corresponde, por tanto, con los restos arqueológicos excavados.

Este nivel de efectividad en el posicionamiento de los elementos arqueológicos, también
se observa en la caracterización volumétrica de tumbas y muros, así como en la
exactitud en la indicación de las cotas superiores. Sin embargo, cuando las estructuras
se sitúan prácticamente en superficie, a una profundidad menor de 0,20 m, la antena de
250 MHz del georradar las detecta pero no las representa en su cota real, si no al menos
a 0,25 m por debajo de ella. Esto puede deberse a que la señal generada por una antena
con estas características tiene un alto nivel de penetración en el subsuelo, por un menor
nivel de detalle de las capas superficiales, dificultando la determinación de algunas de
sus características espaciales.

7.6.3. ZONA D

El desarrollo de un área de hábitat antrópica en torno al castillo, en la ladera sur de
cerro, experimentó un progresivo aumento adaptándose al desnivel de la ladera. El
objetivo de la excavación arqueológica en este sector era localizar parte del trazado
urbano que articularía esa creciente zona habitacional por medio de viales de diversa
entidad. La zona de excavación se ha planteado a partir de la exploración geofísica, y de
prospecciones arqueológicas superficiales intensivas a nivel microespacial, en una zona
en la que la orografía del terreno es la más lógica para obtener un acceso natural.

Los distintos niveles estratigráficos registrados son homogéneos en los perfiles de
excavación de esta zona. De techo a muro se observa un primer estrato coincidente con
el nivel de rasante actual con una potencia de 0,30 m. Se trata de una matriz de tierra
marrón oscura muy compacta, con mampuestos de caliza y arenisca de tamaño medio y
pequeño. Esta unidad cubre esta zona derivada de la parte superior del cerro, a partir de
descorrientías que afectan a la ladera. La siguiente unidad es un potente estrato
bastante compacto de arcilla roja, de entre 0,70 y 0,80 m de espesor, que alberga
cerámica y gran cantidad de teja muy fragmentada (figura 243).
Tras excavar estas primeras unidades estratigráficas, se han alcanzado las estructuras arqueológicas principales (figura 243). Se ha documentado en el lado sur del perfil de excavación una estructura lineal parcialmente excavada, que continúa dentro del perfil norte de la excavación (por debajo de la zona investigada mediante la geofísica aplicada). Se construye en su lado sur con mampostería tobácea y arenisca de tamaño medio y pequeño trabada con barro. Su lado norte cambia su fábrica a ortostatos de tamaño grade de arenisca y caliza. Se trata bien de un muro doble recrecido y consolidado, o de dos estructuras paralelas unidas como un nivel de vial con pretil adosado a un muro, con dos líneas de fábrica con 0,90 m de ancho cada una. Conserva unas dimensiones excavadas de 3,4 m x 1,85 m x 0,45 m. Estas unidades arquitectónicas se asientan sobre un estrato antrópico arenoso rojizo con poca compactación. Por lo tanto, en esta zona no se han agotado las secuencias estratigráficas arqueológicas hasta llegar al sustrato geológico.
En la figura 244-derecha se observa la disposición combinada de los métodos geofísicos empleados en la investigación. Las anomalías geofísicas detectadas en el sector sur de las cuadrículas de trabajo mediante la prospección, han podido constatarse a partir de la excavación arqueológica desarrollada en esta zona. Como se ha descrito, la cubierta vegetal y el potente estrato arcilloso rojizo tienen una profundidad total de 1 a 1,10 m. En los radargramas este paquete se representa hasta una profundidad máxima de 0,90 m, a partir de donde se produce una variación en la composición del suelo. Según los datos aportados por la excavación, este cambio estratigráfico se relaciona con la tercera unidad en profundidad. Se trata de la estructura adosada al norte, que podría ser un suelo de mampostería y ortostatos que continuase en dirección norte hacia el castillo y que se aprecia en los radargramas con un espesor de entre 0,30 y 0,40 m. Esta diferencia de 0,20 m reales entre cotas superiores también se observa en el coronamiento de la estructura adosada al sur, que se muestra por encima de su cota real en los radargramas (figura 245). En este punto cabe precisar que en el capítulo de interpretación de los resultados obtenidos con GPR en esta zona, las anomalías generadas por la estructura lineal sur, se interpretaron erróneamente como dos hoyos o silos de almacenamiento con paralelos en otras estructuras negativas documentadas en la excavación de esta misma zona, debido tanto a la tenue señal de reflexión originada por estas estructuras, como a una aparente falta de conexión con otras anomalías registradas en los perfiles cercanos. Esta interpretación se ha podido corregir a partir de la combinación de los registros geofísicos con los datos aportados por la excavación arqueológica.

En cuanto al volumen y ubicación espacial de las estructuras, la onda reconoce correctamente los bordes de la estructura adosada sur, definiendo una pequeña hipérbola que coincide correctamente con ambas características. Sin embargo, para la estructura adosada norte, no emite una anomalía tipo I, sino que el radargrama se mantiene continuo con un aumento en el grosor del suelo reflector. Parece deberse a que aunque en la excavación arqueológica se diferencia correctamente la hilada concreta de mampuestos en la que se adosan ambas estructuras (figura 243), a nivel geofísico las características físicas y químicas de las dos estructuras deben de ser similares. Este factor ha impedido al método electromagnético realizar una discriminación o división lateral en su zona de unión, caracterizando la anomalía lateral norte como una estructura alargada con continuidad subsuperficial, tipo suelo antrópico. Sin embargo, el método
eléctrico a partir de las secciones 2D permite verificar un cambio resistivo en la zona central entre ambas estructuras, si bien su prolongación lateral permite observar una continuidad estructural durante toda la zona en la que el perfil las cruza longitudinalmente (figura 245).

Este contraste entre resistividades se ha observado también en los bloques eléctricos 3D, que representan en los bordes de la zona de estudio dos zonas de alta resistividad, con una prolongación de 1,5 metros en su zona central donde disminuyen los valores de resistividad (figura 246).

El estudio geofísico que combina el método eléctrico y electromagnético en esta zona de la ladera del castillo, ha permitido verificar la existencia de estructuras arqueológicas en el subsuelo inmediato de este sector. Estas estructuras se fabrican con unos materiales cuyas características litológicas, de porosidad y saturación, difieren de los materiales arcilloarenosos encajantes. Estos detalles permiten obtener datos electromagnéticos anómalos tenues, pero suficientemente representativos como para visualizar la presencia de estructuras antrópicas en los diferentes registros. La posición subsuperficial de los elementos reflectores es importante para definir la amplitud de las anomalías, que en este caso, se encuentran unidas transversalmente entre 5 y 6 m. El
coeficiente de reflexión aumenta en el cambio de unidad estratigráfica, entre el relleno arqueológico y el borde de la estructura localizada, manteniendo posteriormente la constante reflexiva sobre el reflector continuo subhorizontal. Por lo tanto, no se produce una discriminación lateral o vertical entre las dos estructuras adosadas con características físicas similares. En cambio, con la tomografía eléctrica además de separar correctamente los sedimentos encajantes de las estructuras arquitectónicas, existe una disminución en la resistividad central de la zona construida con mampostería, que puede corresponderse con la zona de contacto o adosamiento entre ambas alineaciones constructivas.

Por otra parte, la coincidencia espacial y el tamaño de los elementos anómalos en comparación con el posicionamiento y espesor real de las estructuras, tiene un escaso margen de error, inferior a 0,30 m en la mayoría de los casos estudiados. En esta zona su posición en el subsuelo se representa con un elevado nivel de efectividad en comparación con los restos arqueológicos excavados.
8.1. CONTEXTO GEOGRÁFICO E HISTÓRICO

El paraje de Piédrola se encuentra al noreste de la provincia de Ciudad Real, en la extensa planicie del Campo de San Juan, a unos 6 km de distancia al noroeste del núcleo urbano de Alcázar de San Juan, con acceso directo desde el camino de Pastrana a Piédrola. El enclave se extiende por una amplia llanura, a 670 m de altitud, en la que se observan pequeñas lomas, relieves residuales y ondulaciones en el terreno, con un paisaje muy modelado debido a la parcelación de los campos de cultivo. La formación geológica de este característico relieve se ve afectada en la era Paleozoica por el Plegamiento Herciniano, sin embargo, la erosión deterioró las elevaciones hercúnicas y las transformó en una penillanura que en el Secundario fue cubierta por los mares triásicos. Se sitúa en una zona de transición o contacto entre materiales cenozoicos y mesozoicos, en el entorno del Complejo Lagunar de Alcázar de San Juan, donde los materiales que afloran son areniscas, arcillas, margas, margocalizas triásicas, yesos y calizas jurásicas (Carricondo et al., 2008; Yébenes et al., 1977). La red hidrográfica se compone por dos de los afluentes más importantes del Guadiana, el Záncara, que discurre al sur de la población de Alcázar, y el Cigüela, al noroeste.

Figura 247. Localización y vista general del paraje de Piédrola en el término municipal de Alcázar de San Juan (Ciudad Real). © Instituto Geográfico Nacional de España.
El municipio de Alcázar de San Juan es rico en yacimientos arqueológicos de las distintas etapas de la Prehistoria. El conocimiento superficial de gran parte de estos yacimientos ha sido posible desde un momento temprano debido a la publicación de los resultados en 1984 de las prospecciones del grupo de historia local dirigido por A. Vaquero (Vaquero et al., 1984), a las primeras recopilaciones bibliográficas del catálogo de yacimientos de la provincia de Ciudad Real (Caballero et al., 1983), que posteriormente fueron incorporadas a la primera aproximación a la Carta Arqueológica (García et al., 1994), o los resultados de las Cartas Arqueológicas recientes de la comarca. En estos documentos se describen hallazgos del Paleolítico Inferior, como los localizados en la cuenca del Záncona en Socuellamos, en el área del Pedernoso, el Cerro de las Nieves (Pedro Muñoz), o en el propio yacimiento de Piédrola (Sánchez, 2015).

Así, comienzan a desarrollarse una serie estudios y prospecciones arqueológicas en el yacimiento, en torno al Caserío de Piédrola, que cristalizan en la obtención de materiales cerámicos campaniformes de estilo Ciemposuelos junto a otros de tipo Dormajos, con decoración por una o ambas caras, respectivamente, una punta de flecha de sílex de base cóncava, hachas pulimentadas, cuchillos de sección triangular, etc. (Haro y Vela, 1988; Vallespi et al., 1987). Por otra parte, han sido escasas las excavaciones realizadas sobre asentamientos de las etapas más antiguas del municipio, destacando las efectuadas sobre la Motilla de los Romeros, tres campañas con publicación muy somera de resultados (Almagro-Gorbea, 1973; García, 1987, 1988; Benítez de Lugo, 2010, 2011) y, recientemente, la efectuada en el yacimiento de Las Saladillas (García y Morales, 2004), que ha aportado importantes datos acerca de la facies del Bronce de tipo fondo de cabañas en la zona central de la Meseta Sur. También se ha realizado un exhaustivo estudio de las Motillas de la Edad del Bronce de La Mancha, con el que se ha elaborado un nuevo inventario de estas estructuras arquitectónicas. En Alcázar se localizan las motillas de Pedro Alonso, Los Romeros, Casa de Mancha y Brocheros (Mejías et al., 2015).

Cabe destacar los trabajos que, últimamente, se han efectuado en el entorno del yacimiento de Piédrola por un equipo del grupo de investigación perteneciente al “Laboratorio de Arqueología, Patrimonio y Tecnologías Emergentes” de la Universidad
de Castilla-La Mancha liderado por Víctor Manuel López-Menchero Bendicho y Ángel Marchante Ortega (2015). En estos estudios se ha realizado una excavación arqueológica en la zona este del enclave que ha permitido la localización de un campo de hoyos que se desarrollaría en una fase inicial entre el Calcolítico y la Edad del Bronce, representada por abundantes fragmentos de cerámica a mano, y material lítico en sílex, con la posible amortización posterior del sitio durante una fase romana muy mal conservada, caracterizada por fragmentos de teja y cerámica a torno.\footnote{Proyecto de estudio arqueológico de Piédrola (Alcázar de San Juan). Fase II. Informe Final. UCLM, Ciudad Real, 2015. Informe-memoria de difusión restringida.}

En este sentido, durante la Protohistoria y la Edad Antigua el territorio de Alcázar parece contar con un dinamismo poblacional importante, a juzgar por el número de yacimientos arqueológicos de estos momentos documentados, y por la notable entidad de muchos de ellos. En el propio yacimiento de Piédrola, autores como J. Morales (2010), han señalado la existencia de un poblado ibérico relevante, aunque podría tratarse por los materiales recogidos en superficie, de tres núcleos poblacionales diferenciados. Entre estos materiales destacan las tinajillas, caliciformes, platos, con decoración pintada, y los molinos rotatorios manuales (López-Menchero y Marchante, 2015).

Hay que destacar la reciente excavación de urgencia del asentamiento romano republicano de Pozo Sevilla (Morín et al., 2010), que presenta un edificio fortificado, posible casa-fuerte, con un pozo asociado y cerámica de barniz negro. Además, destacan las intervenciones efectuadas en el propio núcleo urbano desde mediados del s. XX, documentándose importantes restos arqueológicos en su mayoría pertenecientes a una villa romana. En el año 1952, a partir de unas remociones para mejora de infraestructuras en las calles de Gracia y del Carmen, se localizaron pavimentos musivarios (San Martín, 1953; García y Ruiz, 2004). Este hecho propició dos campañas de excavación (1953 y 1954) a cargo de J. San Valero, así como el estudio de los restos documentados (San Valero, 1956, 1957). En el año 1982 una excavación arqueológica en la calle del Carmen aportó dos nuevos mosaicos, aunque escaso material arqueológico de época romana y medieval (García, 1997). Posteriormente, a principios de los años 90 una intervención en el entorno de la iglesia de Santa María la Mayor permitió la documentación de una secuencia más completa, con materiales de la Edad del Bronce, ibéricos, romanos y medievales, que fueron determinantes para centrar la
cronología de los restos de la villa en el s IV d.C. (García, 1997). Las estructuras observadas en la excavación manifiestan que este conjunto se convierte en un *vicus* dependiente de un *dominus* durante la antigüedad tardía (Martínez, 2006).

Las prospecciones efectuadas en todo el paraje de Piédrola han posibilitado localizar abundante material romano en un área muy extensa del yacimiento. Se clasifican cronológicamente entre los siglos I al V d.C. Además, la investigación permitió documentar varios sillares de piedra tallada que denotarían la existencia de unas construcciones arquitectónicas de gran tamaño (López-Menchero y Marchante, 2015). Por otra parte, la excavación de dos sondeos arqueológicos en 2015 ha permitido documentar varios muros con la misma orientación y fábrica, así como materiales arqueológicos asociados, como *terra sigillata* o un fragmento de mosaico, que parecen pertenecer a una villa romana.

Resulta significativa la posible ubicación en el municipio de Alcázar de San Juan de la histórica ciudad de *Alce*, mencionada por Tito Livio en su obra *Ab Urbe Condita* (XL, 48 y 49) en el marco de las campañas bélicas protagonizadas en el año 179 a.C. por T. Sempronio Graco. Posteriormente la ciudad aparece con el nombre de *Alces* en la ruta 29 del Itinerario de Antonino (*Per Lusitaniam ab Emerita Caesarea Augusta*), separada XL millas de *Lamini*, y XXIII de *Vico Cuminario*, con posible emplazamiento en diversos parajes del municipio o en términos municipales adyacentes, como Miguel Esteban, Quero, El Toboso, o Campo de Criptana, entre otros (Carrasco, 1987; Sánchez, 2015). También ha querido localizarse en el término de Alcázar la *mansio Murum* de la vía 30 del Itinerario de Antonino (*Item a Laminio Toletum*), situada como quinta mansión entre *Laminium* y *Consabro* (Carrasco, 1987; Sánchez, 2015). Todo ello indica la importancia estratégica del territorio de Alcázar en la Antigüedad, que ya en momentos muy tempranos pudo constituir un importante nudo de comunicaciones.

Los árabes dotaron a esta zona de un importante complejo defensivo, al que llamaron *Al-qsar*, que significa casa-fuerte o fortaleza (García, 1997). Además, algunos autores relacionan la ubicación de la población *Qasr Banú Atiya* con Alcázar de San Juan (González, 1975; Molenat, 1996). Pertenecientes a este período se documentan zonas de basurero y estructuras de habitación muy alteradas por fases posteriores (Ruiz y Ocaña, 2012). Por su parte, en Piédrola, las prospecciones realizadas han permitido la recogida de materiales cerámicos de los siglos X y XI, adscritos a los períodos andalusíes califal
y taifa. Destacan las cerámicas con decoración verde manganeso, vidriadas de cuerda seca, y vidriadas meladas. Además, en las excavaciones planteadas durante la campaña de 2014 se ha documentado una necrópolis islámica (López-Menchero y Marchante, 2015).

La toma de Toledo por Alfonso VI en 1085 acelera la conquista de estos territorios. Después de un breve período de presencia almorávide, en 1147 pasa a manos cristianas junto con Mora y Consuegra. La aldea de Alcázar fue donada en 1150 a los caballeros Juan Muñoz, Fernán González y Pedro Rodríguez (González, 1975). Posteriormente la transfieren a la Orden de Santiago. Tras la permuta de este enclave con la Orden de San Juan por la aldea de Criptana, se incorpora al priorato de la Orden de San Juan en Consuegra con la denominación de Alcázar de Consuegra, concediéndose el fuero en 1241. En el año 1284 se construyó su castillo, con la torre de Juan de Austria como torre del homenaje. En 1292 Sancho IV concede el título de villazgo y pasa a llamarse Alcázar de San Juan (Molero, 2000; Ruiz y Ocaña, 2012).

En el área de dispersión de materiales andalusíes de Piédrola, se ha documentado cerámica bajomedieval cristiana, lo que ha permitido al equipo que estudia actualmente el enclave situar un pequeño asentamiento bajomedieval sobre el núcleo de población islámico previo. Así mismo señalan que en la Carta Puebla de Alcázar de 1241 se hace mención expresa a un asentamiento llamado Piedrolla que coincidiría con el anterior (López-Menchero y Marchante, 2015).

“E damosle por termino: que partan con Camuñas con soga; e de parte de Villacentenos fasta Pozuelo, que yace entre Villarejo seco e de Molino e de Albermaldiello e Piedrolla; e parte con Quero o sea las dos partes de Quero e la tercera de Piedrolla; y es contra Dancos e Quintana como nos lo habemos partido con los Ducles asi lo hayan por termino. Facta carta in mense octobris Era MCCLXXIX” (Guerrero, 1969).

Durante la Edad Moderna Alcázar experimenta un auge demográfico y económico. Con la decadencia de la villa de Consuegra, Alcázar se convierte en capital del Priorato de San Juan. En este mismo siglo se funda la que fue la Universidad de Alcázar, se crea la fábrica de pólvora, la más importante del reino, etc. Así, en 1530 Alcázar de San Juan contará con 18.480 habitantes, viviendo en ella gente notable perteneciente a la Corte;
se dieron nombres como Cervantes, Díaz Morante, Sánchez Cotán, Juan Cobo o Diego de Torres Rubio.

La ocupación antrópica de Piédrola se extiende durante la Edad Moderna. La explotación agropecuaria de la zona se demuestra a partir de la abundante cantidad de cerámica de este periodo localizada por la totalidad del yacimiento. Además, se observan construcciones hidráulicas desmanteladas asociadas con usos agrícolas y ganaderos. Sin embargo, en esta fase destacan las canteras molineras o canteras de piedras de molino, anteriores al siglo XVIII, que se localizan en una extensa zona con más de 2 kilómetros de longitud, y que probablemente son el origen del topónimo medieval de Piedrola (López-Mencherero y Marchante, 2015).

8.2. DEFINICIÓN DE LAS ÁREAS DE ESTUDIO

Como se ha expuesto, en el paraje de Piédrola se realiza en la actualidad una importante labor de investigación arqueológica. Estos estudios han permitido la identificación in situ de estructuras arqueológicas calcolíticas y del Bronce, romanas, y medievales, tanto islámicas, como cristianas, en zonas puntuales del enclave, fundamentalmente en su zona central, y en los laterales este y oeste del sitio, así como una amplia dispersión de restos cerámicos en todo el perímetro que abarca el yacimiento. No obstante, aunque a partir de la excavación de los sondeos arqueológicos se conocen con exactitud algunas de las zonas en las que se conservan restos arqueológicos en posición primaria, no se tiene constancia de los límites subsuperficiales del yacimiento, ni de los diversos núcleos poblacionales observados mediante la prospección de cobertura total.

Con el fin de colaborar en la mejora del conocimiento del yacimiento y testar la utilidad y el potencial de los métodos geofísicos como complemento previo a la realización de sondeos arqueológicos, se seleccionó una zona del entorno del Caserío Castillo de Piédrola para la realización de los trabajos de prospección geofísica, pudiendo ver su disposición en la figura 248.
Zona A. Esta zona de exploración se sitúa en el sector central del yacimiento, junto al camino de Pastrana a Piédrola, que lo delimita en su margen oeste, en un terreno llano con una suave pendiente ascendente hacia el este, a escasos metros de un olivar donde destaca una pequeña elevación que domina el territorio circundante, donde se observa un perímetro amurallado muy arruinado en su cota superior, y material cerámico calcolítico y de la Edad del Bronce. En este lugar, se tiene como principal objetivo conocer la posible continuidad de las estructuras localizadas en la zona superior de la loma hacia su lado sur. En segundo término, se pretendía constatar la existencia de algún muro o estructura que se relacione con los bloques de piedra tallada de naturaleza constructiva presentes en la parcela.
8.3. GEORRADAR

La investigación con georradar se desarrolló sobre la zona de estudio definida anteriormente. A la vista de los resultados obtenidos con el GPR, se seleccionaron las localizaciones en las que posteriormente se realizó la tomografía eléctrica.

Aunque la zona de trabajo en este yacimiento es individual, se procede según lo especificado en el resto de casos de estudio. Así, la numeración de cada perfil consta de la letra de la zona de exploración geofísica a la que pertenece, número de perfil en esa zona y dirección de medida. Así el perfil A-1-A significa que es el perfil número 1, medido en la dirección A (O-E), del poblado (zona de exploración A).

La configuración de la antena del georradar en la zona de trabajo se realizó mediante el software Spiview, en el modo Dry Soil, lo cual estima una velocidad relativa de 50 ns, que proporciona una profundización en la exploración de 3,7 m.
8. Yacimiento de Piédrola

Figura 250. Vista general de la zona en la que se realizó la investigación sistemática con GPR (rojo). (A) Zona de exploración A.

En la zona de exploración geofísica A-poblado, se realizó una cuadrícula rectangular de 20 x 7 m, con un total de seis perfiles de prospección, todos medidos según la orientación O-E (dirección A) debido a la morfología del terreno con notables ondulaciones, lo que dificultó la ejecución de perfiles transversales con dirección N-S. La separación entre los perfiles no es equidistante, así pues, distan entre sí 1,5 m entre P1 y P2, 1 m entre P2 y P3, 1,5 m entre P3 y P4, 0,9 m entre P4 y P5 y 1,80 m entre P5 y P6. La longitud total de estos perfiles es de 120 m y la superficie explorada de 140 m².

Figura 251. Posición de los perfiles de georadar realizados en la zona de exploración A-poblado. SIGPAC © Consejería de Agricultura, Medio Ambiente y Desarrollo Rural (Castilla-La Mancha).
8.4. TOMOGRAFÍA ELÉCTRICA

La investigación tomográfica en este yacimiento consistió en la ejecución de 4 perfiles 2D medidos mediante las configuraciones dipolo-dipolo, Wenner-Schlumberger, *strong gradient*, y un bloque 3D medido con los arreglos dipolo-dipolo 3D y *radial gradient* 3D. Además, los perfiles realizados han sido interpolados para obtener un modelo virtual 3D del subsuelo. Como puede observarse en la figura 252, estos perfiles se realizaron en la zona del poblado, en aquellas zonas en las que existía previsión de restos arqueológicos enterrados, o en las que existía una anomalía definida por la investigación previa realizada por el georadar.

La situación de los perfiles quedó referenciada mediante la determinación de las coordenadas de sus extremos. El objetivo de la realización de estos perfiles de tomografía eléctrica es, además de cruzar dos métodos geofísicos en una misma zona, determinar el comportamiento de las estructuras del yacimiento con este método, determinando el tipo de anomalías que éstas generan.

Figura 252. Vista general de la zona en la que se ejecutó la investigación con tomografía eléctrica (rojo). (A) Zona de exploración A.
Figura 253. Situación sobre ortofoto de los perfiles de tomografía eléctrica realizados sobre el yacimiento de Piérdola.

En la zona de exploración A-poblado, se ejecutaron un total de cuatro perfiles paralelos, separados 2 m entre sí, de dirección O-E, de 28 electrodos cada uno, con espaciado interelectródico de 1 m. Conforman un rectángulo regular de toma de medidas de 27 m x 6 m. Y un bloque 3D con 56 electrodos (con punto inicial en el electrodo 8 del perfil de tomografía PI4) (figura 254).

Figura 254. Distribución de los perfiles de tomografía eléctrica situados en la zona de exploración A.
8.5. RESULTADOS E INTERPRETACIÓN

8.5.1. GEORRADAR

La investigación arqueológica en este paraje se encuentra en una fase inicial. Los estudios de la superficie del terreno han permitido la localización de numerosos materiales cerámicos y constructivos diseminados por todo el enclave. A partir de la clasificación de estos restos se ha realizado una primera división en la que se han acotado las posibles zonas de hábitat, así como sus distintas adscripciones cronológicas. En el momento en el que se inició el estudio con GPR, las excavaciones que se habían ejecutado eran escasas, dirigidas tan sólo a dos posibles zonas de poblamiento con el objetivo de localizar estructuras asociadas. Con tal fin, se excavaron dos pequeñas catas manuales ubicadas a 30 y 120 m al norte de la zona seleccionada para la exploración geofísica. Por su proximidad, el primer sondeo es el más útil para la presente investigación. Sito en la vertiente sur de una pequeña elevación en la que se conservan grandes bloques alineados de piedra caliza con una posible función defensiva, este sondeo resultó negativo en cuanto a estructuras de mampostería, adobe o tapial, aunque aportó restos de cerámica e industria lítica calcolítica y del Bronce, así como algún posible fondo de cabaña y agujero de poste. Por lo tanto, sobre la base de estos datos se desconocía si en la parcela de estudio se conservaba alguna estructura arquitectónica subsuperficial de entidad, más allá de los materiales arqueológicos dispersos en superficie o de las posibles estructuras negativas registradas en la excavación.

8.5.1.1. ZONA A

Las investigaciones que se han planteado en el entorno de la posible fortificación prehistórica estuvieron dirigidas principalmente a la detección de estructuras arqueológicas relacionadas con este emplazamiento elevado, en una zona llana cercana al lindero generado por la ladera sur. El objetivo era determinar si se trata de una estructura aislada o, por el contrario, en la zona se conservan otro tipo de construcciones asociadas a ésta, o al menos, pertenecientes a la misma época, como los restos identificados en la excavación del sondeo.
Además, conviene indicar que sobre la superficie de la parcela, y en las lindes que la delimitan con respecto a otras parcelas, se observan sillares de piedra caliza que superan los 60 cm de lado, así como restos de teja muy fragmentados derivados de su posición original. Estos vestigios parecen indicar la existencia en la zona de algún edificio o construcción de envergadura de la que, en la actualidad, no quedaría ningún resto visible en posición primaria. Así, en segundo lugar, se pretendía comprobar la presencia de estructuras potentes que estuvieran construidas a partir de estos materiales de grandes dimensiones.

Es preciso señalar que esta zona se encuentra explanada pero muy deteriorada por la acción del arado de subsuelo. La actividad del subsolador ha generado calles artificiales paralelas en dirección O-E que han condicionado el estudio con georradar. En este sentido, para lograr que los surcos pronunciados no afectasen a la toma de datos, se optó por trabajar con una disposición de los perfiles en paralelo a las depresiones, sobre la zona amesetada sin erosionar presente entre ellas, manteniendo la dirección de medida O-E. De esta manera, la exploración con GPR se ha realizado sobre una cuadrícula rectangular con seis perfiles. Las reflexiones de onda observadas se relacionan principalmente con anomalías estructurales tipo I, albergadas en un subsuelo que no presenta cambios bruscos en el patrón de reflexión, por tanto, homogéneo en cuanto a su composición. En todos los perfiles se localizaron anomalías estructurales. Las anomalías principales sobresalen levemente en el conjunto de cada radargrama, no se representan por las clásicas hipérbolas de reflexión acampanadas con contornos bien definidos, más bien se caracterizan por hipérbolas achatadas de ramas cortas y gruesas. En algunos casos estas anomalías se representan como una señal con desarrollo horizontal que se refleja en su zona inferior con varios ecos horizontales adicionales, bien acotadas lateralmente. En la figura 255 se detalla la disposición de los eventos anómalos sobre la zona de trabajo.
Las anomalías tipo I se han identificado fundamentalmente en la zona central de la cuadrícula de prospección, sin embargo, en los primeros 4 m del lado oeste, y en extremo lateral este de los perfiles efectuados, no se observan elementos anómalos. Como se indicó anteriormente, estos registros se obtuvieron en una única dirección de medida, cuya orientación son O-E. En la figura 255 puede observarse cómo las anomalías se disponen espacialmente constituyendo alineamientos, y en algunos casos, pequeñas agrupaciones alrededor de las principales líneas de anomalías.

Estas anomalías pueden equivaler a dos posibles unidades constructivas de al menos 6 m de longitud y orientación N-S, y dos posibles muros, también con orientación N-S, de 2,80 y 1,70 m, respectivamente, separados por un espacio abierto, sin anomalías, que puede corresponderse con una posible puerta. Estas cuatro estructuras son paralelas entre sí, con una separación de 4,80 m, entre las dos primeras y la tercera, y de 7,40 m, entre la tercera y la cuarta. En los radargramas el posible tercer muro aparece con mayor entidad lateral que el resto de estructuras detectadas. De oeste a este, su coronación se detectó a una profundidad de 0,70 m para la anomalía lineal I, 0,65 m para la anomalía lineal II, 0,80 m para la anomalía lineal III, y entre 0,70 y 0,80 en el caso la anomalía lineal IV. Debido a la falta de registros obtenidos en dirección N-S es difícil precisar si estos posibles muros están directamente relacionados, o forman parte de edificaciones independientes. Sin embargo, con estos datos, si que se puede observar una distribución arquitectónica que parece articular el espacio en dos recintos abiertos comprendidos...
entre las anomalías lineales I, II y III con una superficie de 34 m2, la primera, y las anomalías lineales III y IV con una superficie de 52 m2, la segunda.

Las anomalías descritas se han identificado en torno a los perfiles ejecutados en la dirección A, en los metros 4,5, 10,5, y 18 de los perfiles P1, P3 y P5, a los 3 y 10,5 m de los perfiles P2, P4 y P6, y en el metro de 15,5 de P2 y P6.

De igual manera, se observan varias anomalías primarias prácticamente adosadas a las caras oeste y este de las anomalías lineales (figura 257). Se localizan junto a la cara oeste de la anomalía lineal I, en el metro 4 del perfil P2, en la cara este de la anomalía lineal I, en el metro 5,5 del perfil P1, en el lado oeste de la anomalía lineal III, en el metro 8,5 del perfil P1, y a 8 metros del perfil P5, y en la cara este de la anomalía lineal IV, en el metro 18 del perfil P3. Los vértices de las hipérbolas se disponen espacialmente entre 0,65 y 0,75 m de profundidad. Podría tratarse del arranque de estructuras transversales con prolongación lateral en dirección oeste o este desde el alineamiento estructural principal al que se asocian, pero la falta de registros perpendiculares impide verificar esta hipótesis.
Figura 257. Arriba, perfil A-1-A (P1). Abajo, sección del radargrama entre los metros 7 a 13. El recuadro en rojo indica la posición de una posible estructura adosada en el lado oeste de la anomalía lineal III, definida en color verde.

Por último, se aprecian cinco conjuntos de alineamientos con menor entidad, observables como máximo en dos o tres perfiles contiguos, con longitud aproximada de 1,20 a 2,90 m. Pueden interpretarse como posibles estructuras independientes y paralelas entre sí con orientación NO-SE, sin conexión lateral o longitudinal con otras estructuras cercanas de mayor tamaño. Estas anomalías del tipo I se han reconocido en el metro 13 del perfil P1, en los metros 4,5, 5,5, 7,5 y 13, del perfil P2, a los 6,5, 12, 14 y 15 m del perfil P3, y en el metro 15 del perfil P5. La cota de profundidad de las anomalías se establece entre 0,50 y 0,60 m.

Por otro lado, se han detectado dos anomalías con las características especificadas para el tipo II, concentradas en el borde noroeste de la zona de trabajo. Se trata de dos elementos caracterizados por sendas hipérbolas de pequeñas dimensiones sin ecos internos, con unas ramas que presentan una apertura inferior a 0,40 m. Se posicionan sobre los perfiles P1 y P2, en los metros 0 y 17,5, respectivamente, ambas con techo a 0,75 m (ver figuras 255 y 258). Por la similitud que presentan sus imágenes con respecto a algunas anomalías alineadas que pertenecen a posibles muros, así como por su cota en profundidad en consonancia con la especificada para esas formaciones, se sugiere que puede tratarse de posibles estructuras con un elevado grado de arrasamiento, o posibles elementos constructivos con un volumen destacado disgregados de su conjunto original.
Las anomalías de tipo III han sido escasas en este sector. Se observan a partir de un cambio en la reflexión horizontal de la señal en el registro hacia otra de mayor amplitud, homogénea y con numerosos ecos que distorsionan el sustrato, localizándose principalmente en la zona central del subsuelo explorado, a lo largo del perfil P4, desde el metro 5 hasta el 20 (figura 259). La concentración de estas anomalías en una zona muy específica sin continuidad lateral hacia los perfiles adyacentes dificulta la interpretación sobre su origen. La anomalía avanza de forma lineal, acotada entre los posibles muros I y II, justo a través de la zona la definida como un posible vano de separación entre ambos alineamientos. Tal y como se indicó anteriormente, la parcela ha sufrido importantes modificaciones en su topografía debido al uso de subsoladores con fines agrícolas. El hecho de que esta anomalía avance en paralelo a otros surcos del terreno permite deducir que posiblemente pueda corresponderse con una antigua remoción del terreno con origen en los arados, que ha alterado en un tanto concreto las características del sustrato somero con respecto al resto de terreno circundante. Además, sobre la base de las ideas expuestas se sugiere que el vano existente entre los alineamientos anómalos I y II, podría tener origen en la destrucción por parte del subsolador de un primer posible muro de grandes dimensiones longitudinales, de idénticas características que los alineamientos III y IV, eliminando el material.
constructivo perteneciente a las hiladas de ese paño del muro, y por tanto, impidiendo obtener una señal nítida de la cimentación, en caso de conservarse in situ.

Figura 259. Ejemplo de radargrama con anomalía de tipo III en la zona de exploración A. Perfil A-4-A. La zona anómala se señala con un recuadro de color verde.

Para finalizar se debe señalar que en el metro 20 de los perfiles P1, P3 y P5, y metro 0 de los perfiles P2 y P4, se registran unas anomalías con desarrollo vertical de reflexiones múltiples que alcanzan la base de los radargramas a 3,7 m de profundidad, con una señal muy fuerte e irregular, relacionadas con la señal habitual emitida por objetos metálicos enterrados, y por tanto, fácilmente identificables (ver figura 260). Estas anomalías se extienden a lo largo de 5,2 m, con lo que su origen puede deberse por ejemplo a un alambre, o a los restos enterrados de una antigua tubería metálica de irrigación de la parcela.

Figura 260. Anomalía generada a partir de un objeto metálico somero. Obsérvese la propagación del eco hasta la profundidad máxima de exploración con la antena de 250 MHz en modo Dry Soil. Sección del perfil A-5-A (P5) entre los metros 11 a 19.

De acuerdo con el análisis de los datos obtenidos mediante georradar, se puede establecer que la antena de 250 MHz aporta una resolución adecuada para la caracterización de diferentes tipologías de anomalías en esta zona del yacimiento de Piédrola.

A partir de la interpretación de los resultados obtenidos se deduce que en el subsuelo del entorno sur de la pequeña elevación con presencia de estructuras prehistóricas, pueden
conservarse vestigios arqueológicos en posición primaria (figura 261). El registro de numerosas anomalías generadas por reflectores de entidad, así como su agrupación en forma de alineamientos bien definidos, revela que pueden corresponderse con al menos cuatro posibles muros de grandes proporciones longitudinales, con la misma cota de arrasamiento y orientación N-S. Así mismo, se han detectado cinco alineaciones sin conexión lateral con las anteriores, pero como en el supuesto anterior, comparten cota y orientación, en este caso NO-SE. De las evidencias anteriores cabe suponer que estas posibles estructuras pueden pertenecer a dos fases constructivas diferenciadas que posiblemente amortizan un mismo espacio habitacional.

Por otra parte, se ha observado una limitación del método en este tipo de terreno. Cuando las características superficiales del suelo se ajustan a una topografía repleta de irregularidades paralelas, constituidas por surcos estrechos y pronunciados, con paredes endurecidas, como los existentes en la parcela, la operatividad del equipo empleado es prácticamente nula. El desplazamiento lateral del georradar por el subsuelo manteniendo la misma velocidad y horizontalidad respecto al firme es inviable, el equipo choca frontalmente con las paredes de los surcos y queda bloqueado. Este factor supone un importante problema en la obtención de radargramas válidos, y por tanto, en la discriminación de los datos sustanciales, además, obliga a mantener de forma constante una dirección de exploración en paralelo a los accidentes topográficos. Esta situación impide interpolar los datos recabados en dos direcciones de medida perpendiculares para generar un mapa completo con las posibles estructuras del subsuelo, y por tanto, representar en planta el máximo número de anomalías.
8.5.2. TOMOGRAFÍA ELÉCTRICA

Como se detalló en apartados anteriores, en el yacimiento de Piédrola se han realizado 4 perfiles y un bloque 3D de tomografía eléctrica agrupados en la zona correspondiente al sur del posible poblado prehistórico, seleccionada por corresponderse con una zona donde se registraron numerosas anomalías de georadar. Los perfiles de tomografía se configuraron con una distancia interelectróica y una longitud suficiente para poder detectar estructuras con unas dimensiones métricas, con una resistividad teórica superior a los 100 (Ω.m).

A continuación se muestran los resultados de los perfiles realizados de forma gráfica. Las zonas con las mayores resistividades registradas quedan destacadas por sus colores rojos o rojo-naranja. Estas zonas de mayor resistividad o zonas anómalas, deben corresponder, según en la posición en la que se encuentran y la forma en planta, a las estructuras de interés arqueológico motivo de esta investigación.
8.5.2.1. ZONA A

La investigación mediante tomografía eléctrica en esta zona ha consistido en la ejecución de un bloque 3D designado PI13D, y 4 perfiles, denominados PI1, PI2, PI3 y PI4. Estos perfiles se midieron con las configuraciones dipolo-dipolo 3D, radial gradient 3D, dipolo-dipolo, Wenner-Schlumberger y strong gradient, con separación interelectrónica de 1 metro y separación entre perfiles de 2 metros. Para el bloque PI13D se trabajó con distancia interelectrónica de 1 metro y separación entre perfiles de 2 metros; el electrodo 1 del bloque 3D se corresponde con el electrodo 8 del perfil PI4 (ver figura 254). A partir de estas medidas se han realizado las correspondientes secciones de resistividad 2D y modelos 3D por yuxtaposición e interpolación de los datos de las mismas.

Los perfiles de inversión de resistividad (secciones 2D) realizados se muestran en las figuras 262 a 265. Las secciones muestran una estructura general del subsuelo formado por un sustrato geológico homogéneo caracterizado por unos valores resistivos inferiores comprendidos entre 10 y 30 \(\Omega \cdot m \), representado por los colores azules, que debe corresponder con arcillas con muro a 5,4 metros. La parte superior de este sustrato (techo) aparece, según los diferentes puntos, entre los 1,3 y los 3,2 m de profundidad. Por encima del material arcilloso se distingue un terreno caracterizado por valores de resistividad que varían entre 40 y 90 \(\Omega \cdot m \), representado por colores verdosos. Por su cota de aparición a más de 2,5 m de profundidad debe corresponder con una unidad geológica margosa que representa una transición entre el sustrato geológico arcilloso y los depósitos antrópicos someros. Estos últimos hacen la función de techo en la totalidad de los registros eléctricos. Los materiales arqueológicos pueden proceder de cimentaciones de muros y alzados de adobe o mampostería, así como de restos constructivos colapsados intercalados entre las estructuras principales, niveles de uso a modo de suelos apisonados, fondos de cabaña y agujeros de poste. El espesor de estos materiales varía entre 0 y 1,4 metros, y destacan por sus altos valores resistivos comprendidos entre 350 y 1000 \(\Omega \cdot m \). Se representan por colores naranjas y rojos.
El perfil PI1 (figura 262) muestra una zona inicial comprendida entre los metros 0 y 6 (electrodos 1 a 7) donde no se observan anomalías primarias. Se trata de una franja del terreno donde el sustrato geológico aflora hasta la superficie con valores de resistividad menor, 100 Ω.m, y una continuidad hacia el subsuelo que alcanza 3,8 m de profundidad. A partir del metro 6 se observa el inicio de las anomalías con posible origen antrópico. La primera se ubica en el metro 6,2 de la sección con base a 0,70 m, caracterizada mediante una geometría almendrada y 280 Ω.m de resistividad. Ahora bien, desde el metro 6 hasta el metro 19,5 los valores de las anomalías aumentan progresivamente en tamaño y resistividad. Así pues el perfil muestra dos zonas anómalas principales con unos valores de resistividad elevados de 1000 Ω.m. Se sitúan en orden de avance del perfil hacia el este entre los metros 12,5 y 14,5, la primera, y 17,5 a 19,5, la segunda, a una profundidad con techo entre la superficie y 0,20 m, y base a 1,4 m, con unas dimensiones aproximadas de 1,8 metros de ancho y geometría irregular. Junto a estas anomalías de entidad se observan cuatro pequeños elementos resistivos muy someros en los metros 8, 10, 12 y 16, con dimensiones laterales inferiores a 0,5 m y resistividades comprendidas entre 320 y 850 Ω.m.

Desde el metro 21 hasta alcanzar el extremo este de la sección en el metro 27 (electrodo 28) se registran cuatro anomalías, dos con al menos 1 m de longitud, situadas entre los metros 20 y 22, y dos más con menor entidad en los metros 24,5 y 26,5. La profundidad de aparición oscila, como en los casos anteriores, entre la superficie y 1,4 m de profundidad, y su resistividad se comprende entre 280 y 350 Ω.m.
8. Yacimiento de Piédrola

El perfil PI2 (figura 263) mantiene una distribución de elementos anómalos pareja a la tomografía analizada anteriormente. Desde el inicio hasta el metro 10 no se aprecian anomalías de entidad, aunque se observan en los metros 1, 3, 5 y 8 cuatro figuras de color amarillo que pueden corresponderse con elementos subsuperficiales de resistividad menor con base en profundidad entre 0,30 y 1,1 m. En este caso se observa un contraste entre la resistividad del sustrato geológico definido en color verde, con 90 Ω.m, con respecto a la de estos elementos, aumentando sensiblemente hasta 150 Ω.m.

Por otra parte, las principales anomalías se modelan con contornos bien definidos a partir del metro 9 hasta el 19. Presentan unos altos valores resistivos elevados de 1000 Ω.m, y se sitúan en el metro 9, entre los metros 15 y 16, y en el metro 19. Su cota máxima en profundidad guarda relación con la identificada para algunas de las anomalías anteriores, es decir, a 1,1 m. Asimismo se diferencian distribuidos entre los metros 10 y 14 cuatro puntos anómalos someros con 320 Ω.m de resistividad, emplazados a ras de suelo y con pequeñas dimensiones, por lo general inferiores 0,50 m de longitud. El último tercio del perfil destaca por presentar varias anomalías superficiales con resistividad de 410 Ω.m repartidas consecutivamente a partir del metro 20, que se albergan en un estrato de resistividad media (275 Ω.m) representado en color anaranjado.

![Figura 264. Perfil de tomografía eléctrica PI3.](image)

En la tomografía PI3 (figura 264) el horizonte perteneciente a los posibles restos arqueológicos se muestra más homogéneo que en los perfiles precedentes. Además, se observa un aumento generalizado de la resistividad (150 Ω.m) de este material encajante dispuesto entre la superficie y 1,5 m de profundidad. Las anomalías, por su parte, se representan con un cambio sustancial a la baja en los valores de resistividad, que descienden por debajo de 400 Ω.m. Así, las anomalías principales ofrecen una resistividad que se estima en 370 Ω.m. Dichas singularidades resistivas se modelan con unos límites laterales claros, en color rojo, y en este caso se sitúan en la zona este del perfil, en concreto en los metros 19, 21 a 22, y 24.

341
En el área central del registro, y en su inicio, se observan varias anomalías con valores de resistividad media (200 a 250 Ω.m) muy diseminadas a lo largo del perfil, con separación lateral superior a 1,5 m que en algunos casos aumenta hasta 3 m, a distintas cotas tanto superficiales como en profundidad, y con dimensiones comprendidas entre 0,3 a 1,4 m.

El registro PI4 (figura 265) destaca por tratarse de una imagen donde las interfacies de las distintas capas que componen el subsuelo inmediato quedan correctamente definidas en horizontal, observándose la delimitación de al menos dos tipos de materiales geológicos sobre los que se asientan los colapsos estructurales y las unidades constructivas antrópicas. Esto es, aparecen bien definidas y con geometrías regulares de tendencia subvertical trece anomalías ubicadas entre 1,2 m de profundidad y la cota cero, con tamaños medidos entre 0,40 y 1,1 m de grosor, y espesores comprendidos entre 0,20 y 0,80 m. Las resistividades de dichas anomalías oscilan entre 260 y 350 Ω.m.

Cabe señalar, para concluir la interpretación de este registro, que en color rojo sobresale una anomalía sita en la vertical del el metro 17 con un núcleo muy resistivo (840 Ω.m) por lo que la naturaleza de la posible estructura que la genera puede ser rocosa, como por ejemplo caliza, material local abundante. Con cimentación de 0,90 a 1,10 m, esta anomalía presenta un contorno bien delimitado y forma ovalada con grosor cercano al metro. También se observa una zona resistiva superior a 300 Ω.m, de características bien señaladas, ubicada a 24,5 m del inicio del perfil entre la cota cero y 0,60 m de profundidad.

Con el fin de obtener una visión conjunta de las anomalías detectadas, se ha elaborado una imagen secuencial con las tomografías organizadas según su orden de medición, en la que se señala las principales singularidades resistivas (figura 266).
Como puede observarse en la figura 8.20, el terreno de la zona de exploración A es uniforme. La base geológica se distribuye de manera uniforme desde la cota máxima de exploración a 5,4 m, hasta 1,4 m de profundidad, y en el caso de los perfiles P11 y P12 hasta la superficie, albergando las cimentaciones de las posibles estructuras arqueológicas y los rellenos estratigráficos asociados. De modo similar, el bloque 3D obtenido a partir de la interpolación de perfiles 2D aporta datos específicos sobre el contraste entre las resistividades que definen las distintas capas antrópicas y geológicas, disminuyendo la calidad en cuanto a caracterización de pequeñas anomalías estructurales (figura 267).
Figura 267. Bloque 3D de resistividad invertida realizado a partir de la interpolación de los registros PI1 a PI4. Las anomalías antropicas se resaltan en colores amarillos, anaranjados y rojizos. Los estratos geológicos se representan en colores verde y azul.

En total se registran diez anomalías principales (denominadas entre A y J), esta alta proporción indica una significativa concentración de estructuras en esta zona del yacimiento. En suma, se identifican cinco anomalías con continuidad en la totalidad de los perfiles realizados (anomalías A, C, D, E y G), dos (anomalías F e I) con correspondencia lineal en al menos dos tomografías y tres sin continuidad lateral (B, H y J). Se caracterizan por una resistividad media y elevada, así como por una posición poco profunda.

Las anomalías se muestran repartidas a lo largo de los cuatro perfiles de forma continua, mientras que en los primeros 8 metros de los perfiles PI1 y PI2 se observa una disminución en la densidad de aparición, dato coincidente con los resultados obtenidos mediante georradar. En sector occidental destaca la anomalía A que se inicia en el perfil PI1 como un probable reflejo lateral de las dos posibles estructuras captadas con mejor nitidez en PI2. La geometría de la anomalía pierde resolución en el perfil PI3, pero avanza como se puede apreciar en dirección sur con un aumento paulatino de su resistividad que se incrementa desde 150 a 350 Ω.m. Es importante subrayar que la cota en profundidad de la anomalía A se sitúa a 1,1 – 1,2 m, dato que coincide con la cota obtenida para otras anomalías registradas en la totalidad de los perfiles como la C y la E.
Nuevamente, las anomalías C y E atraviesan en perpendicular el área investigada con dirección N-S. Por su elevada resistividad (1000 Ω.m), tamaño y grosor superior a 1 metro destaca la anomalía E. En ambos casos las mediciones adquiridas muestran unas estructuras que mantienen una dirección estable, pero con una leve variación en la cota superficial que a diferencia de la anomalía A no se mantiene constante. Esto es, según el perfil analizado el coronamiento de las anomalías varía 0,30 m desde la superficie, lo que puede relacionarse con una posible alteración o destrucción de la zona superior de la estructura mediante el arrastre del subsolador agrícola. Además, se observa entre los metros 16,5 y 18 del perfil PI3 una zona de conexión entre las anomalías E e I, caracterizada por una resistividad de 230 Ω.m, que puede corresponderse con posible material arqueológico o con el reflejo lateral de alguna anomalía cercana.

En esta línea argumental basada en la descripción de las anomalías localizadas entre PI1 y PI4 se debe indicar que en el centro de las secciones (metros 9 a 15), y en su límite este (metros 20 a 27), sobresalen las perturbaciones D y G por tratarse de dos zonas en las que se produce una acumulación excepcional de estructuras de diversa magnitud. Se modelan con idénticas características visuales: zonas alargadas de material encajante con resistividad superior a 200 Ω.m, cota superior entre la rasante del terreno y 0,60 metros, pequeños núcleos resistivos internos (entre 5 a 8 según perfil) con 0,4 a 2 metros de longitud, contornos definidos, y elevada resistividad (360 a 1000 Ω.m). Esta posición espacial cercana al suelo de uso actual, las numerosas alineaciones N-S, así como su alta resistividad, permiten deducir que se trata de elementos arqueológicos lineales constituidos por materiales resistivos, posiblemente de mampostería.

La disminución en la calidad del modelado de la geometría de las anomalías lineales en puntos concretos de los perfiles, puede indicar que estas posibles estructuras presentan un nivel de deterioro avanzado, quedando sus límites laterales enmascarados por los materiales constructivos arruinados que deben situarse inmediatos a ambos lados de las mismas, deformando y alargando su morfología.

Entre los metros 17 y 21 resaltan las anomalías F e I con cimentación a 0,40 y 1,3 m de profundidad, construidas con materiales con valores de resistividad aproximada de 1000 Ω.m. en sus zonas más resistivas. En principio parece existir una conexión alineada entre ambas, pero como puede observarse, a partir del perfil PI3 la anomalía I se disgrega hacia el este, produciéndose una deriva lateral superior a 1,5 m. Este factor
parece indicar que si bien en la zona comprendida entre los metros 18 y 19 existe un alineamiento en dirección N-S que indica la posición de un posible muro de gran envergadura, es factible, como puede advertirse en la imagen, que en el metro 21 de los perfiles PI3 y PI4 se adosen en su lado oriental dos posibles estructuras, y en consecuencia, se produzca una prolongación artificial de su geometría en dirección este.

Las anomalías B, H y J se identifican únicamente en los perfiles PI1, PI2 y PI3, respectivamente. La falta de datos geofísicos continuados sobre estas anomalías en el resto de perfiles tomográficos, impide poder realizar una interpretación fiable sobre la posibilidad de que se trate algún tipo de estructura antrópica. Por su resistividad comprendida entre los 220 y 280 Ω.m, su situación espacial con cota en profundidad a 1 m, en el caso de las anomalías B y J, y junto a la rasante del terreno, en el supuesto de la H, se deduce que su material es completamente diferente a los materiales geológicos identificados mediante tomografía en todo el subsuelo de la zona de exploración. Por otro lado su geometría, y tamaño coincide con el de otras anomalías cercanas, como la C en los perfiles PI3 y PI4, o la D. Asimismo, su posición espacial subsuperficial es similar a la del resto de perturbaciones albergadas en el sustrato identificado como antrópico. Luego, sobre la base de estos datos es plausible identificar estas anomalías con restos arqueológicos enterrados, bien constructivos, separados a menos de 2 metros de una edificación cercana, bien estructurales, como restos de posibles muros arrasados e inconexos con otros posibles muros adyacentes, o bien como posibles fondos de cabaña o agujeros de poste como los detectados en el sondeo arqueológico al norte de la cuadrícula de investigación.

8.6. DISCUSIÓN Y CONTRASTE DE RESULTADOS

La investigación efectuada en el paraje de Piédrola tiene como objetivo delimitar las zonas con presencia de estructuras antrópicas, y comprobar la validez del uso combinado de métodos geofísicos eléctricos y electromagnéticos en el yacimiento, con el fin de desarrollar futuras intervenciones arqueológicas en las áreas de mayor interés. La exploración geofísica ha permitido determinar una zona en la que se registra una cantidad importante de elementos anómalos. Con estos datos se pretende caracterizar la disposición espacial y naturaleza física de las anomalías documentadas en la prospección geofísica, sobre la base del uso combinado de georradar y tomografía
eléctrica, y su contraste a partir de excavaciones arqueológicas manuales. Para ello se expondrá de manera pormenorizada un análisis de la zona en la que se ha excavado, contrastando los resultados con los obtenidos mediante la exploración geofísica, con el fin de determinar la idoneidad o carencias de los métodos y configuraciones empleadas en un yacimiento arqueológico con las particularidades arqueológicas y geológicas propias de Piédrola.

El método de trabajo ha consistido en una excavación de dos sondeos rectangulares en la zona de exploración A, en sus lados noroeste y sureste (figura 268). Para ello se ha llevado a cabo el levantamiento de los estratos geoarqueológicos, desde el más reciente hasta el registro con mayor antigüedad o un nivel estéril.

![Figura 268. Localización de los sondeos arqueológicos. Rojo: sondeo I. Azul: sondeo II.](image)

8.6.1. ZONA A

Los sondeos arqueológicos manuales se plantearon en dos zonas: la primera, en el sector noroccidental de la cuadrícula de GPR, donde se detectaron varias anomalías primarias de interés para el equipo científico director de las intervenciones. La segunda, en el límite suroriental del área de estudio, en una zona en la que sobre el terreno existía un pequeño montículo artificial donde el subsolador presentaba problemas para avanzar.

La finalidad de estas catas era comprobar las características de la estratigrafía, su relación con las numerosas anomalías detectadas durante la investigación geofísica previa, y determinar su grado de correspondencia con unidades constructivas arqueológicas reales. Los sondeos se configuraron con unas dimensiones de 4 m de
longitud para su eje mayor (con dirección E-O) por 3 m de anchura en su eje menor (con dirección N-S), en el caso del sondeo número I, y de 4 m de longitud para su eje mayor (con dirección N-S) por 3 m de anchura en su eje menor (con dirección E-O) para el sondeo II. En sus interiores se documentó una estratigrafía lineal coincidente, cuya secuencia de techo a muro es la siguiente:

El nivel superficial del terreno se corresponde con el primer nivel de los sondeos. Se trata de una unidad con 0,25 a 0,35 m de grosor compuesta por un sedimento que mezcla la cubierta vegetal con materiales arqueológicos constructivos y cerámicos revueltos por las tareas agrícolas. Es un material arcillo-arenoso con textura dura y compactada, y color marrón oscuro.

La segunda unidad antrópica, se compone por varios sedimentos de composición homogénea con espesor comprendido entre 0,60 y 0,70 m. Es una matriz compacta y cohesionada formada por un relleno de material arcilloso blanquecino, mezclado con sedimentos grisáceos provenientes de cenizas. No se observa la presencia de derrumbes constructivos de mampostería, aunque se documenta un material arcilloso de tonalidad gris oscuro con concreciones de cal que muestra una textura aterronada con posible origen en adobes descompuestos o tapial colapsado. Esta unidad se encuentra sobre la cota final de la intervención.

La tercera y última unidad estratigráfica se corresponde con un nivel natural de margas verdosas de textura plástica, que adquiere una consistencia dura cuando pierde la humedad. Afloró en el sondeo I a 1 m de profundidad, y a 0,80 m en el sondeo II. Su superficie uniforme y horizontal en los tramos sondeados carece de intrusiones orgánicas, además, sirvió de asiento de cimentación para la construcción de los muros y para la excavación de los hoyos documentados. Los perfiles estratigráficos de los sondeos arqueológicos, pueden observarse en la figura 269.
Tras excavar estas capas estratigráficas, se han alcanzado las estructuras arqueológicas (figura 270 y 271). En el sondeo I se han documentado tres muros de mampostería parcialmente excavados, que continúan dentro de los perfiles norte, sur y oeste de excavación, y un hoyo con cubierta que avanza dentro del perfil oeste, adyacente al muro situado en el lado oeste del sondeo (figuras 270 y 272).

Dos de las unidades arquitectónicas murarias (II y III) se asientan sobre el segundo estrato antrópico descrito. Sin embargo, el muro (I) documentado en la zona oeste del sondeo apoya sobre el nivel natural, mientras que el hoyo corta el tercer estrato, por lo tanto, en esta zona se han agotado las secuencias estratigráficas arqueológicas hasta llegar al sustrato geológico.

El hoyo se realizó directamente excavando sobre el nivel geológico. Se desconoce la totalidad de su planta y la sección, por quedar encajado parcialmente en la esquina suroccidental del sondeo. Su morfología parece ovalada, alargada en dirección N-S, cuenta con 0,80 m de longitud y 0,70 m de anchura. La estructura se colmata por un relleno de piedras calizas de tamaño medio y pequeño y una matriz arcillosa semicompactada de color rojizo. El hoyo estaba marcado con una piedra caliza de grandes dimensiones (0,75 x 0,5 x 0,4 m) con cota inicial a 0,59 m de profundidad.

Sobre la superficie del sustrato geológico se construyó, sin mediación de fosa de cimentación, el pequeño muro I. Se trata de una construcción de 0,75 x 0,30 m, aunque su longitud excede los límites del área sondeada, fabricada con mampostería caliza de tamaño medio dispuesta en seco, sin ningún tipo de mortero de unión. Situada inmediatamente al norte del hoyo, con cota inicial a 0,71 m de profundidad, dista 1,81 m de muro II, y 2,02 m del muro III.

Por su parte, los muros II y III forman parte de una fase constructiva posterior a las dos estructuras anteriormente descritas. Son dos construcciones perpendiculares. El muro II es una estructura con dirección NO-SE. Se desconocen sus dimensiones puesto que se encuentra encastrado entre el muro III y el perfil norte. Mientras tanto, el muro III avanza con dirección N-S, con unas dimensiones de 3 x 0,7 m, aunque su longitud excede el área excavada. Destaca en su zona central una piedra caliza sin desbastar de gran tamaño (1 x 0,7 x 0,6 m) utilizada posiblemente como cimentación. Ambos muros están construidos con mampostería de piedra caliza local de contorno irregular de tamaño mediano. Los bloques que conforman las estructuras están trabados con mortero arcilloso de coloración parda para conferir a las estructuras mayor consistencia, aunque las juntas entre mampuestos en el muro II, muestran la pérdida avanzada del material de
8. Yacimiento de Piédrola

agarre. Presentan una superficie de arrasamiento horizontal y uniforme, a unos 0,50 m de profundidad, en el muro II, y 0,40 m de profundidad para el muro III, con respecto a la superficie actual de uso.

En el sondeo II se han documentado cinco hoyos prehistóricos, tres de los cuales de manera parcial, y un gran bloque de piedra caliza en el perfil norte de la excavación (figuras 271 y 272).

En la esquina noroccidental del sondeo se localiza el hoyo I que representa la estructura más antigua del sondeo II. Su planta se conoce con exactitud puesto que ha sido excavado en su totalidad. Presenta una morfología circular con un diámetro de 0,77 m, que supone la estructura de esta tipología más pequeña documentada en la cata. Su cota superior se ubica a 1,2 m por debajo del terreno. Presenta una profundidad de 0,30 m, por lo que su base se documenta a 1,5 m. El sedimento que rellena esta estructura es un potente paquete de cenizas muy sueltas con abundantes restos vegetales carbonizados y huesos.

El hoyo II representa una interfaz negativa que corta el sustrato geológico y parcialmente al hoyo I en su cara noreste. Su planta se adentra en el perfil norte, y parece circular o sensiblemente elíptica. Su cota superior se sitúa a 0,8 m por debajo del
suelo actual, presentando una profundidad de 0,45 m, con lo que su base se documenta a 1,25 m. El sedimento que colmata esta estructura es un relleno arenoso de color verdoso con textura jabonosa.

El bloque de piedra caliza se encastra en la cara norte del sondeo, junto a la esquina noroeste y sensiblemente sobre la vertical norte del hoyo I. Este factor implica que su volumen total sea desconocido. La medición de su tamaño arroja unas dimensiones de 0,55 x 0,43 x 0,31 m. Este mampuesto se encuentra sin desbastar, tampoco se observa en el perfil ninguna hilada de piedra en ninguno de sus flancos, con lo que es complejo precisar si se trata de un elemento constructivo independiente, o forma parte de un conjunto estructural ubicado espacialmente a continuación de la pared norte del sondeo, en la zona sin excavar.

Estos tres elementos arqueológicos son los únicos que se encuentran dentro de la zona explorada en la presente investigación geofísica y se corresponden subsuperficialmente con la proyección del perfil P6 de GPR y con la línea de tomografía PI4. Los hoyos III, IV, y V se encuentran a 1,48, 2,54 y 2,87 m al sur de la zona de estudio, respectivamente.

En la figura 272 puede observarse la distribución integrada de los métodos geofísicos aplicados en la exploración. Las anomalías detectadas en las esquinas noroeste y sureste de la zona del poblado, correspondientes a los perfiles P3, P4 y P6 de georradar y a los perfiles PI1, PI2, PI3 y PI4 de tomografía, han podido constatarse a partir de la
excavación arqueológica desarrollada en este sector. En ambos sondeos el estrato superficial de uso antrópico está caracterizado por materiales arcilloarenosos con abundante materia orgánica muy mezclados con materiales removidos de relleno arqueológico, que cubren la totalidad del área investigada desde la superficie a 0,35 m de profundidad máxima. En los radargramas estos materiales ocupan la totalidad de las imágenes desde su cota inicial real a 0,35 – 0,40 m de profundidad sin apenas alteraciones, coincidiendo con exactitud con los datos de excavación. Bajo esta capa superficial puede observarse en los radargramas un leve cambio a un sustrato con continuidad subhorizontal que presenta variaciones visibles de escasa entidad, representadas mediante señales lineales que modifican la secuencia con trazos diagonales, así como con pequeñas depresiones o hundimientos. Puede reconocerse como una banda estrecha de 0,20 m de espesor, coincidente con el estrato definido como segundo nivel (figura 269). En el primer sondeo el cambio entre esta unidad y la tercera se representa como una franja oscura de 0,25 m carente de señales reflejadas a partir de los materiales que componen la unidad, con un leve buzamiento en dirección oeste en el caso del perfil 3. Las únicas alteraciones visibles las representan las ramas de hipérbolas de elementos estructurales. Por su parte, cuando se ha producido el cambio de unidad estratigráfica, la señal representa nítidamente los primeros 0,25 m del suelo geológico margoso, aunque con una cota sobreelevada en los radargramas 0,10 m si se compara con su cota real en profundidad obtenida mediante la excavación. Esta señal en los radargramas P2 y P3 representa el último reflector subhorizontal continuo en profundidad de la exploración, pero no la señal más profunda, puntualmente se registran ecos de posibles estructuras de gran envergadura que alcanzan los 2 m en los radargramas inmediatamente al este de la zona excavada (figura 273).

En el segundo sondeo la variación entre los estratos dos y tres se observa de nuevo mediante una banda oscura, pero en este supuesto con mayor espesor, variable entre 0,25 y 0,35 m, además, muestra alteraciones puntuales a partir de anomalías de tipo I. El sustrato natural se caracteriza por un espesor de 0,25 m, coincidiendo con exactitud su cota inicial en los radargramas respecto a los datos documentados en la excavación para este estrato (figura 273).

En el sondeo I los coronamientos de los muros se observan en los radargramas a alturas de cota parejas, con señal de onda bien definida y de alto contraste, en especial en el perfil P2; así, en el perfil P2, el muro I se representa a 0,75 m. Este elemento reflector en el capítulo interpretativo se consideró como una anomalía de tipo II. Por su parte, el muro III se detecta en el perfil P2 a 0,80 m y en P3 la cota superior se observa a la misma cota, 0,80 m. Los datos obtenidos para el muro I se asemejan con el coronamiento real de esta estructura localizada en la excavación, situado a 0,71 m, en el caso del muro III, las mediciones lo ubican a 0,40 m por debajo de su cota real, documentada a 0,40 m de la superficie (figura 274).
El hoyo colmatado con un relleno de mampuestos se ha localizado con el perfil P3. En la excavación se documentó una piedra caliza con dimensiones superiores a 0,50 m que cubría parcialmente la estructura. El conjunto se representa a partir de una señal de forma irregular que dificultó su interpretación y localización inicial como posible estructura primaria. La cota superior de la anomalía se ha definido en el radargrama a 0,70 m, lo que supone una diferencia positiva de 0,11 m con respecto a la cota real (figura 274).

En cuanto al bloque de piedra caliza que se localiza apoyado en el lateral oeste del muro III, en el radargrama P2 se ha captado como una anomalía tipo I contigua a la estructura arquitectónica con vértice en 0,55 m. Este dato se diferencia del real documentado en excavación en 0,25 m, lo que constituye un incremento positivo de 0,30 m. En el apartado de interpretación de resultados este evento anómalo se definió como el arranque con orientación O-E de una posible estructura constructiva unida lateralmente al muro III, debido por una parte a la potente señal de reflexión generada por este reflector, así como a la escasez de registros por la imposibilidad de medición de perfiles con orientación N-S por las características topográficas del terreno. Esta interpretación
se ha podido corregir a partir de la combinación de los registros geofísicos con los datos aportados por la excavación arqueológica (figura 274).

La ubicación subvertical de las anomalías en los radargramas P2 y P3 concuerda con la ubicación precisada por los datos de la excavación arqueológica con un error lateral máximo de 0,20 m, a excepción de la señal del muro I en P2 que presenta una desviación de 0,45 m hacia el este (figura 275).

Adicionalmente, la base real de las estructuras ha sido certificada mediante excavación arqueológica sobre la tercera unidad estratigráfica, es decir, a 1 m de profundidad. En este caso sus reflexiones cubren la secuencia de los radargramas hasta 1,05 m de profundidad aproximadamente, en los supuestos del muro I, el hoyo colmatado y la gran piedra caliza apoyada en el muro III, y de 1,55 m para el muro III. En las tres primeras evidencias arqueológicas la diferencia es mínima y concuerdan con los datos de excavación, en cambio, en el caso del muro III se produce un aumento en profundidad de 0,55 m en el perfil P2, visualizable mediante un eco doble sensiblemente curvado.

Por su parte, los perfiles tomográficos 2D han permitido obtener una visión del subsuelo de esta zona del yacimiento con un alto nivel de precisión (figura 276). Se han identificado correctamente las distintas zonas en las que se sitúan las construcciones arqueológicas y materiales de relleno de la estructura negativa. Se ha determinado que cuando el suelo que alberga los restos constructivos se compone por materiales arcillosos mezclados con material constructivo como adobes disgregados junto a restos de cal y cenizas, la resistividad de los vestigios arqueológicos es superior a la del medio que los rodea entre 250 a 900 Ω.m dependiendo de la estructura. Este factor posibilita la correcta caracterización, delimitación e identificación de los bordes de las diferentes unidades constructivas que, además, no aumentan con respecto a las estructuras documentadas en la excavación en más de 0,30 m de grosor. Al mismo tiempo, se puede producir una fluctuación en la resistividad para una misma estructura; como puede observarse en las imágenes, la única estructura registrada en las dos tomografías es el muro III, cercana al metro 12 (electrodo 13). Este muro ha obtenido una disminución en el valor de la resistividad de 1000 Ω.m, en el perfil P2, a 320 Ω.m, en el perfil P3, es decir, en una distancia de dos metros de separación entre perfiles, los valores resistivos del muro han descendido 700 Ω.m. En la excavación arqueológica esta unidad
constructiva se muestra exteriormente idéntica en ambos puntos de medición, con idénticos materiales de fábrica y con el mismo grado de arruinamiento, de ahí que la variación debe encontrarse en las características físicas de los materiales que componen su estructura interna, posiblemente menos degradados, con escasa porosidad, y con mayor nivel de humedad en un paño del muro respecto al otro.

Sin embargo, en el bloque 3D generado a partir de la interpolación de las cuatro secciones 2D se ha observado como en la zona correspondiente al sondeo I se produce una deficitaria caracterización de las anomalías asociadas a estructuras de pequeña entidad. La sección norte del muro III es la única estructura que se visualiza, pero con una disminución de su resistividad que pasa de 1000 Ω.m a 300 Ω.m (figura 277).

![Figura 277. Bloque 3D realizado a partir de de las secciones PI1, PI2, PI3 y PI4 con cortes longitudinales sobre el eje Y, en el que señala con un recuadro de color rojo la anomalía perteneciente al muro III. En azul se indica la proyección del muro en la excavación. Obsérvese la ausencia de anomalías estructurales en el entorno del muro III correspondiente al sondeo I.](image)

En cuanto a la posición subvertical de las estructuras arquitectónicas señalar que se corresponden con el metro indicado en cada sección eléctrica. Se posicionan en los metros 8, 10 y 11,5 de la sección PI2, y 9,5, 10 a 11 y 11,5 m de la sección PI3 (figura 278). En el caso del perfil PI2, en el que se representan tres anomalías, la ubicada en el metro 11,5 se corresponde exactamente con el muro III. Por otra parte, en las imágenes 25 y 29 puede observarse que el muro II se sitúa a 0,20 m al norte de la proyección del perfil eléctrico sobre la excavación. La anomalía definida en el metro 10 coincide con su posición espacial, con lo que este elemento anómalo debe equivaler a esta estructura excavada, además, la anomalía representa el reflejo lateral del muro II en la sección.
Para la anomalía situada en el metro 8 caben dos interpretaciones; el metro 8 del perfil de tomografía se sitúa en el borde oeste del sondeo I. Como se observa en las figuras 30 y 31 en ese punto no existe ninguna unidad constructiva que se sitúe bajo la zona investigada por PI2. Por lo tanto, puede tratarse en primer lugar de una posible estructura que se localice inmediatamente al oeste de la zona excavada, todavía cubierta por el terreno, cuya anomalía se encuentre desplazada lateralmente en dirección este, sobre la zona sondeada. En segundo lugar, puede tratarse del reflejo lateral del muro I, ubicado 0,60 m al sur del perfil PI2.

De igual manera, la sección PI3 muestra una elevada efectividad en el posicionamiento de las anomalías localizadas en los metros 9,5 y 11,5, equivalentes al hoyo y al muro III, que se sitúan en el registro con un error lateral inferior a 0,25 m. En contraste, la anomalía representada entre los metros 10 y 11, que en la excavación no tiene ninguna correspondencia arqueológica, puede equivaler a la representación del reflejo del bloque de piedra que apoya sobre el lado oeste del muro III, lo que supondría una inexactitud lateral de aproximadamente 0,90 m en dirección oeste (figura 278).

Sobre la ubicación en profundidad de las anomalías en las secciones se debe indicar que la cota del coronamiento de las estructuras, difiere con los datos aportados en la excavación en todos los supuestos. Así, tras su medición, se ha observado que la divergencia de medidas es de 0,20 m para el hoyo, 0,50 m para el muro II, en el caso de la piedra caliza 0,30 m, y 0,40 m para el muro III. Estos tres últimos casos se sitúan en los perfiles a ras de la cota actual de uso (figura 279).

La base de las anomalías se representa en el perfil P2 sensiblemente a menor profundidad que la real. En el caso de los muro II y III, excavados hasta el nivel geológico, la cota real en profundidad es de 1 m, y en el perfil P2 se disponen a 0,95 m de profundidad máxima. Sucede lo contrario con el perfil P3 en el que las cimentaciones de las tres estructuras se sitúan por encima de su cota real en profundidad. De esta manera el hoyo, cuya base se desconoce, pero que por los restos documentados en la excavación se encuentra por debajo de 1,2 m de profundidad, se observa en la imagen a 0,60 m. En el supuesto de la piedra caliza posada sobre el muro y el muro III, la diferencia es aún mayor, fijándose en un error posicional negativo de 0,70 m (figura 279).

La visualización de estas estructuras horizontales se advierte en los bloques 3D generados en esta zona a partir de las configuraciones dipolo-dipolo 3D y radial gradient 3D con distintos resultados (figura 280). En los modelos obtenidos mediante la configuración radial gradient 3D la geometría de los volúmenes generados presenta unos contornos irregulares que provocan un aumento en las dimensiones de las anomalías con un solapamiento lateral que enmascara las figuras, además la posición en el subsuelo se duplica en profundidad en comparación con las estructuras reales. Sin
embargo, la configuración dipolo-dipolo 3D se ha mostrado útil en la caracterización de muros. Se ha logrado obtener una representación fiable en cuanto a cota, posición espacial subhorizontal, volumen y geometría del muro III, representado mediante unos parámetros que coinciden con los datos aportados por la excavación. Así, en la figura 280 puede observarse modelado con un grosor inferior a 1 m, con base a 1,05 m y situado en el metro 5,5 del bloque 3D (equivalente al metro 11,5 de las secciones 2D de tomografía, y con correspondencia con el metro 11,5 de los perfiles de georradar).

Al igual que en el sondeo I, en el sondeo II la investigación con GPR ha permitido obtener resultados positivos sobre los vestigios arqueológicos subyacentes en esta área. Las estructuras arqueológicas localizadas en la cata han sido fundamentalmente hoyos prehistóricos, aunque también se ha podido documentar una piedra caliza de gran tamaño encajada en el perfil norte de la excavación. El perfil P6 ha caracterizado transversalmente entre los metros 16,5 a 19,5 la zona equivalente al eje menor del sondeo II. En el radargrama A-6-A (perfil P6) la anomalía primaria obtenida se atestigua por una forma hiperbólica compacta, con las ramas apenas perceptibles, sin ecos, pero bien delimitada en el conjunto del registro. Esta anomalía equivale a la roca incrustada en el talud. Su cota inicial se representa en el perfil electromagnético a 0,70 m, dato que se sitúa 0,10 m por debajo de la cota real de este elemento geológico en la excavación. Además, la posición subhorizontal de la anomalía en el radargrama 280.
Los hoyos I y II, por el contrario, no han emitido una señal de onda reconocible que permita determinar una alteración en el patrón horizontal del registro correspondiente a estas unidades arqueológicas en los metros exactos donde se ubican en la excavación. No obstante, en el metro 18 del radargrama, equivalente al metro 2 del sondeo en dirección O-E, puede observarse una leve curva que sobresale 0,10 m por encima del estrato definido como geológico. Este cambio sensible en el registro se corresponde con la zona central del hoyo II, en concreto a su lado centro-oeste. En esa zona del hoyo se documentó depositada durante su proceso de excavación una urna cerámica completa de pequeñas dimensiones. Sobre la base de estos datos arqueológicos objetivos cabe considerar la posibilidad de que el reflejo de la onda sobre este objeto sea el origen de esa ligera variación en el metro 18 del registro (figura 281).

La base real del bloque pétreo ha sido documentada en la excavación arqueológica sobre la tercera unidad estratigráfica, es decir, a 0,80 m de profundidad. En este supuesto el eco de la onda profundiza verticalmente en el radargramas hasta 1,15 m de profundidad y se solapa con la señal establecida para el reflector subhorizontal que define el sustrato geológico margoso.
En el caso del estudio eléctrico, el perfil 2D PI4 ha proporcionado una caracterización del terreno en esta zona del sondeo II con un alto nivel de precisión (figura 282). La identificación y delimitación de las superficies estructurales con respecto a los estratos de relleno compuestos por materiales arcillosos y cenicientos mezclados, y al suelo geológico de margas, es correcta, observándose un aumento neto en la resistividad eléctrica de hasta 200 Ω.m por encima de los materiales encajantes, y de 260 Ω.m sobre los valores de resistividad medidos para el terreno natural. Esta notable diferencia en el valor de la resistividad de los materiales que colmatan las estructuras negativas ha permitido la identificación de los bordes de los hoyos excavados que cortan el estrato geológico. Puede observarse en el perfil PI4 entre los metros 23,5 a 26 una anomalía anaranjada continua que se corresponde exactamente con el solapamiento de los hoyos I y II, tal y como se documenta en la excavación, con una distancia total de 1,98 m. El hoyo I se modela con una leve sobredimensión lateral que implica un alargamiento artificial de su tamaño en 0,5 m en dirección oeste (figura 283).

Sobre la localización subvertical de las anomalías en las tomografías se debe advertir que la cota superior de los elementos antrópicos no se corresponde con los datos aportados en la excavación. Las mediciones indican que la cara superior de la piedra caliza se encuentra junto a la superficie del suelo; si su espesor equivale a 0,31 m, supone un margen diferencial de 0,50 m con respecto al elemento real. Por su parte, los hoyos I y II se dilatan verticalmente en el perfil hasta la cota cero, cuando su cota de inicio real se ha establecido en 1,2 y 0,8 m, respectivamente. La base de las estructuras se han documentado en 0,80 m para el bloque calizo, 1,5 m para el hoyo I, y 1,25 m en el hoyo II, cuyas bases se asientan sobre el nivel geológico. De nuevo, vuelve a producirse una inexactitud de cotas, en este caso para el emplazamiento de las bases; así pues, la del mampuesto contrasta con los 0,20 m de la imagen, el hoyo I se modela a 1,1 m y el hoyo II a 0,55 m, esto es, una diferencia de 0,6, 0,4 y 0,7 m, respectivamente (figura 283).
8. Yacimiento de Piédrola

Figura 284. Arriba, perfil de tomografía PI4. Abajo, detalle metros 20 a 27 (electrodos 21 A 28). Se han marcado en rojo sobre el perfil las cotas reales inferior (CIR) y superior (CSR) de las estructuras arqueológicas excavadas. En negro se señala las cotas inferior (CIP) y superior (CSP) de las anomalías en el perfil. En azul se señalan bloque de piedra caliza (A), el hoyo I (B) y el hoyo II (C).

En el bloque 3D interpolado a partir de las cuatro secciones 2D se ha visualizado que en la zona correspondiente al sondeo II, si bien se modela un elemento anómalo en la posición exacta de los hoyos I y II, se reduce la calidad en la definición de los bordes de las estructuras, generándose un modelo artificial elíptico de 350 Ω.m de resistividad, con 2 m de grosor y 1,5 m de espesor. Tampoco se observa en esta imagen 3D el bloque de piedra caliza que queda bien definido como una pequeña anomalía rojiza de 650 Ω.m y 0,25 m de ancho en el metro 24,2 del perfil PI4, en la vertical del hoyo I. En este caso, el elemento anómalo correspondiente queda enmascarado en la figura elíptica (figura 285).
La excavación arqueológica efectuada en el área sur del poblado prehistórico del yacimiento ha posibilitado constatar la fiabilidad de los métodos geofísicos utilizados para la localización de nuevos vestigios arqueológicos en esta zona del paraje de Piédrola. Las estructuras murarias fabricadas a partir de materiales locales como morteros arcilloarenosos y mampostería caliza de diverso tamaño a las que se asocian grandes bloques de piedra caliza en la base con un posible uso de cimentación, equivalen con cuatro de las principales anomalías hiperbólicas detectadas por el equipo de georradar. Estas características físicas han permitido un alto contraste electromagnético con la matriz encajante, compuesta por muros de adobe arcilloso disgregados mezclados con cenizas y cal, lo que ha favorecido la detección de los restos arquitectónicos. A partir del inicio del sustrato geológico margoso la onda transmitida se ha atenuado observándose una disipación de la energía por debajo del metro de profundidad. Por encima de este nivel la antena de 250 MHz proporciona unos registros con buena resolución y calidad en las perturbaciones que caracterizan las estructuras, representadas por alteraciones en las secuencias de los radargramas bien diferenciadas mediante figuras hiperbólicas achatadas de brazos cortos y bandas de ecos subparalelos. Además, esta correspondencia se muestra con un leve margen de error lateral inferior a 0,40 m, algo semejante ocurre con las mediciones en la profundidad total, donde se ha advertido en relación con la profundidad real de excavación, una variabilidad establecida entre 0,10 a 0,40 m, según la estructura.
Ahora bien, en el caso de los hoyos excavados en el suelo geológico, el georradar no ha podido precisar la existencia de los cortes verticales, ni la prolongación subhorizontal de sus bases. Esto se ha debido a que las interfaces constructivas se corresponden con el mismo material del suelo. En cambio, cuando un hoyo se encuentra colmatado por mampostería caliza se ha advertido en el registro una anomalía tenue superpuesta al reflector subhorizontal continuo que caracteriza el nivel geológico, que indica la posición vertical exacta del elemento arqueológico enterrado, con una leve deriva lateral de 0,20 m.

Con la tomografía eléctrica la diferenciación entre las unidades de relleno y las estructuras está bien definida. La elevada resistividad de las construcciones en comparación con el medio encajante, ha permitido la identificación de todas las estructuras arquitectónicas, así como de los bordes de los muros y de las estructuras negativas. La relación espacial y el volumen de los elementos anómalos en comparación con el posicionamiento y tamaño real de las estructuras, apenas se diferencia, observándose cambios posicionales de 0,30 m, y de grosores y espesores inferiores a 0,35 m. La determinación de la cota de aparición de las construcciones ha sido inexacta en todos los ejemplos analizados, con errores de hasta 0,70 m. En cambio, con el bloque 3D interpolado es complicado obtener modelos adecuados de las anomalías antrópicas. Mientras que en los perfiles 2D se ha determinado satisfactoriamente la zona de contacto o transición entre estratos y unidades constructivas, en el registro 3D las anomalías desaparecen, o quedan difuminadas y alargadas alterando artificialmente su geometría. En el caso del bloque tomado mediante la configuración dipolo-dipolo 3D estos efectos se han mitigado. Ahora bien, en el supuesto de los datos obtenidos mediante el bloque 3D medido a partir de la configuración radial gradient, se ha producido una vista sobredimensionada de las anomalías con prolongación exagerada de su tamaño, superior a 2 m en cuanto a grosor y espesor, un desplazamiento lateral difícil de calibrar debido a que las anomalías ocupan toda la zona equivalente al área sondeada, y un aumento de la cota inicial hasta la superficie de uso actual, y de más de 2,1 m en profundidad.
9. Parque Arqueológico de Alarcos

CAPÍTULO 9. PARQUE ARQUEOLÓGICO DE ALARCOS

9.1. CONTEXTO GEOGRÁFICO E HISTÓRICO

El sitio de Alarcos es uno de los cinco Parques Arqueológicos que constituyen la Red de Parques de la Comunidad Autónoma de Castilla-La Mancha. El 17 de junio de 2003, mediante Decreto 95/2003, la Consejería de Educación y de Cultura de la Junta de Comunidades de Castilla-La Mancha dispuso su declaración como Parque Arqueológico de Alarcos-Calatrava, conforme a lo establecido en la Ley 4/2001 de Parques Arqueológicos de Castilla-La Mancha, con el objetivo de contribuir a la promoción y protección de su patrimonio histórico, arqueológico y ambiental, a través de la potenciación de la divulgación, e investigación científica.

El yacimiento de Alarcos se ubica a 8 km de Ciudad Real, y 3 km de Poblete, en el centro geográfico de la provincia. Se encuentra en un cerro a 698 m de altitud, en la margen este del río Guadiana, controlando su paso, y aprovechando esta zona muy rica para la explotación ganadera y agraria. Desde esta posición se dominan las comunicaciones que desde Sierra Morena llegan a la Meseta, y los caminos que unen Levante con el oeste peninsular (García y Morales, 2011). Por lo tanto, es un

Figura 286. Localización y vista general del Parque Arqueológico de Alarcos en los términos municipales de Poblete y Ciudad Real (Ciudad Real). © Instituto Geográfico Nacional de España.
emplazamiento con un importante valor estratégico, desde su cota superior se tiene control visual sobre otros enclaves significativos: el castillo de Caracuel, la fortaleza de Benavente, la atalaya de Ben Casen, así como el vado natural sobre el río Jabalón de Valdarachas (Juan et al., 1996).

El cerro de Alarcos geomorfológicamente se constituye por un relieve volcánico localizado dentro del Campo de Calatrava. Los primeros asentamientos humanos en esta zona de la cuenca del Guadiana se localizan durante el Achelense Medio, documentados en el cercano yacimiento de Albalá, con series líticas representadas por bifaces principalmente amigdaloides, triedros y abundantes hendedores (Serrano, A., 2000). La ocupación inicial de Alarcos se produce en la Edad del Bronce. A este periodo se adscriben los yacimientos de El Castillejo y Cerro Santo, a 2 km de distancia del cerro, lo que indica una ocupación relevante de este sector de la cuenca del Guadiana en este momento (Fernández, et al., 1995). A finales del siglo VI a.C. Alarcos ya era un importante oppidum ibérico cabeza de su territorio, que al menos se extendió por 22 ha del cerro, y con relaciones de interdependencia con muchos de los poblados menores de la vega del Guadiana (Arroyo de las Ánimas) o del Bajo Jabalón (La Puebla, Cantagallos, Valdarachas, etc.).

Alarcos ha sido identificado como la antigua ciudad oretana de Lacurris. Los trabajos de excavación arqueológica han confirmado la presencia de un oppidum ibérico de grandes dimensiones. Este poblamiento abarca un amplio periodo comprendido entre los siglos VII a II a.C. A partir de este momento se produce una interrupción en su poblamiento hasta época medieval. La primera noticia sobre la ocupación de este yacimiento en la Edad Media se registra en el pasaje de la dote entre la mora Zaida y Alfonso VI (Jiménez de Rada, 1998; Juan et al., 1996), pero es a partir del siglo XII cuando aumentan las fuentes documentales sobre la fortaleza, principalmente una vez se conquista la ciudad en 1147. Las primeras descripciones arqueológicas y de materiales constructivos del yacimiento las realizaron Luis Delgado en 1907, y en 1914 Antonio Blázquez e Inocente Hervás. Se trata de datos somerlos que inciden en el arruinamiento de los edificios, y en la posibilidad de comenzar investigaciones arqueológicas que aportasen información sobre los elementos materiales y “tesoros” enterrados. Será a partir de 1984, fecha de inicio de los trabajos de excavación arqueológica, cuando se produce un importante impulso en el conocimiento científico del enclave, con la documentación y puesta en valor de las diversas estructuras arquitectónicas, y de un
importante conjunto de materiales arqueológicos cerámicos, metálicos, de culto, funerarios y numismáticos (Fernández, 2000, 2001, 2012; Fernández et al., 1995; Fernández y García, 1998; Fernández y Luján, 2013; García y Fernández, 2004; García y Morales, 2004, 2009; García y Rodríguez, 2010, 2013; Juan, 2007; Juan et al., 1995, 1996; Mena y Caballero, 1987). Por medio de estos estudios se ha confirmado el declive urbanístico y poblacional de la ciudad a partir de la derrota de la Batalla de Alarcos ante los almohades de Al-Mansur en 1195. Posteriormente el Rey Alfonso X intentó impulsar una repoblación del lugar sin éxito, por lo que funda Villa Real en 1255, con el objetivo de crear una ciudad de realengo en el centro neurálgico de La Mancha para potenciar la zona.

Los trabajos de excavación arqueológica de carácter sistemático que se iniciaron en 1984, se han centrado en tres zonas bien definidas (Juan, 2007). Los dos primeros espacios son el barrio ibérico, en la zona noroeste del cerro, donde se han documentado varias estructuras de habitación articuladas en torno a calles, y la muralla medieval, con el registro de las fosas de despojos de la batalla de Alarcos, además de un santuario ibérico. La tercera zona se ubica en el castillo, donde se han recuperado sus defensas y torres asociadas, la puerta de acceso, un fosos, la zarpa de la fortaleza, y un barrio almorávide en el interior de la edificación. Con posterioridad la excavación se ha ampliado al denominado Sector III, donde se han documentado varias fases de ocupación con inicio en la Edad del Bronce, hasta la Edad Media, y a la necrópolis ibérica situada junto al río Guadiana, área cementeral compuesta por varios túmulos funerarios de mampostería.

Así pues, el arranque de la secuencia cultural del yacimiento se ha establecido en la Edad del Bronce, con continuidad hasta época contemporánea. Se produce una importante interrupción desde el cambio de era, en época romana, hasta los siglos IX a X. A partir de estas fechas Alarcos se convierte de nuevo en un enclave significativo por la construcción del castillo medieval y la posterior batalla en 1195 (Fernández y Luján, 2013).

Como se ha indicado anteriormente, la primera ocupación antrópica se produce con un poblado en altura del Bronce Pleno. Se documenta mediante prospección arqueológica en la zona occidental del cerro, en una zona abrupta donde sobresale un crestón de cuarcita con control sobre el paso natural del río Guadiana. Desde este momento, hasta
final del siglo VI a.C. la población se asienta en la zona superior, y ladera sur del yacimiento, como se ha documentado en el Sector III, con varias estructuras de habitación y materiales arqueológicos, principalmente cerámicos (García y Rodríguez, 2010), con la excavación de una necrópolis orientalizante en el extremo este del cerro (Fernández, 2001), o a partir de la presencia de cerámica tipo Carambolo, boquique, tipo almagra, con incrustaciones de bronce, etc. que indica el establecimiento de relaciones culturales y comerciales con otras zonas de la Península (Fernández, 2012), y con otros yacimientos de la provincia, principalmente, con el Cerro de Las Cabezas y la Bienvenida (Fernández et al., 1995). Sin interrupción con estos primeros periodos, como se ha documentado en algunos cortes de los Sectores IV y IV-E, se inicia la cultura ibérica oretana, con comienzo a mediados del siglo VI a.C., auge urbanístico entre los siglos V a III a.C., y abandono a principios del siglo I a.C. Como señalan Fernández y Luján (2013), Alarcos se convierte en uno de los oppida más importantes de la Meseta Sur, con constantes lazos comerciales especialmente con la zona norte de Andalucía, y el sureste peninsular. Se pueden distinguir varias etapas en la ocupación ibérica: Ibérico Antiguo, Pleno y Tardío.

La génesis de la cultura ibérica se desarrolla durante la primera etapa, entre mediados de los siglos VI y V a.C. La presencia ibérica se halla en todas las zonas investigadas mediante excavación arqueológica, lo que supone un área de 12 ha. La fase más antigua corresponde a una necrópolis sobre la que se construye un taller metalúrgico donde se registraron restos de escoria de cobre, un crisol y una cubeta. Además, a este momento se adscriben viviendas complejas construidas con muros de barro encalados, bancos corridos adosados y suelos de tierra apisonada roja, algunas con varias estancias y habitaciones de almacén. Se observa un aumento de cerámicas a torno, cerámicas grises, pintadas con decoración geométrica y de barniz rojo, y una disminución progresiva de la cerámica a mano que prácticamente desaparece en estratos superiores (García y Fernández, 2004).

El momento de mayor esplendor se encuentra en la segunda etapa, que corresponde con los siglos V a III a.C. Se observa un urbanismo avanzado y planificado. La ciudad se articula en torno a una calle principal formada por lajas de piedra caliza, con anchura de 6 m y 40 m de longitud, en la que confluyen calles menores que organizan el poblado en manzanas (Fernández et al., 1995; García y Fernández, 2004). La topografía del cerro se modifica artificialmente por medio de la construcción de aterrazamientos con sistemas
que permiten salvar el problema de los flujos pluviales de agua (Fernández y García, 1998). Además, aumenta el área edificada con inmuebles públicos y privados, que constan de una o dos habitaciones, construidos con zócalos mampostería y alzados de adobe. Destacan tres conjuntos arquitectónicos: en primer lugar, el santuario ubicado en el Sector IV, en una zona desnivelada. Se compone de varios edificios y una torre maciza. Asociados a esta estructura rectangular aparecieron más de cincuenta exvotos en bronce realizados mediante la técnica de la cera perdida (Mena y Caballero, 1987). Presenta una importante alteración estructural debido a las actuaciones constructivas con origen en la excavación de la gran fosa de cimentación de la muralla en época medieval. El segundo conjunto se denomina edificio tripartito, localizado en la parte baja de la ladera sureste del cerro, en el barrio ibérico. Recibe este nombre por componerse de tres habitaciones de grandes dimensiones. Los materiales documentados, como fusayolas, piedras de molino, tinajas, etc., apuntan a un uso de almacenamiento y de labores textiles en las distintas estancias (Fernández, 2008, 2009; Juan y Fernández, 2007). El último conjunto se localiza en el Sector III. Ubicado en la ladera este se documentó un edificio de grandes dimensiones, excavado parcialmente, con planta rectangular compartimentada por muros paralelos y cuatro muros de grandes dimensiones longitudinales escalonados para salvar el desnivel topográfico, con fábrica, dimensiones y planta diferentes al resto de construcciones ibéricas. En este excepcional edificio se han documentado una cantidad importante de molinos de mano y piedras de molino de rotación, recipientes de almacenaje y un horno de pan en su zona sur (García y Morales, 2004, 2009; García y Rodríguez, 2013; Rodríguez y López-Menchero, 2009; Vélez et al., 2006).

Por tanto, sobre la base de estos registros arqueológicos se confirma que Alarcos se constituye en este momento como una de las ciudades principales de los íberos oretanos, importancia que se refleja en la presencia de esculturas zoomorfas, posiblemente pertenecientes a tumbas monumentales, abundancia de cerámicas locales de buena factura pintadas con motivos geométricos, edificios construidos de grandes dimensiones, y concentración de elementos de prestigio, como objetos de oro, y gran número de cerámicas griegas procedentes de un intenso flujo comercial peninsular (Fernández y Luján, 2013; García et al., 2004; García y Rodríguez, 2013; Prada, 1977).

A lo largo del siglo II a.C. se produce el abandono progresivo de la ciudad, que culmina en el siglo I a.C. Los investigadores indican que se han recuperado elementos materiales
de procedencia romana, como un casco de bronce de tipo Montefortino A (Mena y Ruiz, 1987), fragmentos de *terra sigillata*, cerámica campaniense, y una moneda romana del siglo I (Arévalo y Fernández, 1998), datos que ponen de manifiesto el contacto entre ambas culturas, pero que no son suficientemente significativos como para confirmar el poblamiento del cerro durante época romana (Fernández *et al*., 1995; Fernández y Luján, 2013).

Desde este momento y hasta la Edad Media no se tienen noticias para esta zona de frontera. En 1147 Alfonso VII conquista Alarcos, comenzando una labor de fortificación y repobladora de esta zona. Posteriormente el cerro va a ser protagonista de un ambicioso proyecto urbanístico de realengo por parte del Rey Alfonso VIII. Esta tarea se paraliza debido a la debacle producida tras la Batalla de Alarcos en 1195, que paraliza la construcción de la ciudad, pasando a manos musulmanas, momento en el que comienza su decadencia y se inicia un lento abandono que persistirá durante los siglos venideros (Juan *et al*., 1996).

Los restos arqueológicos de la ciudad medieval se sitúan principalmente en la zona más elevada del yacimiento, aunque también se han localizado estructuras murarias de esta etapa en el Sector III (García y Rodríguez, 2013). A partir de la excavación de la zona sur de la ciudad se han localizado 400 m de la muralla, construida sobre el basamento geológico con la técnica de cremallera. Se fabrica con mampostería irregular de cuarcita encintada, trabada con cal y puzolana, aparejo similar al utilizado en la muralla de Toledo y la ciudad hispanomusulmana de Vascos. En algunos tramos sobre la base de mampostería se levanta un tapial encofrado de piedra con mortero de puzolana y de cal, técnica empleada en época almohade (Juan *et al*., 1996; Torres, 1985). En la fosa de cimentación de la muralla se hallaron amontonados restos óseos humanos y animales, la mayoría sin conservar posición anatómica, elementos metálicos como monedas, espuelas o herraduras, así como todo tipo de armamento: puntas de flecha de cabeza piramidal, de sección triangular, y de hoja triangular con sección rectangular, grandes puntas de lanza elipsoidales con nervadura central, azconas, regatones, cuchillos, cerámica para transporte de líquido, etc. El registro de este material sobre la fosa de la muralla indica que la obra se encontraba inconclusa el día de la Batalla de Alarcos (Juan *et al*., 1996).
El castillo se ubica en la parte superior del cerro, asentado sobre una gran plataforma artificial ataludada con una técnica de zarpa que le confiere solidez (Juan et al., 1994, 1996). Las técnicas de construcción en la fortaleza son variadas. Presenta cuatro torres en las esquinas, tres fabricadas con mampostería encofrada, y una cuarta doble en tapial. En el lado este existe una torre pentagonal con un foso adelantado excavado en la roca cuarcítica. En el lado oeste se sitúa la puerta del castillo, edificada con sillería de piedra caliza, con acceso en codo, y flanqueada por una nueva torre pentagonal. La muralla de la fortaleza se erige con diferentes técnicas constructivas, con tapiales y mampostería (Juan et al., 1995, 1996).

Durante el periodo almohade, 1195 a 1212, se observa un retroceso del hábitat, además, el interior, o alcazaba del castillo, se somete a una reorganización que aprovecha el material constructivo acumulado y las antiguas estructuras existentes sobre las que se construyen muros de adobe encalado. En la ladera sur se ha documentado una necrópolis o maqbara (Roselló, 1989) asociada a esta época. Tras la Batalla de Las Navas de Tolosa en 1212, la ciudad vuelve a manos cristianas, pero con un parón definitivo del proyecto de desarrollo urbano de Alfonso VIII, lo que fomentó la creación de una nueva ciudad sobre la vecina aldea de Pozo de Don Gil, Villa Real (Juan et al., 1995, 1996).

Del siglo XIII data uno de los monumentos más importantes del enclave, el Santuario de Nuestra Señora de Alarcos, declarada BIC con categoría de Monumento (Sánchez, 1987). Por los restos aparecidos en el lugar, en su entorno se articula un pequeño núcleo de población que se prolongará durante los siglos siguientes.

Las últimas investigaciones arqueológicas realizadas en el castillo de Alarcos han permitido, sin embargo, ampliar la cronología de algunas zonas del yacimiento hasta la Baja Edad Media. En este momento, durante el reinado de Alfonso XI, se constata en el castillo un taller de fabricación de moneda, tal como atestiguan los restos arqueológicos (Juan, 2014).

9.2. DEFINICIÓN DE LAS ÁREAS DE ESTUDIO

Como se ha expuesto, en el Parque Arqueológico de Alarcos se realiza en la actualidad una importante actividad arqueológica en varios frentes. Esta investigación ha permitido
la documentación in situ de importantes estructuras arqueológicas ibéricas y medievales en varias zonas del cerro, así como en el sector norte, junto a la vega del río Guadiana. Así pues, se conocen muchas de las zonas exactas en las que se conservan restos arqueológicos en posición primaria, pero no la delimitación de la superficie completa de estas áreas del yacimiento que se encuentran en proceso de investigación. Esta ausencia de registros ha supuesto en el caso concreto de la necrópolis ibérica norte su alteración y destrucción parcial por parte de las acometidas efectuadas durante las obras de canalización para la instalación de servicios hidráulicos de abastecimiento a la localidad de Poblete. Por tanto, los trabajos de prospección geofísica tienen por objetivo apoyar los estudios arqueológicos de excavación en curso, localizar aquellas zonas donde no se tiene constancia de estructuras en el subsuelo por medio de las prospecciones superficiales de cobertura total realizadas, y demarcar con exactitud algunos de los sectores arqueológicos ya conocidos, con el fin de planificar de futuras intervenciones arqueológicas o de infraestructuras civiles.

Con el fin de colaborar en la mejora del conocimiento del yacimiento, se seleccionaron diferentes puntos del entorno del cerro para la realización de los trabajos de prospección geofísica, pudiendo ver su disposición en la figura 287.

Figura 287. Localización general de las diferentes zonas de trabajo en el Parque Arqueológico de Alarcos. PNOA © Instituto Geográfico Nacional de España - (Castilla-La Mancha).

Zona A. Esta zona de exploración geofísica se sitúa en el lado norte del Parque Arqueológico, a 150 m al este del río Guadiana, sobre el camino privado de una
explotación agrícola destinada al cultivo de cereal. Aquí se pretende comprobar la continuidad de la necrópolis íbera localizada a partir de los trabajos de instalación del colector de aguas.

Zona B. Esta zona de exploración se sitúa extramuros del castillo, a escasos metros al sur de la fortaleza medieval, en una zona aterrazada con una leve pendiente hacia el sur, delimitada en sus márgenes este y norte por el actual camino de acceso para las visitas del yacimiento. En este lugar, donde se ubica la maqbara almohade, se tiene como principal objetivo conocer la posible ampliación de la misma hacia sus lados este y norte. En segundo término, se pretende documentar la existencia de alguna cerca o muros de cierre, y por último, se trata de constatar la presencia de calles de cal, como la documentada en las excavaciones arqueológicas precedentes.
Figura 289. Vista del lugar elegido para localizar la zona de exploración geofísica B.

Zona C. Esta zona de exploración se emplaza en una superficie aterrazada a media altura de la ladera suroccidental del cerro, junto a una zona excavada en las que se han documentado estructuras habitacionales, industriales y de almacén. En primer lugar se pretende conocer si existe una continuación de varios muros potentes que se introducen en los perfiles de excavación. Y, en segundo término, verificar la existencia de posibles áreas abiertas que articulen el espacio urbano, como patios o calles.
9.3. GEORRADAR

La investigación con georradar se desarrolló sobre todas las zonas de estudio definidas inicialmente. A la vista de los resultados obtenidos con el GPR, se seleccionaron las localizaciones en las que posteriormente se realizaron la tomografía eléctrica.

La numeración de cada perfil consta de la letra de la zona de exploración geofísica a la que pertenezca, número de perfil en esa zona y dirección de medida. Así el perfil A-1-A significa que es el perfil número 1, medido en la dirección A (N-S), de la necrópolis ibérica (zona de exploración A). Esta numeración se hace extensiva a cada una de las zonas de investigación indicadas.

La configuración de la antena del georradar en las zonas de trabajo A y C, se realizó mediante el software Spiview, en el modo DrySoil, y en la zona de investigación B en modo Soil, lo cual estima una velocidad relativa de 50 – 100 ns, que proporciona una profundización en la exploración de 2,5 - 3,7 m.
Figura 291. Vista general de las zonas en las que se realizaron las investigaciones sistemáticas con GPR. (A) Zona de exploración A. (B) Zona de exploración B. (C) Zona de exploración C.

En la zona de exploración geofísica A-necrópolis ibérica, se ejecutaron 22 perfiles de georradar en dos zonas distintas, pero con continuidad espacial. La primera zona se sitúa al sur del camino privado (zona A-I), en el límite sur de la excavación arqueológica, donde se realizó una cuadrícula rectangular de 9 m x 3 m. El estudio consistió en la ejecución de catorce perfiles, cuatro medidos según la orientación N-S (dirección A) y diez perfiles con orientación E-O (dirección B), con una separación de 1 m. La otra zona de trabajo (zona A-II) se localiza inmediatamente al norte de la anterior, a partir del perfil sur de las excavaciones arqueológicas llevadas a cabo en años anteriores. Se trazó una cuadrícula rectangular de 50 m x 3 m, y otra perpendicular de 4 m x 3 m, con un total de ocho perfiles de prospección, cuatro medidos según la orientación N-S (dirección A), con tres perfiles de 50 m (P1 a P3) y uno de 22 m (P4), y cuatro perfiles transversales de 4 m (P5 a P8) con orientación E-O (dirección B), con una separación de 1 m. La longitud total de estos perfiles es de 254 m y la superficie explorada de 153 m2.

382
En la zona de exploración geofísica B-necrópolis almohade, se realizó una cuadrícula rectangular de 27 x 4 m, y otra trasversal a la primera de 8 m x 4 m, con un total de veinte perfiles de prospección, cinco (P1 a P5) medidos según la orientación E-O (dirección A), y quince perfiles transversales con orientación N-S (dirección B), diez de 4 m (P6 a P12 y P18 a P20), y cinco de 8 m (P13 a P17), con una separación de 1 y 2 m. La longitud total de estos perfiles es de 188 m y la superficie explorada de 124 m².

En la zona de exploración geofísica C-Sector III, el estudio consistió en la ejecución de veintidós perfiles con una separación de 1 m, ocho medidos según la orientación SO-NE...
(dirección A), y catorce perfiles con orientación SE-NO (dirección B), sobre una cuadrícula rectangular de 13 x 7 m. La longitud total de estos perfiles es de 196 m y la superficie explorada de 91 m².

Figura 294. Posición de los perfiles de georradar realizados en la zona de exploración C-Sector III. (A) Vista general. (B) Detalle. SIGPAC © Consejería de Agricultura, Medio Ambiente y Desarrollo Rural (Castilla-La Mancha).

9.4. TOMOGRAFÍA ELÉCTRICA

La investigación eléctrica en este yacimiento consistió en la ejecución de 11 perfiles 2D medidos mediante las configuraciones dipolo-dipolo, Wenner-Schlumberger, mixed gradient, strong gradient, edge gradient y dipolo gradient, y cuatro bloques 3D medidos con los arreglos dipolo-dipolo 3D y radial gradient 3D. Tal y como se indica en la figura 10, estos perfiles se realizaron agrupados en tres zonas: necrópolis ibérica, maqbara almohade y Sector III. Adicionalmente, los perfiles realizados en las zonas de exploración necrópolis ibérica, cementerio almohade y Sector III han sido indexados para obtener un modelo virtual 3D de cada uno de ellos. Su ubicación guarda relación con aquellas zonas en las que existía previsión de restos arqueológicos enterrados, o en las que existía una anomalía determinada por la investigación previa realizada por el georradar.
La situación de los perfiles quedó referenciada mediante la determinación de las coordenadas de sus extremos. Como en el caso anterior, el objetivo de la realización de estos perfiles de tomografía eléctrica es, además de cruzar dos métodos geofísicos en una misma zona, determinar el comportamiento de las estructuras del yacimiento con este método, determinando el tipo de anomalías que éstas generan.

En la zona de la necrópolis ibérica, se ejecutaron un total de tres perfiles paralelos separados entre sí 1 m, de dirección N-S, de 56 electrodos cada uno, que conforman un rectángulo regular de toma de medidas de 82,5 m x 2 m. La línea ALA1 (perfil 1) se realizó con espaciado inter-electródico de 0,5 m, 1 m y 1,5 m, con el fin de optimizar el método para las investigaciones en esta zona del yacimiento. La disposición del electrodo 1 de la configuración electródica efectuada con espaciado de 0,5 m, se ubicó en el metro 9 del perfil. A la vista de los resultados obtenidos en la primera línea, para las otras dos secciones, se empleó una distancia inter-electródica de 1 m (figura 296).
En la zona de la necrópolis almohade, se realizaron un total de ocho perfiles. Cuatro paralelos entre sí con separación de 1 m y dirección N-S, de 28 electrodos cada uno, con espaciado inter-electródico de 0,5 m. Conforman un rectángulo regular de toma de medidas de 13,5 m x 3 m. Con punto inicial en el electrodo 1 del perfil de tomografía ALA8, se efectuó un bloque 3D con 56 electrodos (figura 297). Cuatro paralelos entre sí separados 1 m, con dirección O-E, de 28 electrodos cada uno, con espaciado inter-electródico de 1,25 m. Conforman un rectángulo regular de toma de medidas de 27 m x 3,75 m. Estos perfiles son perpendiculares a los anteriores en los metros 16, 17, 18 y 19 (electrodos 17, 18, 19 y 20). Los perfiles ALA14 y ALA 15 se ejecutaron adicionalmente con espaciado inter-electródico de 0,5 m con el fin de densificar los registros para aumentar la resolución de esta zona del yacimiento. La disposición del electrodo 1 de la configuración electródica efectuada con espaciado de 0,5 m, se ubicó en el metro 14,5 de las secciones ALA14 y ALA 15 (figura 297).
En la zona del Sector III, se ejecutaron cuatro perfiles paralelos separados entre sí a 1 m y dirección NO-SE, de 28 electrodos cada uno, con espaciado inter-electródico de 0,5 m. Conforman un rectángulo regular de toma de medidas de 13,5 m x 3 m. Con punto inicial en el electrodo 1 del perfil de tomografía ALA4, se realizó un bloque 3D con 56 electrodos (figura 298).
9.5. RESULTADOS E INTERPRETACIÓN

9.5.1. GEORRADAR

Un elevado porcentaje de las estructuras existentes en el yacimiento se encuentran situadas en las zonas media y superior del cerro. Éstas se definen por una diversidad tipológica que se caracteriza por áreas de enterramiento, habitacionales, religiosas y militares. En las zonas del cerro exploradas se observa cómo las estructuras medievales amortizan los edificios íberos a modo de cimentación, también reutilizando los materiales pétreos existentes derivados de los muros arruinados, e incluso compartimentando estancias. A esta característica en la construcción de los inmuebles se añade la importante presencia de derrumbes constructivos asociados a la fortificación localizada en la cota superior del cerro, distribuidos por un amplio sector alrededor de la misma. Los materiales que se emplean para el levantamiento de las estructuras tienen un origen geológico local, compuestos por sedimentos aluviales constituidos por arcillas y margas, y rocas procedentes de crestones formados por pliegues en estratos alternados de cuarcitas y pizarras.

Por el contrario, la necrópolis ibérica se localiza en la falda norte de esta colina. Se encuentra sellada por un paquete geológico compuesto por sedimentos de relleno terciario constituido por limos, margas, arcillas, cuarcitas y calizas, y no presenta
alteraciones medievales por aporte de material constructivo, o por superposición estructural.

En este sentido, los registros de radar de ambas zonas también son diferentes: si bien en las tres zonas de exploración existe un número elevado de anomalías, correctamente definidas mediante las clásicas hipérbolas, en las zonas de exploración B y C se observa, en comparación con la zona A, donde las estructuras se encuentran en un relativo buen estado de conservación, una mayor cantidad de reflexiones horizontales causadas por la presencia generalizada de mampostería cuarcítica y caliza de origen constructivo dispersa por el suelo arcilloso local.

9.5.1.1. ZONA A

Hasta el momento del hallazgo, producido a partir de la zanja realizada por la obra civil, se desconocía la existencia de esta necrópolis asociada al poblado ibérico de Alarcos. El control arqueológico y la posterior excavación de urgencia posibilitaron la documentación de diversas estructuras arquitectónicas de variada tipología: enterramientos en hoyo con cremación simple o con deposición de urna, inhumaciones en cista, cubriciones tumulares, muros, así como niveles de suelos de cal y tierra apisonada. El estudio en esta zona, ubicada en la vertiente norte del cerro de Alarcos, en la zona de unión de la ladera con la vega del río Guadiana, se proyectó para determinar la presencia de nuevas estructuras arquitectónicas funerarias soterradas en el subsuelo, muros de cierre, y niveles de uso sincrónicos. En segundo lugar, se pretendía determinar la presencia en los radargramas de posibles variaciones en la visualización de las anomalías, y su comportamiento en relación con las zonas de terreno removido y excavadas arqueológicamente, posteriormente rellenadas con el material encajante original mediante la acción de empuje de maquinaria pesada. Todo ello con la idea de comparar estos resultados con los datos suministrados por las áreas selladas, donde no se han realizado remociones del subsuelo en la actualidad.

La fisonomía original del yacimiento, y de la ladera del cerro, se encuentra distorsionada por varias construcciones actuales y por un bosque de galería en la orilla este del río. El terreno se encuentra muy antropizado, el desnivel hacia el río se corrigió mediante plataformas abancaladas para cultivo. La antigua carretera N-430, a 20 m al
sur del área de trabajo, corta la ladera y se apoya en un gran terraplén que se extiende sobre el yacimiento. A continuación, existen un camino privado de 3,5 m y una casa de labranza anterior al siglo XX, con uso durante los últimos años, cuyos servicios de agua y luz atraviesan la necrópolis de este a oeste. El conjunto se completa con una alberca y varios pozos para riego.

La hipótesis de trabajo era que bajo la plataforma sobre el que se levanta la casa y la carretera podrían localizarse nuevos restos arqueológicos con desarrollo en dirección norte, hasta la zona actualmente excavada de unos 22 m de longitud, y en el área del camino privado inmediatamente posterior a esta. En los cortes estratigráficos de los bancales, y en la superficie de las parcelas agrarias aledañas no se aprecian restos constructivos o cerámicos, con lo que la investigación se dirigió principalmente al análisis del subsuelo del camino de acceso a la casa. Del estudio de las estructuras exhumadas se puede deducir que la factura de las posibles unidades constructivas restantes se compondría por lajas, mampostería y sillares de cuarcita y caliza.

La exploración con georradar se ha realizado sobre una cuadrícula rectangular con veintidós perfiles divididos en dos zonas contiguas, zona A-I (sin excavar arqueológicamente) y zona A-II (parcialmente excavada), en las que las reflexiones de onda se relacionan principalmente con anomalías estructurales tipo I, lo que indica un subsuelo somero constituido por materiales homogéneos con desarrollo horizontal continuo. En todos los perfiles se localizaron anomalías estructurales. Las anomalías primarias se caracterizan principalmente por hipérbolas de ramas alargadas, bien delimitadas lateralmente. Además, se observan formas hiperbólicas compactas y gruesas, con ramas cortas, modeladas a partir de una magnitud de la señal de onda menos amplificada, con una calidad de aparición en los radargramas inferior a la de las anteriores. En la figura 299 se detalla la disposición de los eventos anómalos sobre las cuadrículas de trabajo.
Las anomalías de tipo I se han localizado masivamente desde la zona sur de A-I hasta el metro 24 de A-II. A partir de este sector hasta el final del lado norte de la malla de adquisición, disminuye el número de señales identificadas. Las anomalías se registran agrupadas en tres tipologías: formando pequeños grupos de puntos anómalos, alineadas longitudinalmente, e independientes, sin conexión con otras cercanas. Es plausible que esta disposición espacial atienda al tamaño de los elementos arquitectónicos localizados en el subsuelo. Las posibles estructuras de mayor envergadura parecen ofrecer más superficie de contacto reflectora, y por tanto más anomalías en su entorno, que las tumbas, suelos o muretes con dimensiones inferiores, donde las zonas reflectoras localizables disminuyen notablemente.

Para el caso de las anomalías concentradas en conjuntos específicos, se han identificado cuatro agrupaciones bien definidas. A partir de los resultados obtenidos en la excavación arqueológica se conoce la naturaleza de dos de ellas. Se trata de ocho tumbas funerarias de mampostería, muy cercanos entre sí (0,80 m). En el capítulo de discusión de resultados se procederá a realizar un análisis pormenorizado de cada uno de ellos, tanto a nivel estructural, como de respuesta de sus materiales respecto a los métodos geofísicos utilizados para su detección. Las agrupaciones anómalas que los definen se sitúan en el sector sur de A-II, en torno a los perfiles ejecutados en la dirección A, cuya orientación es N-S. En concreto, entre los metros 2, 2,5, 4,5, 6,5 y 10 del perfil P1, a 37,5, 41,5, 42, 45 y 47 m del perfil P2, y a 3,5, 9, 10 y 10,5 m del perfil P3. Así como en los perfiles que cruzan a los anteriores en dirección B, con orientación E-O: a 3,5 m de P5, en los metros 1 y 3 de P6, y entre los metros 1 y 3,5 del perfil P7. La segunda zona con anomalías concentradas se ubica en la mitad oeste de la zona A-I, de sur a norte, abarcando la práctica totalidad de la cuadrícula de prospección, en concreto a 0, 1,5, 5,5 y 7,5 metros de P1, en los metros 1,5, 3 y 4,5 m de P2, y entre los metros 5 y 6 de P3, medidos en la dirección A. Así como a 0,5 metros de P5, 2,5 m de P6, 0 m del perfil P7, 1 m de P9, entre 1 y 2 m de P10, a 1 m de 11, 1,5 m de P12 y a 1,5 m de P13, realizados en la dirección de medida B. La cota superior de estas anomalías relacionadas con estructuras tumulares se detectó a una profundidad de entre 0,75 m – 0,90 m.
9. Parque Arqueológico de Alarcos

Figura 300. Ejemplo de radargramas con anomalías integradas en agrupamientos. Zona de exploración A. Perfiles A-I-1-A y A-II-6-B.

Se observan cuatro conjuntos diferenciados con alineamientos de anomalías. Todos ellos son independientes respecto a otras posibles estructuras lineales, aunque los dos alineamientos ubicados en A-I y al inicio de A-II se encuentran rodeados por las agrupaciones anómalas descritas. Precisamente en esta zona, durante el seguimiento arqueológico desarrollado para el control de las obras de canalización, se documentaron dos tuberías que atravesaban el camino privado en dirección a la casa (este-oeste). Una de ellas está situada en el entorno de la zona de contacto de ambas zonas de investigación, con lo que estas dos primeras líneas se pueden corresponder con esas infraestructuras. El primer alineamiento (caso uno) se registra a 3 m del perfil P1, 6 m de P2, 2,5 m de P3, y a 6,5 de P4, de la dirección A, así como a 3 m del perfil P8 de la dirección B. El segundo (caso dos) se sitúa a 9 m de P1 y P3, al inicio del perfil P2 y a 1 m de P4 (dirección A), y entre los metros 1 a 3 de P14 (dirección B). Esta línea de anomalías coincide con el tramo inicial de los perfiles de A-II en su lado sur, es decir, a 0 m de P1, 50 m del perfil P2, 0,5 m de P3, y a 21,5 y 22 m de P4, puesto que las dos zonas de exploración se solapan en ese punto. La cota superior de estas anomalías se sitúa en una posición más somera que la detectada para los conjuntos de elementos anómalos con naturaleza constructiva. Las hipérbolas que las definen tienen buena resolución y son de ramas alargadas muy marcadas, lo que revela que la composición de las conducciones genera un importante contraste dieléctrico respecto al material que las envuelve. Su cota superficial se establece a 0,70 y 0,60 m, respectivamente. En la figura 301 se muestran las enérgicas señales provocadas por ambas instalaciones. Destacan
nítidamente en la imagen mediante una curva larga y un reflector subhorizontal extendido en su interior.

![Imagen de curva larga y reflector subhorizontal](image)

Las dos anomalías lineales restantes se localizan fuera del área excavada, a 2 y 16 m al norte del perfil norte del sondeo arqueológico (este perfil se sitúa a 22 m del inicio del perfil de la dirección de medida A para la zona A-II). Como en el caso anterior, pueden corresponder con canalizaciones utilizadas para el riego de los cultivos circundantes. Provienen de la parcela agrícola emplazada en el lado este del camino, y continúan hacia los bancales que lo delimitan en su lado oeste. En los cortes laterales del camino no se han hallado pruebas físicas de estas posibles tuberías. Presentan cotas dispares; la más cercana al yacimiento (caso tres) se encuentra a mayor profundidad, a 0,80 m. La segunda (caso cuatro) es muy somera, con el vértice de la hipérbola a 0,25 m de altura. En este sentido, sus figuras hiperbólicas también son desiguales. Para la primera, la imagen describe una pequeña curva con brazos con escaso desarrollo, baja resolución en los radargramas y señal atenuada. La otra, por el contrario, describe una signatura geofísica potente, similar a la descrita para los dos primeros alineamientos, con unas ramas que se ensanchan lateralmente y amplio desarrollo en profundidad (figura 302).

![Imagen de anomalías lineales](image)

A partir de las distintas señales observadas en las posibles tuberías, se puede inferir para los casos uno, dos, tres y cuatro, que se trata de estructuras no metálicas, puesto que no se observan reflexiones múltiples, ni reverberaciones en profundidad, habituales en materiales metálicos, fuertemente reflectores en medios conductores como los analizados. Además, la señal enérgica captada por la antena, con cierta similitud al tipo denominado *dual reflector*, puede indicar que en el interior del caso dos fluye agua y, sin embargo, los casos uno y cuatro, sobre la base del modelo hiperbólico que los caracteriza parecen rellenarse parcialmente por aire y sedimentos, lo que se define a partir de una curva de reflexión simple en un medio encajante moderadamente húmedo (Allred, B. and Redman, J., 2010). En el caso tres, la escasa resolución que muestra la anomalía en los registros, puede suponer que la infraestructura se encuentra posiblemente deteriorada y colmatada por materiales con características electromagnéticas parejas a las capas sedimentarias arcillosas que la rodean.

El tercer tipo se observa cuando no existe una conexión entre las anomalías, su separación entre ellas, o respecto de las agrupaciones y alineamientos, varía de 0,50 a 2 m de distancia en la zona sur y central de trabajo. A partir del metro 22 de la zona A-II se observa un incremento en la dispersión con alejamientos superiores a los 4 m. Se documentan veintiséis casos, y sólo en la zona A-II, en concreto, en los metros 14, 21,5, 25,5, 29,5, 43 y 45 del perfil P1, a 27, 31, 33, 35 y 37,5 m del perfil P2, en los metros 15, 20,5, 22, 25, 26,5, 30, 32, 33, 35, 38, 43,5 y 46 de P3, y a 34,5, 35,5 y 38,5 m de P4, de la dirección A de medida. Algunos casos localizados en la zona excavada, se corresponden con señales reflectadas por pequeños túmulos semidestruidos, muretes, o bloques de piedra de cierta entidad. Las hipérbolas que los registran se sitúan a un profundidad de 0,80 a 0,90 m en todos los eventos (figura 303), con lo que posiblemente se trate de elementos arquitectónicos arruinados relacionados con la necrópolis.
Por último, cabe señalar que en los perfiles medidos en el entorno de afección de la conducción hidráulica para el abastecimiento de agua a la localidad de Poblete, se observan dos tipos de señales anómalas con distinta respuesta, tanto en A-I, como en A-II (figura 304). Se trata por un lado de una fuerte hipérbola de difracción con varios ecos internos, registrada cuando el georradar avanza perpendicularmente a la zona teórica de instalación del colector, con una cota en profundidad de 0,40 m. Y por otra parte, cuando el equipo se desplaza en paralelo a la zanja de la canalización se identifica una señal triple, aplanada, con desarrollo subhorizontal constante, techo a 1,30 m y muro a 2 m. Debe tratarse de la base de la zanja, así como de la cama de apoyo del tubo, de material granular, y de las distintas capas de recubrimiento agregado en los laterales y en la parte superior de la tubería fabricada con poliéster reforzado con fibra de vidrio. La sección superior de la cubrición de la canalización se cubrió con hormigón. Se localizan en P5, P6 y P7 de A-I, y en P3 y P4 de A-II.
9.5.1.2. ZONA B

La intervención geofísica en esta zona tenía como principal objetivo localizar en los lados norte y este del cementerio islámico evidencias de nuevas estructuras funerarias como las documentadas a partir de las excavaciones arqueológicas realizadas. En la maqbara de Alarcos aparecen tres tipos de enterramientos. El más numeroso consiste en la disposición de un montículo de piedras y tierra sobre el individuo fallecido, con un cipo o piedra clavada que señala el enterramiento. La segunda tipología, menos común, destaca por una colocación de los mampuestos de cubrición del difunto a modo montículo escalonado con un revestimiento de argamasa. A este tipo de enterramiento se le denomina maqabriya. Del tercer tipo sólo se han documentado dos casos, se trata de enterramientos infantiles en fosa simple sin cubierta.

El terreno en esta zona presenta una topografía amesetada en la zona más cercana a la fortaleza medieval, desde donde se inicia un leve buzamiento hacia su lado sur del cerro. En el yacimiento, para solventar la problemática derivada de las pendientes, se modifica la topografía artificialmente por medio de pequeños aterrazamientos delimitados por muros de contención, que en el caso del cementerio también podrían servir para el cercado del mismo. El segundo objetivo estuvo dirigido a documentar...
alguna cerca perimetral o muros de cerramiento que separasen la necrópolis de la zona de paso histórica, que se encuentra entre el cementerio y la cara sur del castillo, puesto que se sitúa próximo a la puerta de acceso al edificio militar, así como calles que articulen el espacio funerario, o que lo conecten con el camino que se dirige hacia la fortaleza.

Aunque el desarrollo del estudio superficial con el equipo de georradar ha sido satisfactorio, puesto que el terreno se encuentra perfectamente explanado y acondicionado para las visitas del Parque Arqueológico, el subsuelo inmediato es complejo por la enorme cantidad de escombros procedentes de la muralla del castillo. Esta peculiaridad en la zona se representa en los radargramas por registros con constantes reflexiones de onda que dificultan su interpretación y enmascaran las posibles estructuras primarias situadas bajo estas capas de cascotes (ver figura 305).

En todos los perfiles GPR se encuentran anomalías estructurales. Las anomalías primarias se definen por tres tipologías. La primera, se representa mediante hipérbolas convencionales de ramas alargadas, nítidas, bien delimitadas lateralmente y con numerosas reflexiones internas (subtipo I_A). En el segundo tipo, se observan formas con tendencia hiperbólica asociadas a una señal con desarrollo horizontal en su zona inferior (subtipo I_B). La calidad en la resolución de la imagen que las materializa es menor a las anteriores. Por último, están las anomalías que representan un reflector inclinado continuo durante varios metros, con un ángulo de inclinación de unos 15º (subtipo I_C). Para la visualización de los distintos subtipos obsérvese las figuras 307, 309 y 312.

En la figura 306 se detalla la disposición de las anomalías sobre la cuadrícula de trabajo.
Las anomalías tipo I se han identificado en dos zonas muy definidas de la cuadrícula de prospección. En los lados oeste y este de los perfiles efectuados en ambas direcciones de medida, cuyas orientaciones son O-E (dirección A) y N-S (dirección B). En esta malla de prospección puede observarse cómo las anomalías se disponen espacialmente a partir de tres esquemas distintos: independientes, agrupadas y alineadas.

Cuando no existe una conexión entre las anomalías, la separación lineal entre ellas varía de 0,80 a 2 m de distancia. Se documentan diez casos, en concreto, en el metro 16,5 del perfil P2, 26,5 m del perfil P4 y en el metro 3 de P5. Y en los perfiles que cruzan a los anteriores en dirección B: en el metro 0,5 del perfil P6, a los 3 y 4 m del perfil P7, 0,5 m del perfil P8, en el metro 2,5 de P13, a 5,5 m del perfil P16 y en el metro 4 de P17. Se asocian con anomalías del subtipo I_B, representadas por hipérbolas achatadas con una franja aplanada en la parte subyacente, entre las ramas (ver figura 307).

Por la continuidad en su distribución y su cercanía a las estructuras funerarias excavadas arqueológicamente en campañas anteriores, se infiere que pueden corresponderse con posibles tumbas. Con los datos obtenidos es complejo definir las dimensiones de los posibles enterramientos, pero sobre la base de la distancia entre perfiles podrían tener unas dimensiones aproximadas de 1 a 2 m de longitud, y 0,5 a 1 m de ancho. La cota de profundidad de las anomalías de los perfiles P5, P7, P8, P17, se sitúa en 0,55 m, a 0,60 en P2, P6, P13 y P16, y a 0,65 m en P4. Estas mediciones tienen relación en altura con las cotas reales de la excavación para las distintas tumbas exhumadas en la zona contigua al sur del área explorada (figura 307).
Por otro lado, se han detectado nueve anomalías con las características especificadas para el subtipo Ib, concentradas en el sector suroeste de la zona de trabajo. Se trata de un conjunto anómalo con tendencia cuadrangular con unas dimensiones aproximadas de 2 m x 2 m. Se posicionan sobre cuatro perfiles tomados en las dos direcciones de medida, a los 5 y 7,5 m de P1, metros 20, 21 y 22 de P2, a 5 y 7 m del perfil P3, y en los metros 2 y 4 de P9. La cota de profundidad de las anomalías de los perfiles P2, P3 y P9, se sitúa en 0,60 m, y en 0,55 m en P1. Como sucedía en el caso anterior, la profundidad establecida para el coronamiento de esta agrupación de anomalías se corresponde con la cota en profundidad documentada en la excavación para los enterramientos. La similitud con la que se han captado por la antena receptora las propiedades de los materiales que conforman la estructura en relación a las anomalías independientes, unida a su idéntica posición subvertical junto al borde del perfil norte de la excavación, permite deducir que se trata de una posible estructura funeraria de grandes dimensiones y de planta cuadrada, o bien, una zona en la que existe una acentuada concentración de posibles inhumaciones (figuras 306 y 308).
Las anomalías de tipo I con alineaciones han sido las más numerosas en este sector (ver figura 9.21). Se localizaron en la zona norte y al este de la necrópolis. En los radargramas aparecen con buena resolución, aunque su naturaleza se corresponde con dos tipologías diferentes (subtipos I_A y I_B).

Las del subtipo I_A se pueden interpretar como posibles unidades constructivas murarias bien delimitadas, puesto que la disposición espacial en planta de las mismas forma varios recintos y muestra una clara alineación en ciertos puntos. La coronación de los posibles muros se detectó a una profundidad de entre 0,30 y 0,60 m.

Estas anomalías se han identificado únicamente en la zona este de la cuadrícula de exploración, en torno a los perfiles ejecutados en la dirección A, en el metro 24 del perfil P1, a los 0 y 3 m del perfil P2, entre los metros 21,5, 24 y 26,5 de P3, a 1, 3 y 6 m del perfil P4, y en los metros 21, 24, 26 y 27 de P5. También en los perfiles que cruzan a los anteriores en dirección B: a los 0, 2, 5, 6, 7,5 y 8 m del perfil P13, a 0, 2 y 7,5 m del perfil P14, a 0,5, 6 y 8 m del perfil P15, en los metros 1, 2, 6 y 7,5 de P16, a 0,5 y 4 m de P17, 1, 2 y 4 m del perfil P18, 0, 2 y 4 m de P19, y en los metros 0, 2 y 4 del perfil P20.

Se aprecian tres conjuntos diferenciados con alineamientos. El primero puede interpretarse como una estructura lineal independiente con orientación O-E, sin conexión con otras estructuras ordenadas linealmente (la más cercana se sitúa a 6 m al noreste), de 4 m de longitud y que puede continuar en dirección oeste y este (figuras...
309 y 310). Se dispone espacialmente a unos 0,60 m de profundidad entre los perfiles P13 y P17, perpendicular a ellos. A partir de su ubicación aislada respecto a otros paramentos, junto con la presencia de al menos tres posibles enterramientos próximos, a dos y cuatro metros de distancia, es difícil precisar si este posible muro puede estar directamente relacionado con la maqbara, como muro de cierre de la necrópolis en su lado sureste, o por el contrario, forma parte de una estructura independiente a este espacio funerario. En la figura 309 se muestra el perfil P13, donde se indica esta zona anómala con un rectángulo rojo.

![Figura 309. Zona sur necrópolis islámica. Arriba, perfil B-13-B (P13). Abajo detalle del mismo entre los metros 0 al 3. En rojo sobre los radargramas se indica la posición de una anomalía tipo Ia. Posible muro.](image)

En la segunda zona se identifican dos posibles muros de 3 m de longitud con orientación O-E, paralelos y separados entre sí unos 2 m aproximadamente, situados en los perfiles P13, P14, P15 y P16 de la dirección B de medida. El coronamiento de ambas estructuras varía; la cara superior de la situada al norte se encuentra a 0,25 m, mientras que la segunda se documenta a 0,60 m. Pueden prolongarse hacia la zona oeste de la exploración, pero las numerosas reflexiones generadas por el gran derrumbe o acopio de material constructivo esparcido en el subsuelo inmediato, impide localizar anomalías que verifiquen este supuesto. Se observa un tercer evento anómalo en los perfiles P3, P4 y P5 que se adosa oblicuamente a las dos estructuras anteriores. Puede suponer la existencia de un posible muro a 0,60 m de profundidad que se extiende
9. Parque Arqueológico de Alarcos

durante 2,2 m. No es completamente perpendicular a los muros norte y sur; la dirección de avance de las anomalías discurre con orientación NO-SE, pero por su situación puede tratarse del cierre este del conjunto arquitectónico que tendría unas dimensiones de 3 m x 2 m y una superficie de 6 m². La diferencia en la cota de altura a la que se han evidenciado los restos, permite suponer dos fases en la construcción de estas posibles estructuras adosadas. En la secuencia de perfiles generada en la figura 310 se muestra el avance en paralelo de los dos primeros muros descritos, y el contraste entre sus cotas de arrasamiento.

A 2 metros de distancia hacia el lado este de la cuadrícula, en el cruce de los perfiles P1, P2, P3, P4 y P5 con los perfiles P18, P19 y P20, se han documentado dieciocho anomalías que conformarían varias secciones de cinco posibles muros. Se aprecian dos probables muros principales de unos 4 metros de longitud cada uno, con dirección N-S y NO-SE respectivamente, oblicuos entre sí y con coronamiento a 0,55 m, tal y como se observa en la figura 311. En los radargramas el muro occidental aparece con mayor entidad lateral que el resto de estructuras detectadas en esta zona de exploración. Entre ambos se encuentran dos posibles estancias de unos 4 m² de superficie, divididas mediante una posible puerta de acceso con orientación sur. Parece existir otra discontinuidad o apertura
en el lado sur de la estancia inferior, lo que podría suponer el acceso al conjunto. Sobre el muro oriental parecen apoyar tres posibles muretes de 1 m de longitud a 0,55 m de profundidad, construidos con orientación O-E, que podrían prolongarse en dirección este.

![Figura 311. Zona cementerio almohade. Perfiles B-1-B, B-2-B, B-3-B, B-4-B y B-5-B. A la izquierda, radargramas obtenidos al este de la zona de exploración. Los recuadros en rojo y magenta sobre cada radargrama indican la posición de las anomalías analizadas. En la fotografía aparece, en colores rojo y magenta, la interpretación georreferenciada de los posibles muros detectados a partir de los registros de georradar.](image)

En el entramado descrito de estructuras murarias caracterizadas por geometrías rectangulares, la detección de dos posibles muros oblicuos al resto de construcciones, paralelos entre sí con orientación NO-SE, separados por más de 4,5 m, y con similar cota de altura, permite suponer la presencia de un posible inmueble arqueológico independiente, situado entre la necrópolis y el lado sur del castillo medieval. Según los registros analizados, la parte del inmueble registrada ocupa una superficie total de 25 m², y parece continuar hacia el norte, este y sur del subsuelo investigado.

Por otro lado, las anomalías definidas por la segunda tipología, subtipo I_C, se localizan íntegramente en el borde noroeste de los perfiles GPR, en el metro 2,5 de P6 y P8, a 1,5 m de P7, a 1 m de P9, en el metro 1 de P10, metro 0,5 de P11 y a 4 m P12. Destacan por mostrar un fuerte contraste entre sus propiedades electromagnéticas y el medio encajante, lo que genera una reflexión de considerable entidad cuya cota más profunda
se encuentra a más de 1,7 m por debajo de la superficie del terreno. A partir de este punto las anomalías reducen su profundidad hasta los 0,30 – 0,50 m en la sección final norte de los perfiles. Se trata de un reflector inclinado de entre 2 y 3 m de longitud que buza en dirección sur con pendiente continua procedente desde el norte (figura 312).

Figura 312. Radargrama del perfil B-6-B. El rectángulo verde indica la ubicación y desarrollo de la anomalía tipo Ic en el registro.

Cabean tres interpretaciones posibles para este tipo de señal. En primer lugar, puede equivaler a un paquete potente y compactado de materiales procedentes del derrumbe del lienzo sur de la muralla defensiva de la fortaleza, asentado sobre un terreno explanado con un contacto bien delimitado entre el relleno y el suelo natural. Por otra parte, puede relacionarse con algún tipo de cimentación de gran envergadura para sostener los gruesos paramentos del sistema arquitectónico militar de la fortificación. En este sentido, se conoce la existencia una plataforma de nivelación sobre la que se asienta el cuerpo principal del castillo. En el flanco norte de esta plataforma se ha documentado una terminación exterior saliente e inclinada con fábrica de mampostería cuarcítica. A este tipo de base con mayor longitud horizontal que la planta del edificio que sostiene, se le denomina zarpa. Así pues, podría tratarse del asiento de un cimiento con zarpa, empleado para igualar la nivelación del suelo sobre el que se sustentan los paños del castillo en este sector. La tercera interpretación significaría que la señal de onda refleja una base rocosa geológica inclinada, similar a los crestones pizarrosos y de cuarcita sobre los que se edifican diferentes estructuras arquitectónicas en diversas partes del cerro.

Las anomalías de tipo III han sido numerosas en este sector (ver figura 306). Se localizaron principalmente en la zona central del subsuelo con probable origen en el colapso de la parte superior de la muralla sur del castillo. Esta concentración anómala se extiende unos 45 m² y está comprendida entre los perfiles P1 a P15 (dirección A) y los perfiles P8 a P17 (dirección B). También se observan anomalías de este tipo en la zona este, entre los perfiles P4 y P20, posiblemente procedentes de los derrumbes de los
muros cercanos. Se caracterizan por una acumulación considerable de elementos reflectores con desarrollo lateral de entre 4 y 20 m, y potencia en profundidad de hasta 1,70 m según el perfil (ver figura 313).

Figura 313. Ejemplo de radargrama con anomalía de tipo III en la zona de exploración B. Perfil B-1-A. Abajo detalle del mismo entre los metros 9 al 16.

A partir del análisis de los datos adquiridos mediante GPR, se puede precisar que la antena de 250 MHz aporta una resolución adecuada para la caracterización de diferentes tipologías de anomalías en esta zona de exploración.

La interpretación de los resultados obtenidos en este sector mediante la investigación con georradar (figura 314), indica que el subsuelo inmediato al norte y este del entorno de la maqbara fue utilizado como posible necrópolis. A la vista de las imágenes de subsuelo generadas se puede deducir que tanto los reflectores independientes, como la agrupación anómala del borde centro-sur de la cuadrícula, pueden corresponderse con posibles enterramientos similares a los documentados durante las excavaciones arqueológicas previas, es decir, cubiertos con materiales pétreos, con propiedades electromagnéticas diferentes a los estratos arenosos que los rodean. No se ha podido determinar la presencia de nuevas calles o caminos que articulen este espacio de necrópolis.

En cuanto a las distintas alineaciones de anomalías, hay que señalar que parecen equivaler a estructuras de distinta naturaleza. Por un lado, un posible edificio en el lado este conformado por muros perpendiculares y oblicuos entre sí, que parecen compartimentar este espacio en varias estancias de geometría con tendencia rectangular, y un posible vano orientado al sur. Adicionalmente, se ha registrado un posible muro separado por una distancia superior de 5 m de la construcción anterior, sin conexión aparente entre los dos ámbitos. La ausencia de registros en sus lados este y oeste impide conocer con precisión si este paramento tiene una relación directa con la necrópolis, con
9. Parque Arqueológico de Alarcos

los posibles muros ubicados varios metros al norte, o con alguna otra estructura no localizada.

Así mismo, se ha detectado en una zona que destaca por la potencia de los derrumbes, un reflector inclinado con continuidad hacia el castillo. Por su morfología se infiere que puede tener un origen geológico caracterizado por un posible pliegue con buzamiento norte-sur sobre el que podría asentarse el inicio de la base de nivelación para la cimentación de la fortaleza, así como un relleno de mampostería y morteros provenientes del lado sur del castillo.

Figura 314. Representación georreferenciada en planta sobre ortofoto obtenida mediante vuelo con dron de las posibles estructuras arquitectónicas conservadas en el subsuelo, a partir de la interpretación de las anomalías tipo I. Rojo: enterramientos. Azul: muros. (Fotografía cedida por Diego Lucendo).

9.5.1.3. ZONA C

Las excavaciones arqueológicas que se han desarrollado en los últimos años en el Sector III, o Sector Universitario, han permitido documentar un inicio poblacional en este espacio desde la Edad del Bronce hasta época medieval. En la Edad Media se aprovecha el coronamiento de los muros arrasados ibéricos a modo de cimentación, para levantar hiladas de mampostería y tapial, así mismo, se amortiza el espacio para erigir nuevos muros de piedra cuarcítica que compartimentan algunas de las edificaciones ibéricas anteriores. El espacio urbano se define por estructuras con orientación norte-sur y este-oeste, de época
ibérica, y otras oblicuas a éstas, con orientación suroeste-noroeste y noroeste-sureste, principalmente de cronología medieval. La investigación geofísica en esta zona perseguía localizar bajo la plataforma amesetada ubicada en los lados norte y este de la excavación arqueológica, la continuación soterrada de dos grandes muros íberos fabricados con bloques y sillares de cuarcita y caliza, de 1 metro de grosor, paralelos y escalonados, pertenecientes a un gran almacén. Adicionalmente, se pretendía delimitar este excepcional edificio por su lado este, y por añadidura, registrar otras posibles construcciones o edificios secundarios. En ese aspecto, la topografía en esta zona del yacimiento se caracteriza por una plataforma horizontal artificial, resultado de los derrumbes antrópicos transportados por arrastre desde zonas superiores del cerro. El nivel geológico presenta una inclinación en dirección sur. Para solucionar este desnivel continuo, la solución que se adopta a partir de época ibérica consiste en escalonar los muros potentes de los edificios, que actúan en determinados tramos como taludes fabricados para salvar el buzamiento natural del terreno. En tercer lugar se trabajó para documentar alguna calle de acceso al conjunto, que lo conecte al resto del poblado. Puesto que esta zona pudo tener un uso comunal y comercial continuado, basado en el enorme volumen de cereal almacenado, es plausible la existencia de vías o espacios abiertos públicos asociados, ya que debió de tratarse de un sector urbano con mucha actividad.

El subsuelo del Sector III es rico en anomalías con posible naturaleza estructural. Un problema importante es que se encuentran rodeadas por derrumbes laterales constructivos asociados. En consecuencia, aunque la señal reflejada a partir de los medios sedimentarios encajantes de relleno constructivo se observa con distinto comportamiento respecto a las anomalías arquitectónicas, este factor de colmatación estratigráfica dificulta la identificación de las anomalías tipo I en los registros de radar. En la figura 315 se muestra su posición sobre la malla de prospección.
Como puede observarse en la figura anterior, las anomalías tipo I ocupan un porcentaje elevado del subsuelo explorado. Con el fin de realizar una explicación ordenada y comprensible, se expondrán los resultados de oeste a este.

En el extremo suroeste se observa una anomalía lineal de 7,14 m, a 0,70 m de profundidad, que atraviesa la zona de investigación de suroeste a noreste, entre los perfiles P1 a P8, para finalizar con un leve cambio de dirección hacia el norte en sus últimos 2 metros, con lo que puede suponer la existencia de un posible muro. En esta zona sur de la cuadrícula se registra información precisa sobre otros cinco alineamientos de entre los perfiles P1 a P5, de la dirección A de medida, y P10 a P15, de la dirección B, todas con coronamiento a 0,80 m, a excepción de la anomalía sita en el metro 7 del perfil P10, registrada a 0,50 m de profundidad. Parecen formar dos estancias cerradas contiguas y con geometría cuadrangular, la segunda con un posible acceso desde el sur. La estancia I se delimita al sur y norte por dos posibles muros paralelos registrados de P10 a P13 con 3 m de longitud (figura 316), al oeste por el muro definido inicialmente, y en el lado este por un posible muro de 2,3 m, acotado entre P1 y P3. La estancia II comparte este último muro con la estancia I, que es paralelo con otra posible construcción muraria de 3 m y que representa su pared este. Se delimita al norte por un posible murete de 2 metros sito entre P13 y P15. Sobre la base de estas mediciones, se
infiere que ambas habitaciones tendrían un área aproximada de 9 y 4 m², respectivamente.

Inmediatamente al norte de las estancias se aprecia un cambio en la orientación de los sucesos anómalos. Las anomalías presentes en los radargramas, representadas con hipérbolas de ramas amplias y contornos detallados, avanzan en dirección oeste-este hasta introducirse en el perfil norte del área examinada. Como se ha expuesto anteriormente, a menos de 0,30 m del lado occidental de la cuadrícula se sitúa el corte final de la excavación arqueológica, donde se documentan dos muros con entidad y paralelos, que se introducen en el perfil estratigráfico. La proyección de estas unidades constructivas en el subsuelo se corresponde con el inicio de los perfiles P4 y P6, con lo que las anomalías y estos muros son convergentes. Así pues, parece confirmarse que estas significativas estructuras pertenecientes al gran edificio de almacenaje continúan erigidas al menos durante 4,53 m, la superior, y 7,81 m, la inferior. Su aparición en los registros se sitúa a una profundidad variable comprendida entre 0,45 y 0,80 m (figura 317).
En la zona norte del sector se ha identificado una agrupación importante de doce anomalías entre P6 y P8, a unos 0,80 - 0,85 m de profundidad. Estos sucesos se pueden interpretar como posibles unidades murales bien delimitadas, puesto que su organización espacial en planta indica una clara alineación en ciertos puntos. Surgen desde la cara sur del gran muro paralelo inferior del almacén. En el punto de contacto entre estructuras se acumulan los elementos reflectores, proceso posiblemente provocado por la presencia de grandes mampuestos o sillares desprendidos de sus hiladas originales en estas zonas. Estas dos anomalías alargadas se cortan perpendicularly formando un ángulo de unos 45º, puesto que una se orienta norte-sur (perfiles P5 y P7, de la dirección A, y P16 a P18, en dirección B), por una dirección noroeste-sureste de la segunda (contenida entre P14 y P20, dirección de medida B). Destacan por su longitud, 4,92 m y 7,90 m, y por vertebrar la zona centro del conjunto arquitectónico. De hecho, puede observarse una gran superficie abierta de 12,90 m², con un perímetro lineal de 16,02 m, bien acotada por estas anomalías lineales en su lado norte y este, además de por las dos estancias descritas inicialmente en el lado suroeste de la malla, y por dos pequeños muretes en su lado sureste, de entre 1 a 1,5 m de longitud. Estos dos muros de pequeño tamaño, enterrados a una profundidad de 0,75 m, se separan por una apertura entre ambos. Este posible vano puede indicar la presencia de una puerta de acceso al amplio recinto central desde el sur, donde nuevamente se registra una zona sin anomalías con un área con forma rectangular de 15,18 m², y perímetro lineal de 18,02 m. Estas son medidas parciales puesto que en su lado sur no se documentan estructuras constructivas de cierre que puedan definir la totalidad de su
superficie. Se acota entre los perfiles P1 a P4 de la dirección A de medida, y P15 a P20 de la dirección B.

La última zona en la que se ha registrado una importante concentración de elementos anómalos se delimita entre el perfil P20 y el lado oriental de la cuadrícula. En primer lugar, destaca una alineación con disposición espacial en planta NE-SO, en el metro 12 de los perfiles P1, P3, P5 y P7, y entre los metros 0,5 y 1 de los perfiles P2, P4, P6 y P8. Se extiende al menos durante 7 m, enterrada a profundidad variable de 0,50 m a 0, 80 m, y parece avanzar fuera de la malla en sentido norte y sur. En su cara este se percibe la presencia de tres anomalías con cota a 0,75 m, independientes entre sí, en los metros 1, 3 y 5 de P22. Por la energía reflejada por estos elementos, se infiere que puede tratarse del arranque de tres posibles estructuras constructivas de entidad con continuidad hacia la zona exterior este de la prospección.

Cabe indicar que se registran dos anomalías en los metros 10,5 y 11,5 de P1, a 0,75 m de profundidad, que pueden corresponder con la prolongación del cuarto muro perimetral externo del inmueble ibérico de almacenaje, documentado en la excavación arqueológica colindante a tan sólo 1 m al sur de este perfil, y que según lo visualizado en campo, parece continuar hacia la esquina sureste de la cuadrícula.

Por último, se debe señalar que en la zona comprendida entre los perfiles P5 a P8, y P13 a P17, es evidente un reflector asociado a una capa resistiva con diferente composición al suelo encajante. Emite una señal horizontal de entre 3 y 5 líneas equidistantes que se reproducen en los radargramas durante 2 a 3 metros según el perfil. Por la ubicación en planta de esta señal se debe corresponder con la posible prolongación del muro escalonado inferior, de casi 8 metros de longitud, que discurre en oblicuo respecto a la cuadrícula. Sobre la base de estos resultados se infiere que la recepción de esta señal horizontal se puede deber a que cuando los perfiles de GPR no se miden completamente perpendiculares a una estructura lineal, sino que progresan en paralelo junto a ella, o con un grado de corte de unos 45º, como el caso que nos ocupa, la información recibida no es precisa, la forma regular de las anomalías hiperbólicas disminuye y se aplana, y se pierde el detalle de la posición espacial de los elementos reflectores, alargándolos y distorsionando su emplazamiento en el subsuelo (figura 318).
Las anomalías tipo III se localizan por lo general junto a las alineaciones que representan posibles construcciones murarias. Se registran a una profundidad comprendida entre 0,60 y 2 m con escasa proyección lateral, con menos de 1,5 m de distancia máxima con respecto a las posibles estructuras, muy solapadas a los laterales de las hipérbolas de difracción, que en algunos casos emiten una señal tenue debido a la acción de enmascaramiento de estas unidades estratigráficas. A la vista de los restos arqueológicos descubiertos tras la excavación, se componen principalmente por mampostería de diverso tamaño, bloques de grandes dimensiones y algunos sillares labrados, siempre de cuarcita o caliza.
9.5.2. TOMOGRAFÍA ELÉCTRICA

En el Parque Arqueológico de Alarcos se han realizado once perfiles 2D y cuatro bloques 3D de tomografía eléctrica agrupados en tres zonas (necrópolis ibérica, cementerio islámico y Sector III), seleccionadas por corresponderse con áreas con abundantes anomalías detectadas a través del georadar. Los perfiles de tomografía se configuraron según las distintas zonas, con diversas distancias interelectródicas y una longitud suficiente para poder detectar muros y enterramientos con unas dimensiones métricas, con una resistividad teórica superior a los 100 ohmios.metro (Ω.m.).

A continuación se muestran los resultados de los perfiles realizados de forma gráfica. Las zonas con las mayores resistividades identificadas quedan destacadas por sus colores rojos o rojo-naranjas. Estas zonas de mayor resistividad o zonas anómalas, deben corresponderse, en según la posición en la que se encuentran y la forma en planta, a las estructuras de interés arqueológico motivo de esta investigación.
9.5.2.1. ZONA A

El estudio mediante tomografía eléctrica en esta zona ha consistido en la ejecución de 3 perfiles o secciones medidos en dirección S-N, denominados ALA1, ALA2, y ALA3. Estos perfiles se midieron con las configuraciones dipolo-dipolo 3D, *radial gradient* 3D, dipolo-dipolo, Wenner-Schlumberger y *strong gradient*, con separaciones interelectródica de 0,5, 1 y 1,5 metros, y separación entre perfiles de 1 metro (ver figura 296). A partir de estas medidas se han realizado las correspondientes secciones de resistividad 2D. Los perfiles de inversión de resistividad realizados se muestran en las figuras 320 a 322.

Las secciones presentan una estructura general del subsuelo formado por un sustrato geológico uniforme caracterizado por unos valores resistivos muy bajos comprendidos entre 1 y 40 Ω.m, representado por el azul y verde, que se extiende por la práctica totalidad del subsuelo, con base a 13,1 metros y techo homogéneo a 1,6 metros. Debe corresponderse con un depósito arcillo-arenoso con un elevado grado de saturación. Se observa una zona de resistividad media (100 a 145 Ω.m), encajada en la zona sur de este nivel poco resistivo, a 6 m de profundidad, posiblemente se trate de un paleocanal colmatado por material limo-arcilloso y gravas. Sobre estos materiales se identifica una capa más resistiva de color anaranjada (140 a 240 Ω.m) que se desarrolla hasta la superficie, constituida por materiales procedentes de la explanación del camino privado y del talud sobre el que se apoya la carretera. Destacan en el interior de esta capa somera, representadas por colores naranja y rojo, varias zonas agrupadas con altos valores resistivos comprendidos entre 350 y 500 Ω.m. En las zonas excavadas se corresponden con estructuras arqueológicas.

![Figura 320. Perfil de tomografía eléctrica ALA1.](image)

En el perfil ALA1 (figura 320) las principales zonas anómalas presentan unos elevados valores resistivos, entre 330 y 490 Ω.m, y se sitúan entre los metros 3 a 6, 12 a 18, 22 a 27, 33 a 43, y 47 a 52. Se caracterizan por formas poligonales inferiores al metro,
algunas con un ligero buzamiento hacia el sur, con contornos regulares, y otras más alargadas y subhorizontales, con un tamaño de entre 2 y 3 metros. Todas se sitúan a la misma profundidad, con una cota superior establecida en 0,50 m, a excepción de la anomalía comprendida entre los metros 3 a 6, cuya cota de coronamiento profundiza hasta 0,90 m. La zona de contacto entre los niveles estratigráficos antrópicos y el soporte geológico atribuido a la terraza fluvial del Guadiana se representa mediante una fina línea amarilla continua de 70 Ω.m que se localiza a 0,80 m de profundidad a partir del metro 10 del perfil, con un leve buzamiento en dirección norte hasta el metro 55 de la sección, donde se alcanza 1,8 m.

El perfil ALA2 (figura 321) mantiene el patrón subsuperficial analizado en el caso anterior. La zona inferior de la imagen representa un terreno saturado, de baja resistividad, inferior a 40 Ω.m, típico de tramos de rivera con presencia masiva de arenas y arcillas. Sobre esta base geológica se observa de nuevo un recorrido anaranjado que discurre sobre la zona somera del perfil de sur a norte, que se relaciona con los niveles antropizados, con elevada proporción de materia orgánica en su composición. En su interior se albergan varios elementos anómalos en los metros 3 a 6, 21 a 29 y 35 a 55, con cotas comprendidas entre 0,90 y 0,10 m, es decir, prácticamente bajo el nivel de uso actual del camino. En esta sección algunas anomalías pierden resolución y se muestran como grandes manchas anaranjadas alargadas con 1 metro de espesor. Por el contrario, se observan otras anomalías con tamaños comprendidos entre 0,60 y 1,40 m que ofrecen una información más precisa tanto de sus límites físicos, como de sus valores resistivos individualizados, comprendidos entre 340 y 515 Ω.m.
En el perfil ALA3 (figura 322) el nivel asociado a rellenos antrópicos aumenta su potencia de manera homogénea hasta 1,40 m durante la práctica totalidad del perfil, aunque desde el inicio del mismo hasta el metro 8 esta capa alcanza un espesor de 3 metros. Desde el metro 24 esta unidad es más resistiva que en los otros dos perfiles (200 Ω.m). En este caso, las anomalías se distinguen con mejor calidad que en el perfil ALA2. Además, la medición de sus longitudes indica un aumento generalizado de tamaño; de las once anomalías principales, seis superan los 2 m. Los materiales de estas anomalías muestran elevada resistividad (400 a 500 Ω.m). El emplazamiento en el perfil de estos sucesos anómalos se define a la misma cota, establecida a 0,90 m, y entre los metros 2 a 14 y 23 a 55. En esta segunda zona destacan varios registros a 33, 35, 38, 41, 446, 47, 48 y 51 m.

A nivel geológico resalta una zona resistiva (500 Ω.m) de 9 metros de longitud (metros 23 a 32,) en la base de la imagen que puede corresponderse con la roca madre, con techo a más de 8,5 m y desarrollo hasta la profundidad máxima de exploración establecida a 11,3 m.

En la siguiente figura se ha realizado una secuencia de imágenes con los perfiles ordenados según su orden de medición, que permite alcanzar una visión conjunta de las anomalías detectadas.

Figura 323. Zona A. Secuencia con los perfiles 2D de tomografía eléctrica. Perfiles ALA1, ALA2 y ALA3. Las anomalías se resaltan en recuadros de color negro.

El subsuelo de la necrópolis ibérica se muestra como un terreno en el que la interfaz entre las unidades arqueológicas y el nivel geológico se encuentra bien delimitada. Así pues, la
parte somera de los perfiles se corresponde con el área antropizada desde época ibérica hasta la actualidad, a partir de donde se inicia un paquete arcilloso-arenoso con más de 9,5 m de potencia. Las anomalías con posible naturaleza antrópica se han denominado A, B, C, D y E. Las cinco se registran en los tres perfiles. La anomalía A se encuentra en el lado sur de las secciones. Su tamaño decrece entre el perfil ALA1, con 4 metros de longitud, a 2,5 m en ALA3, lo que puede deberse a una disposición oblicua respecto a la toma de mediciones eléctricas. Es la anomalía individual con mayor longitud, además, su techo y muro se sitúan sensiblemente más profundos que el resto de los sucesos anómalos superficiales detectados, a 2,80 m. Puede corresponderse con la base del talud sobre el que se apoya la carretera, o con el lateral sureste de la plataforma de cimentación para el asiento de la casa de labor.

Por otra parte, las anomalías B a D se modelan con idénticas características visuales: zonas alargadas de material encajante con resistividad superior a 150 Ω.m, cota superior entre 0,50 y 0,90 metros, pequeños núcleos resistivos internos (entre 11 a 15 según perfil) con 1 a 2 metros de longitud, contornos definidos, y elevada resistividad (400 a 500 Ω.m).

Por su correlación con las formas anómalas observadas en las zonas excavadas arqueológicamente, se infiere que estas anomalías pueden corresponderse con posibles estructuras arqueológicas con desarrollo hasta el metro 53 de las líneas eléctricas. Por lo tanto es posible que la necrópolis, o diversas estructuras arquitectónicas relacionadas con este espacio, continúen en dirección norte, bajo el camino privado.

La anomalía F de geometría elipsoidal de 5 metros de grosor y 3,6 de espesor con orientación oeste-este se encuentra rodeada de materiales con resistividades menores (25 Ω.m) en un nivel profundo, a 5,7 m. Esta posición espacial alejada verticalmente del nivel arqueológico somero en 3,5 m, permite deducir que se trata de un elemento geológico natural.

Adicionalmente, con el fin de obtener una nueva perspectiva orientada del subsuelo, se ha generado un bloque diagrama 3D interpolando los valores interelectrónicos de los cuatro perfiles a partir de los datos obtenidos mediante la fusión de las configuraciones dipolo-dipolo y Wenner-Schlumberger (figura 324).
9. Parque Arqueológico de Alarcos

Figura 324. Bloque diagrama 3D construido a partir de los perfiles ALA1, ALA2, y ALA3. En colores amarillentos y anaranjados destacan las anomalías antrópicas superficiales. Obsérvense en los dos extremos del bloque las falsas anomalías resistivas de 1660 Ω.m producidas por la ausencia de datos en las zonas de sombra de las secciones.

9.5.2.2. ZONA B

La investigación mediante tomografía eléctrica en esta zona ha consistido en la ejecución de un bloque 3D denominado AL23D, y 8 perfiles, medidos en dirección S-N (ALA8, ALA9, ALA10, ALA11), y O-E (ALA12, ALA13, ALA14 y ALA15). Estos perfiles se midieron con las configuraciones dipolo-dipolo 3D, radial gradient 3D, dipolo-dipolo, Wenner-Schlumberger y strong gradient, con separaciones interelectródica de 0,5 y 1 metros, y separación entre perfiles de 1 y 1,25 metros (ver figura 297). A partir de estas medidas se han realizado las correspondientes secciones de resistividad 2D.

Los perfiles de inversión de resistividad realizados se muestran en las figuras 325 a 328, y 332 a 335. Las secciones presentan una estructura general del subsuelo formado por un sustrato geológico homogéneo caracterizado por unos valores resistivos comprendidos entre 280 y 500 Ω.m, representado por el color rojo, amarillo y naranja en la base de los perfiles, que debe corresponder con un pliegue rocoso de dimensiones considerables, con base a 6,50 metros y techo, según los diferentes puntos, entre 1,60 y 4,10 metros. Se cubre por un paquete de suelo constituido con materiales de baja resistividad sobre el que se disponen las estructuras. Su respuesta eléctrica se corresponde con las litologías existentes en el cerro: margas y arcillas, principalmente.
La parte superior de este sustrato aparece a 0,35 metros de profundidad. Sobre estos materiales se observa una capa poco resistiva (de 33 a 55 Ω.m), representada en color azul, con zonas en las que aumenta su resistividad hasta 90 Ω.m, posiblemente constituida por materiales geológicos y escombros arqueológicos derivados de su posición primaria desde la zona superior del cerro. Albergados en estos estratos someros, se encuentran restos de posibles estructuras arqueológicas enterradas que destacan por sus altos valores resistivos comprendidos entre 200 y 1200 Ω.m. Se representan por colores amarillo, naranja y rojo.

En el perfil ALA8 (figura 325) las principales zonas anómalas presentan unos elevados valores resistivos, entre 520 y 640 Ω.m, y se sitúan entre los metros 1,5 y 3,5, y en el 5. Ambas se caracterizan por formas alargadas y límites correctamente marcados. Así mismo, se sitúan a la misma profundidad, con una cota superior establecida en 0,35 m. En otras zonas de la línea se observan otras cuatro anomalías con formas y disposición similar a las dos anteriores. Se sitúan entre los metros 5 y 7,5. En este caso se diferencian principalmente por una disminución en la resistividad de los materiales, 220 y 300 Ω.m, y la variación de cotas a 1,30 m, 0,15 m, 0,60 m y 1,25 m, respectivamente.

El perfil ALA9 (figura 326) es similar al anterior. Muestra una anomalía principal con forma elipsoidal, comprendida entre los metros 2,5 y 3,5, base a 0,60 m, con una resistividad elevada de 1200 Ω.m. Se observan dos pequeñas anomalías verdes en los metros 5 y 7, de resistividad media (en torno a los 220 Ω.m) con coronamiento a 0,35 y 0,40 m, respectivamente. Se representan con escasa definición lateral, pero con una geometría subhorizontal (la segunda) observable mediante un color amarillo. Por otro
lado, se distingue como en la zona final del perfil aparece una anomalía de resistividad media (200 Ω.m), con forma alargada durante dos metros, a 0,40 m de profundidad, que se introduce bajo la zona de sombra de la sección y parece continuar en dirección norte.

Para finalizar, es preciso destacar cómo los materiales que rellenan la zona a distintas alturas entre los metros 6 al 12, presentan un comportamiento eléctrico homogéneo y más conductivo, con valores de resistividad en torno a 35 Ω.m, que pueden corresponderse con aportes constructivos desde la zona sur del castillo. Esta característica del suelo puede observarse en los cuatro perfiles realizados (figuras 325 a 329).

Figura 327. Perfil de tomografía eléctrica ALA10.

En la sección ALA10 (figura 327) destacan dos zonas anómalas. La primera equivale a un cuerpo anómalo horizontal de grandes dimensiones, bien definido entre los metros 2 y 5. Se caracteriza por una composición material poco conductora, con niveles resistivos que superan los 400 Ω.m. Su techo se registra a 0,50 m. La base parece asentarse sobre la capa con posible naturaleza rocosa situada en la parte inferior de la imagen.

La segunda zona anómala, menos definida debido a su posición parcialmente oculta al final de la línea de tomografía, se localiza entre los metros 11,5 y 13,5. En su inicio, mantiene la altura de cota con respecto a la anomalía anterior. Posteriormente inicia una leve inclinación hasta llegar prácticamente a la cota 0 en el metro 13. El valor de resistividad que la representa es aproximadamente de 270 Ω.m.

En la zona intermedia del perfil, a 8 m del inicio, se observa un evento anómalo de escasa entidad. Buza pronunciadamente en dirección norte-sur, con techo a 0,40 m y base a 1,20 m. Sus características resistivas son muy similares a la de los materiales que la envuelven (130 Ω.m).
El último perfil eléctrico medido en dirección sur-norte de la necrópolis almohade se corresponde con la línea ALA11 (figura 328). En dicha sección se aprecia nítidamente, como en la línea anterior, una zona subhorizontal de resistividad alta (300 a 380 Ω.m.) con una profundidad máxima de 2,10 m y coronamiento en 0,50 m, delimitada entre los metros 2 y 5,5. Y dos anomalías de menor entidad colocadas en la vertical del metro 8 (electrodo 17), y del metro 11 hasta el final del perfil, con idéntica disposición espacial, resistividad y geometría que en ALA10.

Para obtener una visión conjunta de los eventos anómalos detectados, se ha elaborado una secuencia de imágenes con los perfiles ordenados según su orden de medición, en los que se señalan las principales singularidades resistivas, tal y como se muestra en la figura 329.

Como puede observarse en las secciones llevadas a cabo en dirección sur-norte, el suelo de la zona B es uniforme. Se identifican siete anomalías, tres con continuidad en la totalidad de
9. Parque Arqueológico de Alarcos

los perfiles realizados (anomalías A, G y H), dos (anomalías B y E) con correspondencia lineal en al menos dos secciones eléctricas y dos sin continuidad lateral (C y D). Se caracterizan por una resistividad media y elevada, así como por una posición poco profunda.

La mayoría de los registros anómalos se localizan desde el inicio de los perfiles hasta su zona intermedia. Destaca la anomalía A por su tamaño y grosor. Parece avanzar durante las dos primeras secciones en paralelo a la anomalía B, cuyo extremo este podría solaparse con la primera en los perfiles ALA10 y ALA11. Esta unión entre ambas anomalías también podría generarse a partir de un posible derrumbe de grosor considerable que colmatase el espacio entre ambas estructuras. Se caracterizan por situarse a una profundidad similar (entre 0,35 y 0,50 metros), aunque la base de la anomalía A se encuentra 0,40 m más profunda. Este factor puede deberse a la leve pendiente descendente hacia el sur. En este caso pueden corresponderse con dos muros paralelos con dirección oeste-este construidos escalonadamente con el objetivo de salvar el desnivel en esta zona.

A continuación se aprecian varias anomalías de pequeñas dimensiones (C, D, E y F), con una anchura que en ningún caso excede el metro, y con grosores de 0,30 a 0,40 m aproximadamente. En los perfiles, las imágenes generadas para estos elementos aparecen con escasa resolución como para precisar óptimamente su geometría. La posición de estas
posibles estructuras se observa por lo general con tendencia subhorizontal, aunque la anomalía D presenta una inclinación de 30°. Por otro lado, las anomalías E y F tienen continuidad en los perfiles ALA8 y ALA9, la primera, y ALA10 y ALA11, la segunda. Esta característica física permite suponer que su longitud mínima con orientación oeste-este es de al menos 1 metro, o por el contrario, que se trata en ambos casos de un reflejo eléctrico lateral captado en el perfil contiguo. Sin embargo, las anomalías C y D sólo se representan en ALA8, dato que podría indicar que se trata de dos posibles estructuras con menor prolongación longitudinal. Como se indicó en párrafos anteriores, en esta zona se han documentado tumbas con diferentes tamaños, correspondientes a individuos tanto infantiles como adultos. Es probable por su situación cercana a las tumbas excavadas, que estas anomalías puntuales se correspondan con nuevos enterramientos contiguos a la necrópolis almohade.

La anomalía G destaca por su baja resistividad, comprendida entre 35 y 65 Ω·m. Se encuentra en último tercio de las cuatro secciones, muy somera, con un espesor de 0,30 m, y una posible orientación SO-NE. Parece apoyar, o adosarse lateralmente, sobre la anomalía H durante los cuatro perfiles. El coronamiento de la anomalía H coincide con el lado norte de la G, sin embargo, se desplaza en profundidad hacia el sur de los perfiles, por debajo de la G. Debido a que la anomalía H se encuentra parcialmente escondida en la sombra de los perfiles, no se puede determinar con claridad su geometría y dimensiones, pero por su alargamiento e inclinación podría tratarse de un derrumbe constructivo. Por su parte, la anomalía G tanto por la dirección de avance, como por cota, puede corresponderse con un posible camino de tierra apisonada que podría relacionarse con la vía de acceso a la entrada sur del castillo, situada a menos de 20 m en dirección noroeste.

Por otra parte, como se indicó anteriormente, los perfiles medidos en dirección oeste-este son perpendiculares a los anteriores y se corresponden con las figuras 332 a 335.

Figura 332. Perfil de tomografía eléctrica ALA12.

En la sección ALA12 (figura 332) las principales zonas anómalas se observan en la primera mitad de la imagen, o zona oeste del perfil. Se caracterizan por presentar valores resistivos altos, entre 240 y 500 Ω.m. Se sitúan en el metro 3, y entre los metros 6,5 y 9,5. Para la primera es complejo determinar su tamaño completo pues se sitúa parcialmente dentro de la zona de sombra. La parte anómala situada dentro la figura, muestra un cuerpo de pequeñas dimensiones y una geometría redondeada. Se sitúa a 1,1 m de profundidad. La siguiente anomalía se caracteriza por una forma alargada y bordes bien definidos. Su cota superior se corresponde con su lado este, a 0,90 m; posteriormente, debido a un ligero buzamiento, se produce una leve variación de la misma en dirección oeste, con profundidad de 1,55 m. Finalmente, se aprecia una pequeña anomalía anaranjada de escasa entidad y forma romboidal con resistividad de 260 Ω.m que aparece en la vertical del metro 11.
El perfil ALA13 (figura 333) muestra una zona anómala muy resistiva (500 Ω.m) que destaca en color rojo desde el metro 3 hasta el metro 8,5. A partir de esta zona parece aumentar la conductividad de los materiales hasta el metro 11,5, con menor resistividad en todo este tramo (420 Ω.m). Se trata de un cuerpo uniforme con el lado superior plano y clara disposición subhorizontal, con cotas inferiores que disminuyen desde 3,3 m en el punto más profundo, hasta 1,8 m en el más superficial. La pequeña anomalía que se observa a continuación, en el metro 12,5, parece una disgregación del conjunto anterior.

En este perfil aparecen otras dos zonas anómalas muy resistivas (entre 430 y 500 Ω.m) claramente diferenciadas. La más centrada, entre los metros 17 y 19,5, se dispone de forma subhorizontal entre los 0,85 y 2,20 m de profundidad, y presenta un leve escalonamiento hacia el oeste. La anomalía más oriental, situada entre los metros 21 y 22, es semejante a la anterior en geometría, estructura y profundidad. Al igual que en la sección anterior, se observa la presencia importante de un nivel natural posiblemente rocoso entre los metros 10 y 20 a más de 2 m de profundidad, que avanza hasta la máxima profundidad de exploración. Este estrato disminuye en espesor conforme la disposición lineal de los perfiles se desplaza hacia el norte del área de trabajo (figuras 334 y 335).

Cabe señalar, para concluir la interpretación de este registro, que en la zona final de la sección, en el metro 24, se observa una anomalía parcial con unos valores resistivos relativamente altos, superiores a 250 Ω.m, y techo a 0,90 m.

De la observación del perfil ALA14 (figura 334) se deduce la existencia de una anomalía de grandes dimensiones caracterizada en color naranja y rojo, que ocupa la cuarta parte de la...
imagen tomográfica. Se extiende entre los metros 7 y 15. Destaca por su elevada resistividad, con valores aproximados de 340 y 500 Ω.m, y por su morfología escalonada. Así pues, la anomalía se extiende desde la superficie en dirección oeste y este, hasta una profundidad comprendida entre 0,80 y 1,20 m, con una simetría bien definida. Con posible continuidad física en dirección oeste (inicio del perfil), surge desde la zona de sombra de la toma de datos una zona anómala de 1,5 m de anchura y 310 Ω.m de resistividad. La prolongación horizontal con menor resistividad representada en color amarillo entre ambas anomalías, puede indicar un espacio de continuidad estructural caracterizado por materiales con mayor conductividad eléctrica.

Se observa un nuevo evento anómalo de geometría triangular en el metro 21 con resistividad de 450 Ω.m en su núcleo. Presenta unos bordes con esquinas bien delimitadas, grosor de 0,60 m, anchura cercana al metro y una profundidad de hasta 1,7 m. Con techo a misma cota que esta anomalía, aparecen en dirección este dos pequeñas zonas anómalas de menor entidad en cuanto a tamaño, representadas en color amarillo, pero con valores resistivos medios (260 Ω.m). Se localizan en los metros 23 y 25.

En la necrópolis islámica el último perfil realizado equivale a ALA15 (figura335). Desde la superficie hasta 1,5 m de profundidad la imagen destaca por un suelo colmatado en su totalidad por material arqueológico altamente resistivo (superior a 190 Ω.m). Albergada en estos rellenos se observa una anomalía de entidad que se extiende desde el inicio del perfil hasta el metro 15. En el metro 18 se aprecia un elemento trapezoidal que puede tener conexión con la anterior. Se disponen entre la superficie hasta 1,5 m de profundidad, con elevados valores resistivos comprendidos entre 300 y 500 Ω.m. En la zona final de la sección, entre los metros 20,5 y 24, se diferencian tres puntos aislados de resistividad elevada (470 Ω.m) con geometría almendrada, misma cota y bordes nítidos e intensos con tendencia vertical.

Para continuar con el mismo modelo de análisis expositivo desarrollado con la toma de datos tomográficos en dirección sur-norte, se ha realizado una secuencia de imágenes con
los perfiles ordenados según su orden de medición, en los que se señalan las principales anomalías resistivas, tal y como se expone en la figura 336.

El subsuelo investigado con los perfiles tomográficos dispuestos en dirección oeste-este, se muestra como un terreno homogéneo en el que la separación, o zona de contacto, de los horizontes antrópicos y geológicos se encuentran perfectamente acotados. Así pues, puede observarse cómo desde la superficie hasta una profundidad comprendida entre 1,5 a 3,30 m, según el perfil, se localizan las principales anomalías arqueológicas, así como potentes rellenos de material constructivo asociado, con apoyo horizontal sobre las capas naturales margo-arcillosas. Como puede observarse en la figura 336, se registran seis anomalías, una con desarrollo en la totalidad de los perfiles ejecutados (anomalía B), tres anomalías con continuidad en al menos dos o tres secciones eléctricas (anomalías A, E y F), y dos sin correspondencia lateral (C y D). Se identifican como elementos con valores resistivos altos, así como por una cota superficial similar en todos los casos.

El elemento anómalo B sobresale por su tamaño en los cuatro perfiles. Su longitud varía entre 3,5 m en el sector más cercano a la excavación arqueológica, hasta 17 m, en la zona ubicada más cerca del paramento defensivo sur de la fortaleza. En cuanto al espesor también se observa una zona de máxima potencia en el sector centro-oeste de los perfiles,
con base de hasta 3,3 m en su punto más profundo. La cota superior, como sucede con la base de la anomalía, también sufre una fluctuación de alturas. Se observa en diversos tramos a ras de la superficie, principalmente entre los metros 10 y 12 del perfil ALA14, y del 11 al 13 en la sección ALA15. Por su geometría y distribución espacial puede equivaler a un derrumbe constructivo asimétrico que colmata una parte extensa del área situada entre el sur del castillo medieval y la necrópolis almohade. La resistividad de la anomalía varía constantemente según el metro y el perfil estudiado entre 240 y 500 Ω.m, este factor puede deberse a la naturaleza de los materiales que la componen, posiblemente mampostería de cuarcita y, morteros de cal y tapial, tal y como se documenta en los derrubios procedentes de la cota superior del cerro a escasos metros de la intervención.

Por otra parte, las anomalías A, E y F tienen continuidad en los perfiles ALA12 y ALA14, la primera, y en ALA13, ALA14 y ALA15 las dos restantes. La anomalía A se registra parcialmente en ambos perfiles. Se aprecian diversas características morfológicas y espaciales similares; coronamiento a 1,40 m, resistividad en torno a 350 Ω.m, forma con tendencia elíptica, bordes nítidos y posición entre los metros 3 y 4. Estas particularidades coincidentes permiten inferir que puede tratarse del mismo elemento subsuperficial, aunque la cubrición de este sector por la anomalía B, dificulta precisar con exactitud la posible continuidad física de esta anomalía en el perfil ALA13 y su naturaleza.
Los registros anómalos E y F por su tamaño comprendido entre 0,60 y 1 m de anchura, alta resistividad de 500 $\Omega\cdot$m, alineamiento N-S, y geometría con leve forma subvertical, se interpretan como dos o tres estructuras antrópicas lineales, con techo situado a menos de 0,50 m y fondo con base máxima a 1,50 m (anomalía E), y 1,40 m (anomalía F). Cabe destacar el descenso de los valores resistivos de la anomalía F en el perfil ALA14 hasta 260 $\Omega\cdot$m.

Las anomalías C y D se identifican únicamente en los perfiles ALA12 y ALA13, respectivamente. La falta de datos geofísicos continuados sobre estas anomalías en el resto de perfiles tomográficos, impide poder realizar una interpretación fiable sobre la posibilidad de que se trate de algún tipo de estructura antrópica. Por su elevada resistividad comprendida entre los 290 y 500 $\Omega\cdot$m, su situación espacial con cota en profundidad a 0,80 m, y por la cercanía a la zona excavada, inferior a 3 m, donde se han documentado numerosas tumbas, estas anomalías pueden corresponder con posibles enterramientos cubiertos con mampostería.

![Figura 338. Vista general del subsuelo. Bloque 3D a partir de la interpolación de los perfiles ALA12, ALA13, ALA14 y ALA15. Obsérvese entre los metros 20 y 27, en color amarillo, las posibles estructuras arqueológicas correspondientes a las anomalías E y F, muy solapadas. En verde se representa la distribución de los rellenos constructivos.](image)
9.5.2.3. ZONA C

La exploración mediante tomografía eléctrica en esta zona del yacimiento ha consistido en la realización de 4 perfiles medidos en dirección N-S, denominados ALA4, ALA5, ALA6, y ALA7, y un bloque 3D llamado AL13D. Estos perfiles se midieron con las configuraciones dipolo-dipolo 3D, radial gradient 3D, dipolo-dipolo y Wenner-Schlumberger, con separaciones interelectródica de 0,5 metros, y separación entre perfiles de 1 metro (ver figura 298). A partir de estas medidas se han realizado las correspondientes secciones de resistividad 2D. Los perfiles de inversión de resistividad realizados se muestran en las figuras 339 a 342.

La corta distancia interelectródica empleada ha permitido densificar los puntos adquiridos en la toma de medidas aumentando la resolución del sustrato arqueológico superficial. Por el contrario, se ha producido una menor penetración hasta la base geológica de esta zona del cerro. El suelo que se sitúa en el muro de los perfiles a 3,27 m se compone por materiales conductivos poco saturados, arcillas y margas principalmente, con resistividad inferior a 80 Ω.m, y está representado por el color azul en la base de los mismos. La parte superior de este sustrato (techo) aparece bien definido a una profundidad variable de 2,45 a 2,80 metros, fluctuación que muestra la posible curva natural del terreno, en contraposición al aterrazamiento artificial superficial observable de este sector del yacimiento. Sobre el material geológico se distingue un material caracterizado por valores de resistividad medios y altos, representado por colores verdosos y amarillos, que varían entre 180 y 260 Ω.m. Debe equivaler a depósitos antrópicos procedentes de los derrumbes de los muros desplomados, compuestos por mampostería, adobes y morteros desechos. El espesor de estos materiales varía entre 0,80 y 2,30 m. Las posibles estructuras enterradas se alojan en este paquete de relleno constructivo, caracterizadas por un valor resistivo elevado (500 Ω.m), y se representan por los colores naranja y rojo en los perfiles. Sobre estos materiales se presenta una capa poco resistiva (60 a 90 Ω.m) representada en color azul, con origen en los derrubios geológicos y arqueológicos de zonas superiores del cerro. Este sedimento cubre la totalidad de la superficie explorada con un espesor comprendido entre 0,60 a 0,85 m de profundidad.

El perfil ALA4 (figura 339) muestra en la zona central un evento anómalo principal en color rojo de grandes dimensiones (3 metros de longitud), entre los metros 4,5 y 7,5 (electrodos 10 y 16), a una profundidad de entre 0,85 y 2,60 m, con un valor de resistividad elevado, 500 Ω.m. En los primeros 4 metros del perfil no se detectan anomalías significativas, por el contrario, el subsuelo en esta zona parece encontrarse colmatado por materiales constructivos disgregados asociados a las posibles estructuras arquitectónicas colindantes. A partir de la anomalía predominante, hasta el final de la sección, se concretan a la misma cota dos pequeñas anomalías contiguas en los metros 8,5 y 9, y una tercera anomalía con trayecto ascendente que se introduce en la sombra de la toma de datos, todas con resistividad de 500 Ω.m.

Figura 340. Perfil de tomografía eléctrica ALA5.

Al igual que en el perfil ALA4 se aprecia una anomalía prominente de tres metros de longitud entre los metros 4,5 y 7,5 de ALA5 (figura 340). En este caso la anomalía presenta una disminución en la resistividad de sus materiales justo en su zona intermedia, es decir, del metro 6 al 4,5, con una reducción respecto al tramo siguiente de 500 a 430 Ω.m.

Por otra parte, desde el inicio del perfil hasta el metro 4,5 el suelo comprendido a una profundidad entre 0,80 y 2,25 m aumenta ostensiblemente sus valores resistivos hasta 350 Ω.m. Envolventa en esta capa se observa, en la vertical del metro 3,5, una anomalía con 450 Ω.m de resistividad y 0,5 m de longitud con el contorno bien definido, modelada en color naranja oscuro, y coronamiento a 0,90 m. El perfil se completa entre los metros 9,5 y 11,5 (lado sureste) con una franja anómala subhorizontal muy resistiva (450 Ω.m) con techo a 0,90 m de profundidad que continúa hacia fuera de la zona sin registros tomográficos.
En el perfil ALA6 (figura 341) las zonas anómalas se visualizan a lo largo de todo el perfil, con una resistividad de \(500 \, \Omega \cdot m\), situadas en los metros 1,5 a 3, 3,5, 5, 7,5 a 9 y 10,5 a 12, base profunda (posible cimentación) a 1,60 m, y coronamiento a 0,80 m. Se representan con buena definición lateral y geometrías tanto poligonales de pequeñas dimensiones, como alargadas con leves escalonamientos, observables mediante color rojo. Adicionalmente, existen zonas de materiales menos resistivos (en torno a 200 \(\Omega \cdot m\)) a lo largo de toda la sección, cuya naturaleza es posiblemente constructiva, que envuelven a las anomalías de altas resistividades.

El perfil ALA7 (figura 342) muestra varias zonas con posible naturaleza arqueológica representadas en color naranja y rojo, destacando un estrato de elevada resistividad (500 \(\Omega \cdot m\)) con cota aproximada a 0,90 m, entre los metros 1 a 12,5. Las anomalías alargadas situadas sobre las zonas de sombra del perfil parecen ascender en posición diagonal desde el nivel comprendido para las otras anomalías descritas, hasta 0,50 m de profundidad. Nótese en los metros 6 y 7,5 la presencia de dos anomalías resistivas situadas por debajo de la zona subhorizontal donde se distribuyen las posibles estructuras antrópicas, y los rellenos asociados en los cuatro perfiles. Se prolongan desde 2,20 m hasta la base de la zona de exploración. Se trata de elementos anómalos positivos subparalelos con geometría verticalizada, simétrica, bien definida, rodeados por los niveles arcillo-margosos naturales.

Los perfiles se han organizado según su orden de medida en la siguiente secuencia de imágenes, para obtener una visión conjunta de las anomalías registradas:

Como puede observarse en los perfiles realizados, el subsuelo de la zona C es uniforme, con tres niveles bien diferenciados, agrupados horizontalmente por su naturaleza y resistividad. Los dos primeros niveles, el primero superficial, y el intermedio, se corresponden con unidades arqueológicas. Por su parte, el tercer y último nivel, actúa como base geológica sobre la que se sustentan los estratos antrópicos. Los bloques 3D ejecutados también aportan información precisa sobre el contraste entre las resistividades que definen las distintas capas antrópicas y geológicas, así como de las anomalías con posible origen estructural (figura 344).
Figura 344. Diferentes visualizaciones del bloque 3D ALA13D realizado a partir del arreglo Dipolo-Dipolo 3D. (A) Imagen completa de resistividad invertida. (B) Secciones estáticas de resistividad invertida. (C) Secciones dinámicas de resistividad invertida sobre la anomalías A, B, D, E y F. (D) Gráfico de contorno de resistividad sobre las anomalías A y B. Las anomalías antropicas se resaltan en colores amarillos y anaranjados.

Se registran siete anomalías principales, algunas con continuidad en la totalidad de los perfiles. Las anomalías A y B resaltan en la zona central de los perfiles, entre los metros 4,5 y 9. Se caracterizan por situarse a la misma profundidad (entre 0,85 y 0,95 metros), aunque la base o cimentación de la anomalía A se observa a 2,60 m, por 2,30 m de la B. La anomalía A es potente, con 3 m de grosor y una geometría horizontal alargada. La anomalía B se caracteriza por una doble disposición vertical, y menor tamaño lateral, inferior al metro y medio. Se han documentado en la excavación arqueológica del Sector III dos muros ibéricos paralelos de gran envergadura construidos con cuarcita y caliza sitios a menos de un metro al oeste de la cuadrícula de trabajo, que se introducen en el subsuelo en dirección a las líneas eléctricas planteadas. Por las características de la toma de datos de este método, el muro situado al norte permanecería parcialmente oculto en la zona de sombra de las secciones. Sin embargo, el muro situado al sur atraviesa perpendicularly el subsuelo de la zona investigada. Esta información aportada por la excavación, correlacionada con los
datos obtenidos mediante la prospección geofísica, permite deducir que la gran anomalía A se puede corresponder con este muro ibero de considerables proporciones. La anomalía B, por la cercanía al registro anómalo A, y por la posibilidad de que en ALA5 y ALA6 no se encuentre presente, absorbida por el contorno resistivo de la anomalía A, hace suponer que pueda deberse a una disgregación lateral constructiva de esta última anomalía, a modo de macroderrumbes de bloques pétreos de entidad en diversos puntos del alineamiento murario. Este mismo supuesto es aplicable a las anomalías D, E y F, cuyos contornos son convergentes en ALA5 y ALA6, aunque en el metro 4 de ALA7, las anomalías E y F se separan levemente. Por su ubicación y desarrollo se corresponden con el muro ibérico norte. Como en el caso anterior, se deduce que cuando las anomalías distancian sensiblemente sus contornos puede deberse a materiales constructivos muy resisitivos y de tamaño notable, disgregados del conjunto arquitectónico original, pero adyacentes al mismo.

La anomalía C destaca en la zona final de los cuatro perfiles. Debe corresponderse con una posible estructura arquitectónica de grandes proporciones, puesto que la parte anómala registrada abarca una extensión de hasta 2,5 m de grosor. Coincide con una anomalía lineal de siete metros medida mediante georradar con desarrollo en dirección suroeste-noreste.

La anomalía G se observa con nitidez en ALA7, y con escasa resolución en el perfil ALA6, a modo de reflejo lateral debido a la posible cercanía de alguno de sus bordes a esta sección. Es el único suceso anómalo que se sitúa a distinto nivel de la zona en la que se visualizan
las anomalías primarias. Además, se dispone bajo la cimentación del muro ibérico sur, hincada en el nivel geológico. Durante las excavaciones se han documentado principalmente espacios de uso delimitados por muros, que representan casi la totalidad de las estructuras arquitectónicas exhumadas, y un horno ibérico circular a 8 metros de esta anomalía (junto a la base del muro sur). A partir de la diferencia tanto en su cota de profundidad, como en su geometría y verticalidad con respecto a otras anomalías eléctricas equivalentes a muros reales, puede plantearse la hipótesis de que se trate de una posible estructura adosada o muy cercana a la cara meridional del muro ibérico sur, relacionada con los usos industriales documentados en el Sector III.

9.6. DISCUSIÓN Y CONTRASTE DE RESULTADOS

La investigación efectuada en el Parque Arqueológico de Alarcos tiene como objetivo delimitar las zonas con presencia de estructuras antrópicas, y comprobar la validez del uso combinado de métodos geofísicos eléctricos y electromagnéticos en el yacimiento, con el fin de desarrollar futuras intervenciones arqueológicas en las áreas de mayor interés. La exploración geofísica ha permitido determinar los sectores en los que se registran una cantidad importante de elementos anómalos. Con estos datos se pretende caracterizar la disposición espacial y naturaleza física de las anomalías documentadas en la prospección geofísica, sobre la base del uso combinado de georradar y tomografía eléctrica, y su contraste a partir de excavaciones arqueológicas sistemáticas. Para ello se expondrá de manera pormenorizada un análisis de cada una de las zonas en las que se ha excavado, cotejando los resultados con los obtenidos mediante la exploración geofísica, con el fin de determinar la idoneidad o carencias de los métodos y configuraciones empleadas en un yacimiento arqueológico con las particularidades arqueológicas y geológicas propias de Alarcos.

El método de trabajo ha consistido en una excavación de varios sondeos arqueológicos manuales (figura 346) en las necrópolis ibérica e islámica, mediante el levantamiento de estratos antrópicos-arqueológicos, desde el más reciente hasta el registro con mayor antigüedad o un nivel estéril. En la zona de exploración C-Sector III, no se han realizado excavaciones arqueológicas, aunque los perfiles de excavación existentes con origen en campañas anteriores, son contiguos a algunos perfiles y secciones efectuados en la presente investigación.

9.6.1. ZONA A

La excavación arqueológica manual se planteó entre la esquina noreste de la casa de labor, el límite este de los bancales de la orilla occidental del río, y al este de la obra civil del colector hidráulico, con el fin de aprovechar longitudinalmente el camino privado que conduce al inmueble agrario. Con este planteamiento, las estructuras arqueológicas descubiertas durante el control arqueológico activado para la obra de canalización, se encontraban colindantes con el perfil oriental de la excavación universitaria.

7Parte de la información descriptiva de las unidades constructivas y secuencias estratigráficas expuestas en la presente investigación ha sido proporcionada por los profesores Mª del Rosario García y David Rodríguez, codirectores de la excavación universitaria, así como por Tania Obregón, Gema Garrido y Antonio J. Gómez, arqueólogos codirectores del seguimiento arqueológico de la obra hidráulica, a partir de las respectivas Memorias de trabajo.
Excavación arqueológica de la necrópolis ibérica de Alarcos. UCLM, Ciudad Real, 2016. Informe-memoria de difusión restringida.
El objetivo de trabajar sobre esta trinchera era visualizar las características de las anomalías generadas por las estructuras arqueológicas detectadas con los distintos métodos geofísicos, con el fin de obtener las configuraciones óptimas en los equipos de medición para este sector del yacimiento, determinar su nivel de correlación con unidades arqueológicas existentes, y extrapolar los resultados a áreas selladas para valorar la posibilidad que la necrópolis progresara, bajo la superficie actual, hacia sus lados norte y sur. La excavación se planteó con unas dimensiones de 23 m de longitud para su eje mayor (con dirección N-S) por 2,5 m de anchura en su eje menor (con dirección E-O). En su interior se documentó una estratigrafía parcialmente alterada por el corte de la zanja de la tubería, cuya secuencia orientativa de techo a muro es la siguiente:

La construcción del camino privado se realiza mediante la subida del nivel de suelo un total de 0,75 m. Con este relleno se elimina la pendiente natural del cerro, y se crea una plataforma de acceso a la edificación. El primer estrato se corresponde con el nivel de uso actual del camino. Se trata de un relleno artificial de 0,25 m compuesto por una matriz limo-arenosa consistente de color pardo, con escasa presencia de materia orgánica.

Debajo del nivel superficial se localiza la segunda unidad. Esta completa la fase artificial del proceso de recrecido del suelo actuando como base. Es un estrato compacto con espesor aproximado de 0,50 m, formado por un relleno preparado con secuencia granodecreciente de cantos y piedras de tamaño medio en su tramo inferior cohesionado mediante material arcilloso, con cantos de diámetro reducido según se asciende hasta la primera unidad.

A partir de este punto hasta el suelo natural se suceden un número elevado de capas de composición heterogénea con escaso espesor, en algunos casos inferior a 1 cm. El resultado es una secuencia compleja y amplia. Con el fin de facilitar la lectura estratigráfica de este paquete de 0,70 m de potencia, en su descripción se explicará de forma global los materiales registrados hasta la base geológica del yacimiento (cuarta unidad documentada): la tercera capa estratigráfica es una unidad de uso asociada al tránsito antropológico por el recinto interior de la necrópolis, constituida por procesos naturales y de edad histórica alternantes. Se trata de una plataforma nivelada donde el espacio entre los túmulos se rellena paulatinamente hasta cubrir las estructuras, con el
objetivo de reacondicionar y regularizar el área para nuevos usos cementeriales. Para allanar se utilizan elementos artificiales como adobe, cal o tierra apisonada, lo que provoca la subida general de las superfi cies de uso. Entre las tongadas artificiales se observan fenómenos de arroyada con niveles de sedimentación natural de arena con granoselección positiva sin apenas desarrollo erosivo.

La cuarta unidad equivale al terreno natural. Se localiza a una profundidad variable y creciente comprendida entre 1,25 m, en la zona sur, y a 1,60 m en el lado norte del sondeo. Compuesta por una matriz de arcilla saturada de color marrón vinoso con algunos mampuestos de cuarcita, supone el muro de la actuación.

La secuencia estratigráfica del subsuelo registrado en la excavación puede observarse en la figura 347.

![Figura 347. Detalle perfl estratigráfico zona de exploración A. (Fotografía cedida por Antonio J. Gómez Laguna).](image)

Una vez retiradas las tres primeras capas, se han alcanzado las unidades arquitectónicas (figuras 348 y 350). Se han documentado parcialmente cinco túmulos que continúan dentro de los perfiles de excavación este y oeste, dos túmulos completos y una
estructura lineal en el límite norte del sondeo, encajada en el perfil oeste, que puede identificarse como un posible muro, o el lateral oriental de un monumento funerario. Estas estructuras apoyan sobre el terreno natural, su base representa la cota final de excavación, con lo que en esta zona se han agotado totalmente en profundidad las secuencias estratigráficas arqueológicas.

Los túmulos de mampostería exhumados durante la excavación son estructuras que comparten características constructivas y materiales. Se fabrican mediante aproximación de hiladas de piedra cuarcita en seco. Tan sólo en el túmulo ubicado al sur se utiliza piedra caliza para la totalidad de sus bloques. Sobre las dimensiones hay que indicar que únicamente en dos casos se ha podido documentar el perímetro total de las estructuras, para el resto se ha localizado completamente su longitud norte-sur (figuras 348 y 350).

Para poder obtener una visión de conjunto de los elementos constructivos detectados y su correlación con los datos proporcionados por la investigación geofísica, se expondrán de sur a norte según su orden de aparición, mediante una descripción pormenorizada de sus principales características físicas con la siguiente tabla:
<table>
<thead>
<tr>
<th>TÚMULO</th>
<th>MEDIDAS N-S</th>
<th>MEDIDAS E-O</th>
<th>DISTANCIA A TÚMULO SIGUIENTE (HACIA EL NORTE)</th>
<th>MATERIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3,78 m</td>
<td>2,70 m</td>
<td>0,75 m</td>
<td>Caliza</td>
</tr>
<tr>
<td>B</td>
<td>1,81 m</td>
<td>0,35 m (parcial)</td>
<td>0,90 m</td>
<td>Cuarcita</td>
</tr>
<tr>
<td>C</td>
<td>1,92 m</td>
<td>1,49 m (parcial)</td>
<td>1,80 m</td>
<td>Cuarcita</td>
</tr>
<tr>
<td>D</td>
<td>2,74 m</td>
<td>2,37 m (parcial)</td>
<td>0,47 m</td>
<td>Cuarcita</td>
</tr>
<tr>
<td>E</td>
<td>0,90 m (parcial)</td>
<td>1,51 m (parcial)</td>
<td>1,76 m</td>
<td>Cuarcita</td>
</tr>
<tr>
<td>F</td>
<td>2,50 m</td>
<td>1,21 m (parcial)</td>
<td>2,43 m</td>
<td>Cuarcita</td>
</tr>
<tr>
<td>G</td>
<td>5,87 m</td>
<td>0,76 m (parcial)</td>
<td>0,59 m</td>
<td>Cuarcita</td>
</tr>
<tr>
<td>H</td>
<td>1,41 m</td>
<td>0,57 m (parcial)</td>
<td>Final</td>
<td>Cuarcita</td>
</tr>
</tbody>
</table>

Figura 349. Descripción de las características físicas y emplazamiento de las estructuras arqueológicas en la necrópolis ibérica.
En la figura 350 se muestra la distribución combinada de los métodos geofísicos utilizados en la investigación. Las estructuras arqueológicas documentadas mediante la excavación arqueológica en la zona central del área investigada han podido verificarse a partir de la exploración geofísica desarrollada en esta zona.

Durante el proceso de excavación de la necrópolis, los dos primeros estratos someros nivelados, compuestos por limos, arcillas y cantos, empleados como preparado de sub-base para la estructura del camino privado, y la tercera unidad estratigráfica, representada por diversas microcapas antrópicas y naturales que se extienden por toda el área examinada, fueron retiradas sin separar los materiales, y acopiadas en caballones. Posteriormente, la trinchera se rellenó mediante apoyo de maquinaria pesada con los acopios de dichos montículos, lo que ha supuesto una mezcla de materiales estratigráficos generando una única unidad terrosa, semicompactada, con escasa presencia materia orgánica, que cubre el sector hasta la cuarta unidad. Por el contrario,
en la zona I, el registro estratigráfico se mantuvo en posición primaria conservando las características descritas anteriormente. Este factor ha permitido realizar un análisis basado en la caracterización de anomalías y estratos, a partir de cambios estructurales del suelo, producidos por alteraciones físicas como las llevadas a cabo en este yacimiento tras su excavación y posterior soterramiento.

Así pues, la totalidad del espectro comprendido entre la superficie hasta 0,90 m de profundidad indica la presencia del relleno estratigráfico previo a la localización de las estructuras funerarias. El reflector subhorizontal continuo en el que aparecen insertas las hipérbolas debe equivaler a la unidad cuatro (nivel geológico), se registra a 1 m de profundidad, con una señal que aumenta su espesor hasta 1,20 m. En la excavación la cuarta unidad estratigráfica se ha documentado a una profundidad de 1,25 a 1,60 m. Estas mediciones son iguales en los radargramas tanto de la zona I como en la zona II. La única diferencia que se aprecia entre ambas zonas sucede en los radargramas del área sin excavar, donde en la señal subhorizontal situada entre 0,60 y 0,70 m de profundidad se aprecian leves discontinuidades del elemento reflector, que pueden deberse al horizonte de contacto, o a cambio de materiales, entre la segunda y tercera unidad. Estos registros se aproximan a los datos aportados por la excavación, con una diferencia real de 0,05 a 0,40 m (figura 351).

Los coronamientos de los túmulos se registran en los radargramas a alturas equivalentes en todos los perfiles (figuras 352 y 353). El túmulo A se compone de dos hiladas de bloques pétreos, la base se sitúa a 1,35 m, y la superior o coronamiento a 1,17 m. Se
representa en varios puntos de los registros; en el perfil P2 a 47 m del inicio con 0,95 m de profundidad, y en el perfil P3 a 0,5 m del inicio, a 0,70 m de profundidad, y a 3,5 m con una reflexión doble, la superior a 0,60 m, y la inferior a 0,85 m. El túmulo B se sitúa parcialmente encastrado en el perfil oeste con cota a 1,20 m. Se registra con dos anomalías consecutivas a 2 y 2,5 m de P1, con cotas a 0,90 m. La tumba C, con coronamiento a 1,18 m, ha proporcionado cuatro reflectores, dos en su lado sur, y dos en su cara norte. Están presentes a 4,5 y 6,5 m de P1, con 0,90 y 0,95 m de profundidad, y a 43 (muy tenue) y 45 m del perfil P2, con 1,20 y 0,90 m de cota, respectivamente.

Figura 352. Detalle de los perfiles GPR proyectados sobre las estructuras de mampostería documentadas al sur de la necrópolis. Arriba, correlación de las anomalías estructurales sobre segmentos de los perfiles P1 (A-II-1-A) entre los metros 0 a 7, P2 (A-II-2-A) entre los metros 43 a 50, y P3 (A-II-3-A) entre los metros 0 a 7. Debajo en verde, en relación espacial entre las unidades constructivas exhumadas con las anomalías electromagnéticas. Azul: túmulo A. Rojo: túmulo B. Magenta: túmulo C. Las anomalías hiperbólicas situadas al inicio de los perfiles se analizaron en el subcapítulo 9.5.1.1., figura 301.

El túmulo D, con cota superior en 1,16 m, presenta diez zonas reflectoras registradas en las dos direcciones de medida. Cabe indicar en este punto que la dirección de medida B en la zona II se ejecutó con el objetivo de obtener información sobre la posible continuidad del enterramiento dentro de la cara oeste del perfil en el que se encajaba, o si por el contrario, se encontraba arrasado por los aterrazamientos agrícolas. Los datos positivos en este sentido condujeron a la excavación de esta zona por parte de los responsables de los trabajos arqueológicos del yacimiento en una segunda fase. Las
anomalías asociadas a la dirección de medida A se disponen a 0,90 m de profundidad en P1 y P3, por 0,50 m en el metro 41,5 del perfil P2. Este aumento puntual de altura en P2 se debe a un reflector individual con espesor de 0,30 m apoyado sobre la cara superior del túmulo. Las anomalías reconocidas en la dirección de medida B se localizan en el metro 3,5 de P5 a 0,50 m de profundidad, a 1 y 2,5 m de P6 con 0,90 m de cota, y en los metros 1 y 3,5 del perfil P7, a 0,90 y 0,60 m de profundidad, respectivamente. En este caso, para la cota de 0,60 m, se observa nuevamente un reflector sobreellevado del resto del conjunto en 0,32 m. El túmulo E es la estructura más arruinada de la excavación, conserva dos alineamientos de piedra adosados entre sí a 1,28 m de profundidad. En el punto de unión de ambas líneas se aprecia una anomalía poco nítida que corresponde con el metro 37,5 de P2, a 0,85 m de profundidad. La siguiente estructura arquitectónica equivale a la tumba cuadrangular F, con coronamiento a 1,29 m. Presenta tres puntos reflectores a profundidad dispar. Así pues, en los metros 33 y 35 de P2 se registran a 1,30 y 0,60 m, respectivamente, y en el metro 15 del perfil P3 a 1 m de la superficie. La estructura G se presenta como una plataforma cubierta con un pequeño empedrado adosado a una posterior alineación de mampostería independiente orientada norte-sur con cota a 1,49 m, sin conexión lateral con muros perpendiculares que indiquen una posible geometría con forma de cuadrángulo, como sucede con los contornos de los otros túmulos localizados. Las anomalías que la definen se corresponden con sus zonas de inicio y fin, y con su tramo intermedio. Se ubican en el metro 21,5 del perfil P1 a 1,05 m de profundidad, y con cota a 0,90 m en los metros 27 y 31 de P2. El último túmulo documentado en la excavación es el H. Se sitúa al norte de la zona de trabajo, junto a la estructura G, a 1,53 m de profundidad. Se trata de la única construcción funeraria con tendencia circular en el conjunto cementeral. Su reflejo se registra en los metros 20,5 y 22 a 0,95 y 0,90 m de profundidad, respectivamente.
Figura 353. Perfiles proyectados sobre las estructuras funerarias en proceso de excavación al norte de la necrópolis. Arriba, correlación de las anomalías estructurales sobre segmentos de los perfiles P2 (A-II-2-A) entre los metros 27 a 34, y P3 (A-II-3-A) entre los metros 18 a 25. Debajo en verde, en relación espacial entre las unidades constructivas exhumadas con las anomalías electromagnéticas. Azul: estructura G. Rojo: túmulo H.

Por lo tanto, el emplazamiento de las distintas estructuras tiene una variación lateral de menos de 0,25 m según el caso (figuras 352, 353 y 354). La posición subvertical de los coronamientos, por el contrario, presenta una horquilla de valores de correspondencia que varía entre 0,02 m en el caso del túmulo C, a 0,63 m para el túmulo G, mientras que el resto de cotas comparadas obtienen una varianza de entre 0,25 y 0,45 m respecto a las cotas de coronamiento reales. Así pues, en este caso, en el que el suelo encajante limo-arcilloso con presencia de cantos de cuarcita ha sido mezclado, y poco compactado, se observa que los datos geofísicos aportados por la antena de 250 MHz contrastan sensiblemente con los posicionamientos reales de las estructuras funerarias localizadas en el sondeo, principalmente en profundidad, con una leve disminución en la ubicación de la cota real subvertical en los radargramas.
Figura 3. Vista general combinada de los perfiles A-II-1-A, A-II-2-A y A-II-3-A, y las secciones de tomografía ALA1, ALA2 y ALA3 (electrodos a 1 m), en relación a la zona excavada.

La visualización del subsuelo a partir del estudio tomográfico 2D ha permitido obtener una interpretación de esta zona del yacimiento con un alto grado de información. Se han identificado las distintas zonas en las que se documentaron mediante la excavación estructuras arqueológicas, y la unidad de relleno asociado. Se ha determinado que cuando el suelo que rodea los restos arqueológicos tiene baja saturación, es poroso, y se compone por limos y arcillas con presencia de mampuestos de cuarcita de tamaño medio y pequeño, su resistividad se eleva hasta valores similares a la de las unidades constructivas envueltas, enmascarando la visualización de los bordes de los túmulos, especialmente los situados entre los metros 6 a 12 de la excavación. Como puede observarse en los tres perfiles, la imagen del túmulo C se define vagamente en la sección, debido a una resistividad sensiblemente superior a la del medio que lo rodea (180 Ω.m de la estructura por 140 Ω.m del relleno). Sin embargo, en el resto de estudios de caso las anomalías son perfectamente visibles. En este sentido se debe indicar que se produce un suceso destacable en las imágenes resistivas generadas: se ha analizado que las tumbas no se corresponden con elementos anómalos individuales, sino que aparecen divididas en pequeñas anomalías de elevada resistividad, con una reducción de 50 a 100 Ω.m en la zona de unión intermedia comprendida entre los puntos más resistivos. Este corte puntual en la continuidad horizontal de las anomalías puede equivaler al espacio...
arenoso interior de los tumbos, reservado para depositar los restos funerarios de los difuntos y sus ajuares. Las zonas de mayor resistividad corresponden, por tanto, con los muros laterales construidos con mampostería. Este efecto provoca una traslación en la representación de la posición de las estructuras hacia el norte de los perfiles de 0,40 a 0,60 metros, así como un leve aumento de las dimensiones laterales de las zonas anómalas, con respecto a las estructuras documentadas en la excavación.

El emplazamiento en profundidad de las construcciones se representa en la prospección entre 0,40 y 0,50 m de la superficie, lo que supone un error en la lectura de la cota relativa real de 0,70 a 1,05 m. A su vez las bases de cimentación reproducen este fenómeno y se localizan más someras que las reales. El suelo de la excavación, representado por la cuarta unidad, se representa con un leve buzamiento descendiente hacia el final del perfil hasta alcanzar 1,70 m de profundidad, dato que se corresponde con su desarrollo real a máxima profundidad.

Por otra parte, si se realiza una comparativa entre los resultados que se han obtenido sobre el perfil ALA1 a partir de la toma de medidas ejecutada con los electrodos equiespaciados a 1, 1,5 m, y el cambio de configuración interelectrodata con disminución a 0,5 m, se observa una mejoría en la visualización de las anomalías, con mejor definición de su volumen, de la geometría tanto de sus bordes, bases y coronamientos, como del relleno estratigráfico que los cubre (figura 355).

![Figura 355. Secuencia comparativa perfil 2D de tomografía eléctrica ALA1 con las configuraciones electrodicas a 0,5, 1 y 1,5 m.](image)

La configuración interelectrodica a 1,5 m ha permitido abarcar la mayor longitud de toma de datos para una sola medición, con un total de 82,5 m, además de obtener la mayor potencia de exploración con 16,1 m. Detecta correctamente el paquete antroprico del relleno de la excavación y la sub-base de preparación del camino privado. Las anomalías que registra son en todo caso muy resistivas (superiores a 250 Ω.m), sin
embargo, no define adecuadamente las estructuras tumulares, que desaparecen del registro, modelando una secuencia continua de resistividad comprendida entre 100 y 200 Ω.m que las atenua. La configuración con separación de electrodos a 1 m aporta información precisa sobre los contornos de las estructuras, con una leve desviación tanto lateral como en profundidad de éstas, tal y como se explicó anteriormente. El registro lineal que se ha alcanzado se establece en 55 m, con una profundidad total de estudio de 13,1 m. Esta configuración se ha mostrado como la más equilibrada de las tres utilizadas para un estudio a gran escala con las características espaciales y longitudinales como las que definen la necrópolis. La disposición con distancia de electrodos a 0,5 m ha recabado la información más detallada de todas las configuraciones utilizadas. Con una longitud de 27,5 m se han alcanzado 6,5 m de exploración para este tipo de suelo. Representa con extraordinaria precisión los túmulos a partir de figuras regulares y aplanadas, precisando correctamente sus límites y geometrías, con una ubicación subvertical con desvío lateral hacia ambos lados del perfil, según la anomalía, inferior a 0,35 m. Además, aumenta las cotas superiores en profundidad hasta 0,80 – 0,90 m, y las bases las establece entre 1,20 a 1,60 m, correspondiéndose con las reales. Se ha considerado que es la opción más eficiente para analizar pequeñas áreas específicas de contornos limitados, con restos arqueológicos a poca profundidad y estructuras con escaso espesor (figura 356).

Figura 356. Arriba, perfil de tomografía ALA1 con distancia interelectродica 0,5 m. Abajo, detalle metros 3 a 26. Se marca en negro sobre el perfil la zona excavada. En recuadros de color azul se indican las estructuras funerarias.

El estudio geofísico combinado sobre la base de la excavación arqueológica previa, y tras numerosos ensayos en campo, ha permitido calibrar los equipos y obtener las configuraciones adecuadas para ambos métodos en previsión de futuras actuaciones de detección de restos arqueológicos en esta necrópolis y su entorno inmediato. En este sentido, se ha trabajado en precisar la disposición electródica más conveniente, en relación a
las configuraciones de medida aplicadas, con el objetivo de lograr un alto índice de efectividad con el método eléctrico para este suelo. Los resultados han indicado que si bien con las tres opciones utilizadas se pueden obtener datos representativos del subsuelo para apoyar la investigación arqueológica en curso, los tipos que ofrecen mejor resolución de las capas someras equivalen a las separaciones de electrodos a 0,5 y 1 m. En ambos casos la visualización del suelo es pareja, aplicando valores de resistividad similares a las anomalías, modelando sus contornos volumétricos con precisión, pero ubicándolas con una leve inexactitud lateral, con cotas de cimentación y coronamientos dispares, a menor profundidad que en la excavación, pero aproximadas a las mediciones correspondientes a su emplazamiento real.

La antena de 250 MHz se ha mostrado como una buena herramienta complementaria para la tomografía, eficaz para el registro de las distintas construcciones cementeriales, emitiendo impulsos enérgicos visualizables en los radargramas a modo de señales hiperbólicas bien definidas, e información precisa de notable calidad sobre el posicionamiento en la subsuperficie de las tumbas, con un bajo margen de variación lateral y en altura. Además, este estudio confirma la utilidad de la configuración utilizada para la antena en este tipo de terreno para la localización de servicios hidráulicos en entornos agrarios.

9.6.2. ZONA B

El sondeo arqueológico manual se planteó en el límite nororiental del área de estudio, a 10 m de la tumba documentada más cercana, en la zona donde confluye el camino acondicionado para las visitas del Parque, con el talud de excavación del flanco sur del castillo.

La finalidad de esta cata era comprobar las características de la estratigrafía y su relación con las numerosas anomalías detectadas durante la investigación geofísica previa, y determinar su grado de correspondencia con unidades constructivas arqueológicas reales. El sondeo se configuró con unas dimensiones de 4,5 m de longitud para su eje mayor (con dirección E-O) por 1,5 m de anchura en su eje menor (con dirección N-S). En su interior se documentó una estratigrafía lineal, cuya secuencia de techo a muro es la siguiente:
El nivel de uso actual de este sector del yacimiento está configurado por el estrato identificado como nivel inicial del sondeo. Se trata de un aporte superficial compuesto por un fina capa de gravilla de machaqueo con origen volcánico de color oscuro, empleada para delimitar el camino visitable en esta zona del cerro. Presenta, además, algunas piedras de cuarcita de diámetro reducido.

Debajo del nivel superficial se localiza la segunda unidad. Representa la fase final del rápido proceso de colmatación de la maqbara. Cubre longitudinalmente el eje mayor del sondeo con un espesor aproximado de 0,35 m. Se trata de una deposición potente de material derivado de la zona superior del cerro, caracterizado por tierras arcillosas poco compactas, de composición homogénea, sin apenas material arqueológico asociado, que sellan esta zona de la necrópolis.

La tercera capa es un estrato masivo antrópico de tierras arcillosas de color pardo procedentes de los arrastres del castillo por erosión pluvial. Esta unidad, con un espesor de 0,45 m, presenta en su horizonte superficial una fina capa de piedra cuarcítica con granulometría variable entre 2 y 6 cm, elemento indicativo de la finalización del proceso deposicional de este paquete.

El muro de la intervención lo ocupa la cuarta unidad. Se localiza en la zona oeste del sondeo, compuesta por un delgado nivel horizontal de uso que se formó en época histórica, en un momento posterior a la construcción de la estructura muraria adyacente, sobre la que apoya lateralmente. Está constituido por tierra arcillosa de color pardo, muy compacta, sobre la que se documenta una pátina de uso. El perfil estratigráfico del sondeo manual, puede observarse en la figura 357.
Una vez retiradas estas capas, se han alcanzado las unidades constructivas (figuras 358 y 359). Se han documentado parcialmente dos muros fabricados mediante hiladas de piedras, que continúan dentro de los perfiles este, norte y sur de excavación, y una estructura con continuidad dentro del perfil sur, encajada entre las dos anteriores, que puede identificarse como una posible tumba de un individuo adulto perteneciente a la maqbara.

A partir de este punto no se ha desarrollado la excavación en profundidad, con lo que en esta zona no se han agotado las secuencias estratigráficas antrópicas, y por tanto, no se ha llegado hasta el sustrato geológico natural.

Los dos muros de mampostería exhumados durante la excavación del sondeo parecen dos estructuras paralelas entre sí, y son virtualmente idénticos en cuanto a materiales, aparejo y técnica constructiva. Sobre las dimensiones hay que señalar que no se ha podido documentar el grosor total del muro este, puesto que se encuentra parcialmente encastrado en el perfil este (figuras 358 y 359).

Ambas construcciones están alineadas en dirección N-S, y separadas por una distancia de 1,84 m. Tienen 0,98 y 0,63 m de grosor (como se ha indicado anteriormente, este muro se encuentra encajado en el perfil de excavación, con lo que su anchura debe de ser superior), y una longitud de 1,5 m (coincidente con la anchura del sondeo), aunque
exceden los límites de las áreas sondeadas. La excavación de ambos muros no agotó la secuencia estratigráfica. Pudo documentarse el alzado parcial, que ha conservado una altura de 0,20 m, para el muro oeste, y 0,55 m en el muro este.

Ambos muros están construidos con mampostería de piedra cuarcítica local, a base de bloques de contorno irregular, algunos desbastados, de tamaño mediano. Los bloques que conforman las estructuras están trabados con mortero arcilloso de coloración marrón oscuro, aunque las juntas entre mampuestos, muestran habitualmente la pérdida del material de agarre. Presentan una superficie de arrasamiento horizontal y uniforme, a unos 0,60 m de profundidad, en el muro oeste, y 0,25 m de profundidad para el muro este, con respecto a la superficie actual de uso.

En el espacio comprendido entre los muros se documenta una estructura de 1,77 m x 0,64 m, identificada como un posible enterramiento de un individuo adulto que conserva parte de la cubrición superficial de mampostería de cuarcita. Se sitúa perpendicularmente a los dos muros descritos, con alineación en dirección E-O, adosado a la cara occidental del muro oeste. Esta sepultura, rebasaba los límites del sondeo hacia el sur, lo que imposibilitaba su excavación completa (figuras 358 y 359).

En la figura 359 se muestra la distribución combinada de los métodos geofísicos utilizados en la investigación. Las anomalías detectadas mediante la prospección en el extremo noreste de la zona de trabajo han podido verificarse a partir de la excavación arqueológica desarrollada en esta zona (figura 360).

Figura 360. Detalle de los perfiles GPR proyectados sobre las estructuras de mampostería documentadas al noreste de maqbara.

La fina capa superficial nivelada de gravas y la segunda unidad estratigráfica representada por tierras arcillosas con escasa compactación, que se extienden por toda el área examinada desde la superficie a 0,35 m de profundidad, ocupan, en los registros de
radar, la totalidad de las imágenes desde la cota cero a 0,40 m de profundidad, coincidiendo con precisión con los datos de excavación. El primer cambio de elemento reflector horizontal se observa en los radargramas a 0,40 m – 0,50 m, dato que concuerda con la fina capa de piedras de tamaño pequeño que sella el tercer estrato de relleno constructivo con el estrato definido. Por el contrario, la superficie de arrasamiento y nivelación de las estructuras arqueológicas, localizada a una profundidad real variable de 0,40 a 0,80 m, en los radargramas excede esa medición, observándose a una profundidad de 1 a 1,15 m (figura 361).

Los coronamientos de los muros se registran en los radargramas a alturas distintas según el perfil adquirido. En el perfil P4, el muro oeste se representa a 0,55 m, por 0,60 m del muro este. En P5 la cota superior del muro oeste se observa a 0,55 m, y a 0,50 m el muro este. Estos datos contrastan levemente con los posicionamientos reales de estas estructuras localizadas en el sondeo, como se expuso anteriormente, a 0,60 m y 0,25 m de profundidad, respectivamente. La base real de ambas estructuras no ha sido certificada mediante excavación arqueológica, pero sus reflexiones cubren la secuencia
de los radargramas hasta 0,80 m de profundidad aproximadamente. El único muro excavado completamente es el occidental, su anchura real mide 0,98 m. Este dato concuerda con los registros obtenidos con GPR, existiendo una diferencia inferior a 0,15 m sobre el grosor efectivo del mismo (figura 362).

Por otro lado, el enterramiento y el nivel de uso de tierra apisonada se observan con escasa resolución en los radargramas (figura 362). La tumba describe una reflexión de onda poco pronunciada, probablemente por la disposición paralela o longitudinal del perfil P4 sobre esta estructura. En este sentido cabe precisar que en el capítulo de interpretación de los resultados obtenidos con georradar, el tenue patrón de reflexión generado por la estructura funeraria, se interpretó erróneamente como un derrumbe de material pétreo derivado de los muros que la delimitan. Esta interpretación se ha podido subsanar a partir de la combinación de los registros geofísicos con los datos aportados por la excavación arqueológica.

![Figura 362. Relación espacial entre las unidades constructivas exhumadas con las anomalías electromagnéticas. Vista sobre ortofoto 3D. Arriba, segmento del perfil P4 (B-4-A) entre los metros 0,5 a 5. Debajo, segmento del perfil P5 (B-5-A) entre los metros 22 a 26,5. (A) Rojo: muro este. (B) Cian: enterramiento. (C) Azul oscuro: muro oeste. (D) Magenta: suelo. Verde: proyección georreferenciada de los perfiles de GPR P4 y P5.](image-url)

Sin embargo, en los perfiles P17 y P18 ejecutados en dirección S-N, transversales a estas estructuras arqueológicas, se ha logrado adquirir una señal electromagnética que permite visualizar correctamente las anomalías derivadas de estas unidades
constructivas (figura 363). Estas estructuras se encajan en un suelo con horizontes de relleno que han mantenido sus propiedades y características durante el proceso de toma de datos para sendas direcciones de medida con georradar en este sector del sondeo manual, lo que confirma la importancia de la orientación y posición de los perfiles para adquisición de registros respecto a los elementos arqueológicos subsuperficiales que se tratan de localizar.

En el caso de la tumba, la cota superior real se ha documentado a la misma altura que en el muro oeste, es decir, a 0,60 m, información que coincide con lo observado en el radargrama P18. Las reflexiones principales de la anomalía con forma de hipérbola que la representa, se extienden en el registro de georradar hasta 0,80 m de profundidad, produciéndose, por tanto, una coincidencia exacta en relación con la base inferior real situada a 0,80 m (figura 363).

En cuanto a la cota superior del suelo de tierra apisonada, cabe señalar que se identifica según excavación arqueológica a 0,80 m de profundidad, se dispone bajo la unidad estratigráfica tres, y representa la última unidad documentada en el lado oriental del
sondeo. Las reflexiones que se han obtenido de esta estructura destacan por visualizarse como una sección reflectora subhorizontal continua de 1,80 m de longitud, que equivale a la superficie de uso en época histórica. El patrón continuo de este cuerpo reflector se desarrolla en la secuencia del radargrama con un espesor de 0,20 m, que puede corresponderse con la posible potencia total de esta unidad. Por lo tanto, los datos geofísicos se aproximan a los registros que se han obtenido durante la excavación; la cota de la estructura se representa en el radargrama a 0,20 m por encima de su profundidad real, y su anchura se corresponde al menos con el tamaño comprendido por el eje sur-norte del sondeo, replanteado con 1,50 m (figura 363).

La posición espacial de las anomalías en los radargramas se corresponde con las distintas estructuras localizadas en la excavación con una diferencia lateral inferior a 0,25 m. Esta leve variación posicional también se observa en los perfiles 2D de tomografía, que han caracterizado el subsuelo del yacimiento con elevada precisión horizontal. Se han modelado correctamente las distintas estructuras arquitectónicas, así
como las zonas ocupadas por los materiales constructivos procedentes de los derrumbes de las murallas del castillo (figura 364). Se ha observado que los acopios con derrumbes potentes, compuestos por bloques de cuarcita, tapiales y morteros de cal y arcilla disgregados, como el documentado mediante la excavación en área en el terraplén norte de la *maqbara*, que se corresponde con el lado sur del área de exploración, ubicado a aproximadamente de 0,50 m del perfil ALA12, se representan con nitidez en el perfil eléctrico, conservando su volumen como anomalía resistiva en comparación con el estrato arqueológico real. En cuanto a la posición subvertical de esta unidad de relleno cabe destacar que equivale exactamente con el metro indicado en la cercana sección eléctrica ALA12, así como en su cota cero, ubicada a ras de suelo (figura 365). Este factor demuestra que sobre la base de la disposición y distancia interelectródica aplicada, con el método eléctrico se pueden obtener modelos 2D y 3D conformados parcialmente con datos procedentes de reflejos resistivos laterales generados por las unidades antrópicas localizadas a una distancia próxima a los mismos.
 Además, en este tipo de suelo compuesto por una zona de lavado que carece prácticamente de humus, donde se documenta una predominancia de sedimentos horizontales de tierras arcillosas con escasa presencia de mampuestos o bloques de piedra, pueden registrarse correctamente las distintas anomalías correspondientes a estructuras arqueológicas reales situadas en el subsuelo fabricadas con materiales cuarcíticos. Se ha observado que aun cuando las estructuras se adosan lateralmente, como sucede con el muro oeste y la tumba, en los perfiles se modela una zona reducida,
inferior a 0,25 m, de separación artificial entre las anomalías, donde se produce una disminución de la resistividad de los materiales de contacto. Estos factores ayudan en la consecución del modelado de los distintos eventos anómalos, lo que facilita la delimitación de los bordes de las tres construcciones. Como puede observarse en el perfil ALA14, la presencia del muro este y del enterramiento se atenúa en la sección. Su resistividad, que en el perfil ALA15 alcanza 500 Ω.m, disminuye a unos niveles resistivos medios (260 Ω.m) como consecuencia de un aumento en la conductividad en su zona sur, con posible origen en un cambio puntual en la composición de los materiales constructivos en el núcleo de estas estructuras. Sin embargo, en el bloque 3D generado a partir de la combinación de las cuatro secciones 2D se ha observado como la zona correspondiente al sondeo arqueológico se representa como una gran anomalía de 5 metros de longitud, con geometría elíptica y resistividad comprendida entre 300 y 350 Ω.m, donde no se distinguen las separaciones laterales entre las tres estructuras excavadas (figura 366).

Figura 366. Bloque 3D modelado a partir de las secciones ALA12, ALA13, ALA14 y ALA15. Mediante un círculo de color rojo se indica la anomalía correspondiente a las estructuras documentadas en el sondeo arqueológico. (Izquierda) Cortes longitudinales sobre el eje Y. (Derecha) Sección diagonal.

Por otro lado, el emplazamiento subvertical de las estructuras arquitectónicas, de los paquetes de relleno constructivo y del nivel de suelo, se corresponde con el metro indicado en cada sección eléctrica. Quedan definidas entre los metros 21 a 24,5 de las secciones ALA14 y ALA15. Los muros aparecen separados por 1,90 m, distancia próxima a los 1,84 m reales obtenidos en la excavación, existiendo una diferencia total de 0,06 m. El suelo con capa superficial de tierra apisonada se registra correctamente en la sección ALA14 unido a la pared oriental del muro oeste, como una delgada capa
amarilla con resistividad de 250 Ω.m. La cota del coronamiento de la estructura funeraria se representa en los perfiles a similar profundidad que la real. La cota real en profundidad es de 0,60 m, misma medida que en los registros eléctricos para el enterramiento, donde también se dispone a 0,60 m. En el caso de los muros sucede lo contrario, su cota real se establece en excavación a 0,60 m (muro oeste) y 0,25 m (muro este), y se representa en la exploración geofísica a 0,25 m (muro oeste) y 0,60 (muro este). Este factor supone un error en la lectura de la cota relativa real de 0,35 m para estas estructuras (figura 367).

Figura 367. Arriba, perfil de tomografía ALA15. Abajo, detalle metros 17 a 26,5. Se ha marcado en rojo sobre el perfil la cota superior real (CSR) de las estructuras arqueológicas excavadas. En negro se señala la cota superior (CSP) de las anomalías en el perfil. Mediante recuadros de color azul se indican la tumba oeste (A), el enterramiento (B) y el muro este (C).

Si se realiza una comparativa entre los resultados que se han obtenido a partir de la toma de medidas ejecutada con los electrodos equiespaciados a 1 m, y el cambio de configuración interelectródica con disminución a 0,5 m sobre los perfiles ALA14 y ALA15, se observa en primer lugar una mejora sustancial en la visualización de las anomalías, con mejor definición de su volumen, y de la geometría tanto de sus bordes, como de los rellenos de mampostería situados en sus laterales, o sobre ellas. En segundo término, permanece la cota de coronamiento a la misma altura, y aumenta de forma generalizada la profundidad de la base de cimentación para las tres construcciones: en
ALA14 pasa de 1,60 a 1,70 m para el muro oeste, de 1 a 1,05 m para el muro este, y de 1,40 a 1,45 m en el caso del enterramiento. En la sección ALA15 cambia de 0,85 a 0,95 m en el muro este, y por el contrario, persiste invariable a 0,85 m para el muro oeste y la tumba. Por último, la posición espacial observada en la vertical de las secciones, no coincide completamente en las tres unidades constructivas para las dos configuraciones interelectródicas efectuadas, con una leve desviación lateral de 0,20 m en sentido este para el muro oeste y la sepultura, y 0,25 m hacia el oeste en el caso del muro oriental (figura 368).

![Figura 368. Secuencia comparativa perfiles 2D de tomografía eléctrica ALA14 y ALA15 con las configuraciones electródicas a 0,5 y 1 m.](image)

El estudio geofísico en la necrópolis almohade de Alarcos ha contribuido a la detección de nuevos restos arqueológicos al norte y este de la actual zona de excavación. Se aprecia una continuidad tipológica en la fábrica de la estructura funeraria mediante el empleo de una cubierta de piedra de cuarcita, y orientación oeste-este. Los dos muros se construyen con mampostería de cuarcita y son los dos únicos ejemplos existentes entre la maqbara y el lado sur de la fortaleza. El uso de este material pétreo para el levantamiento de estas construcciones, implica que se produzca un alto contraste electromagnético con el medio arcillo-arenoso encajante, y por tanto, se originen anomalías hiperbólicas con alta definición. Esta notable calidad en los registros proporcionados por la antena de 250 MHz, ha facilitado la identificación de un suelo de tierra apisonada bajo dos estratos terrosos con escasa presencia de residuos constructivos cuarcíticos, estableciéndose una relación fiable entre los datos geofísicos y los arqueológicos tras la excavación. En este sentido, tanto el GPR como la
9. Parque Arqueológico de Alarcos

tomografía eléctrica han ayudado a establecer un correcto posicionamiento espacial y volumétrico de las distintas estructuras. Adicionalmente, se ha comprobado que cuando dos estructuras con características resistivas similares son adyacentes, con una superficie de contacto entre sus laterales, el software de inversión genera un pequeño espacio artificial entre ambas en el que la resistividad se muestra con un valor sensiblemente inferior al real.

La efectividad del método eléctrico se ha observado con distintas configuraciones interelectródicas en los dos perfiles situados sobre el sondeo arqueológico. Los resultados en la visualización del sector correspondiente para ambas configuraciones son muy similares en ambos casos, con continuidad en los valores de resistividad de las anomalías, y posicionándolas con un escaso margen de error, casi en su lugar real. Además, con los electrodos situados a 0,5 m se mejora la calidad en la definición volumétrica y en el modelado de sus bordes, aunque se produce un leve incremento en profundidad de la base de 0,10 m.

Por último cabe señalar que el bloque 3D interpolado ha reconstruido el subsuelo de un modo aproximado al real. Cuando se representan anomalías de grandes dimensiones, como el potente paquete localizado en la zona intermedia del área de estudio, la imagen se corresponde con un volumen denso y resistivo unitario, con bordes laterales y en profundidad bien definidos. Por el contrario, cuando tres estructuras de mampostería de cuarcita ocupan un espacio reducido, se modela un único elemento anómalo de resistividad elevada, en el que no se distinguen los límites de las distintas unidades constructivas.

9.6.3. ZONA C

El Sector III de Alarcos es una zona dedicada a la investigación orientada a la formación arqueológica, y al aprendizaje de los métodos de excavación por parte de los alumnos de la Universidad de Castilla-La Mancha. Desde que se localizó la necrópolis ibérica, los esfuerzos de los responsables de los trabajos arqueológicos del yacimiento se han dirigido principalmente a documentar exhaustivamente la zona cementeriarial, dejando la excavación de este sector paralizada para futuras campañas. Por este motivo, los datos combinados de la exploración geofísica y la excavación arqueológica para este
lugar, se han analizado partiendo de las líneas de georradar situadas inmediatamente sobre el perímetro exterior oeste y sur de la zona estudiada, que se corresponde con los límites, o perfiles reales de la excavación arqueológica, y donde pueden observarse in situ muros que continúan hacia el interior del subsuelo. Se trata de los perfiles de GPR P1 y P9, en sus metros iniciales. La tomografía no tiene correspondencia en los perfiles de excavación con las estructuras arqueológicas a la vista.

La estratigrafía de la zona agota la secuencia arqueológica hasta llegar al nivel geológico. El estrato superior se corresponde con una primera capa de cubierta vegetal con 0,25 m de espesor, formada por tierra parda, textura arenosa y escasa compactación. En su interior se documentan materiales constructivos de mampostería y cerámicos arrastrados por erosión desde la parte superior del cerro. Una segunda unidad estratigráfica compuesta por un nivel de tierra arcillosa marrón claro con presencia de mampuestos de cuarcita con diámetro de tamaño pequeño y medio, compactada, con 1,4 m de potencia. Esta unidad continúa hasta la base geológica margo-arcillosa del cerro, que es el muro de la excavación (figura 369).

![Figura 369. Detalle perfil estratigráfico zona de exploración C.](image)

Las unidades constructivas se localizan entre la primera y la tercera capa, cubiertas por la segunda unidad estratigráfica. Una vez retiradas estas capas, se han alcanzado las unidades constructivas. Se trata de tres muros. Los dos primeros, construidos con 466
mampostería cuarcítica y sillares de caliza tallada de gran tamaño, trabados con un mortero rico en arcilla, muy degradado, que avanzan en dirección oeste-este hacia dentro del perfil este de excavación. Son dos estructuras paralelas entre sí, con 0,80 m de grosor, el muro paralelo norte, y 1,20 m, el muro paralelo sur, así como un alzado en la zona de contacto con el perfil de excavación que ha conservado una altura de 0,90 m y 0,70 m, respectivamente. Ambos muros se observan en el perfil P9 de GPR. El tercer muro consta de 1,1 m de longitud, se encuentra exhumado parcialmente, encajado totalmente en el perfil sur, con lo que su anchura no se ha podido determinar. Su fábrica se determina por piedras careadas de cuarcita de 10 a 20 cm de tamaño, trabadas con un mortero terroso, cota de arrasamiento a 0,50 m y alzado parcial con una altura de 0,50 m. Esta construcción se alinea en dirección suroeste-noreste, y se registra al inicio del perfil P1 de georradar (figuras 370).

En la siguiente imagen cenital puede observarse la posición de los tres muros excavados respecto a los perfiles de georradar situados junto a los bordes de la excavación.

Las anomalías detectadas en los perfiles P1 y P9 han podido analizarse a partir de los dos perfiles, oeste y sur, de la excavación arqueológica desarrollada en esta zona. Como se ha descrito, la cubierta vegetal y el grueso estrato de tierra arcillosa tienen una profundidad total de 1,65 m. En los radargramas este paquete se representa hasta una
profundidad máxima de 1,30 m, a partir de donde se produce una variación en la composición del suelo con una atenuación de la reflexión subhorizontal. Según los datos aportados por la excavación, este cambio estratigráfico se relaciona con el techo de la tercera unidad estratigráfica. Además, se produce en la imagen de radar un aumento en la profundidad del espesor de la primera unidad, que ocupa la totalidad del registro desde la cota cero hasta 0,45 m. En los registros, a esta profundidad de 0,45 – 0,55 m, se origina una discontinuidad alternante que puede deberse al horizonte de contacto entre la cubierta vegetal y la segunda unidad. Por lo tanto, se aprecia que la antena utilizada aporta una información más precisa para los estratos someros, con una diferencia máxima de cotas de 0,20 m, respecto a los datos de profundidad real, con un aumento progresivo del error en la medición de la distancia según la onda avanza en profundidad, hasta alcanzar 0,35 m de diferencia (figura 371).

En cuanto al volumen y ubicación espacial de las estructuras, la onda reconoce correctamente los contornos de los muros paralelos, definiendo dos amplias hipérbolas de difracción que coinciden correctamente con su emplazamiento con una variación lateral de 0,20 m. En el caso del muro norte, la cota superior real se ha documentado a 0,25 m por encima de la altura del muro sur, puesto que mantienen un patrón arquitectónico escalonado, es decir, sus coronamientos se sitúan a 0,50 y 0,75 m en profundidad. Dicha información coincide con lo observado en el radargrama P9, donde el muro paralelo sur presenta el vértice de la curva a 0,75 m. Por el contrario, la hipérbola asociada al muro norte se ha caracterizado a 0,80 m de profundidad, dato que indica una variación de 0,30 m respecto a la cota de coronamiento real. Las reflexiones de las anomalías hiperbólicas que representan estas construcciones, se extienden en el registro de georradar hasta 1,80 m de profundidad, produciéndose, por tanto, una aproximación de valores en relación con la base inferior real sita a 1,65 m (figura 371).
Sin embargo, para el tercer muro, no se ha emitido una anomalía tipo I, sino que el radargrama se mantiene continuo, pero con señal pronunciada, describiendo un reflector horizontal, probablemente por la disposición paralela del perfil P1 sobre esta estructura. Bajo esta premisa cabe indicar que en el capítulo de interpretación de los registros de georradar, el patrón de reflexión generado por el muro, se interpretó como un derrumbe lateral de material constructivo derivado del mismo. Esta interpretación se ha podido modificar a partir del análisis integrado de los datos geofísicos con la información aportada por la excavación arqueológica. El modelo con desarrollo continuo subhorizontal de esta estructura reflectora se desarrolla en la secuencia del radargrama con un espesor de 0,45 m, medida equivalente con la potencia total real de esta unidad. En cuanto a la cota superior del coronamiento del muro, cabe señalar que se identifica según excavación arqueológica a 0,50 m de profundidad, y se aprecia en el perfil P1 con cota a 0,80 m. La base excavada se ubica a 1 m de profundidad, y en el radargrama se observa a 1,30 m (figura 372).
Por tanto, se ha observado que en esta zona del yacimiento cuando las estructuras arqueológicas se encuentran envueltas en una unidad estratigráfica compuesta por material arcillo-arenoso compacto, poco saturado, sin presencia de humus, y con numerosos restos de mampostería de cuarcita, la antena de 250 MHz aporta información precisa y fiável sobre su emplazamiento en altura y profundidad, con error relativo comprendido entre 0,05 a 0,30 m, así como en posición subvertical, con diferencia lateral real de 0,20 m.
Conclusiones

En el presente trabajo se ha evaluado la utilización de los métodos geofísicos en estudios histórico-arqueológicos y patrimoniales, analizando diferentes cuestiones tales como el beneficio del empleo conjunto de varios métodos geofísicos, la naturaleza no destructiva de estos procedimientos, y su utilidad para la investigación de edificios protegidos y enclaves arqueológicos.

A continuación se exponen las conclusiones y resultados más relevantes relativos a la investigación realizada.

1. Se han utilizado varios métodos y técnicas geofísicas como herramienta auxiliar para la investigación arqueológica en el Monumento Histórico-Artístico Nacional de Las Virtudes, en el Parque Arqueológico de Alarcos, en el paraje de Piédrola, en el Conjunto Arqueológico Castillo de la Estrella y en el yacimiento del Cerro de las Cabezas. En concreto, el uso combinado de los métodos eléctrico y electromagnético ha permitido una mejor resolución de los problemas planteados. En general, ambos métodos son adecuados para evaluar los parámetros de los medios analizados, aunque se considera fundamental tener en cuenta las limitaciones de cada técnica y la realización de una comprobación exhaustiva de la validez de los registros mediante excavación arqueológica.

 - El georradar (GPR) ha resultado una técnica útil para este tipo de estudio, permitiendo analizar grandes áreas superficiales rápidamente. Se ha empleado en diversos tipos de suelos y sobre muros, proporcionando datos fiables que permiten detectar la existencia de anomalías, lo que posibilitó hacer una valoración inicial sobre la relevancia, características y disposición subsuperficial de las mismas. Estas características permiten acotar los sectores de mayor interés sobre la base del número de anomalías detectadas, de su tipología y de su profundidad para, posteriormente, realizar una selección de las zonas óptimas en las que proceder a operar con el resto de equipos.

 - La tomografía eléctrica representa un excelente método para determinar la estructura y composición del subsuelo en el que se detectaron las
anomalías. Su uso se ha limitado a zonas en las que los resultados anómalos obtenidos con GPR fueron relevantes, debido a que es un método lento en la adquisición de datos. Combinado con el georradar se considera muy efectivo.

- Con el nanoTEM se ha trabajado de manera experimental, ya que no se tiene constancia de un uso previo con fines arqueológicos. Es un método rápido y efectivo pero de manejo complejo. Se han evaluado distintas configuraciones en las dimensiones del módulo emisor en relación con la antena. También se ha analizado su operatividad con el empleo de dos técnicas distintas de ejecución, denominadas *in-loop* y *fixed loop*. Los resultados de estos ensayos, en combinación con los otros dos métodos seleccionados, son prometedores y permiten inferir que la aplicación de esta técnica electromagnética posee un extraordinario potencial en el campo de la investigación patrimonial.

- Durante la aplicación de estos métodos se ha observado que es fundamental una escrupulosa manipulación de los mismos. Con el GPR es necesaria una velocidad constante en la toma de datos debido a que estos registros se realizan de forma continua. También se considera de gran importancia evitar golpes contra muros o la introducción de objetos bajo éste, ya que cualquier vibración fuerte se transmite al software en forma de falsa reflexión. En tomografía eléctrica los electrodos deben estar dispuestos preferiblemente en superficies húmedas, clavados a profundidad adecuada para obtener un contacto suficiente con el medio a examinar.

2. El software y las herramientas de procesado que se han utilizado para el procesado e inversión de los datos requiere un minucioso proceso de aprendizaje, debido a que son sistemas muy técnicos y especializados, programados para la interpretación de registros geofísicos en general.
La generación de radargramas, donde el cálculo de las velocidades de propagación y reflexión de las ondas se obtienen automáticamente, los límites máximos de exploración en profundidad, configurables a partir de las características de humedad y composición de los suelos, y la aplicación de filtros por defecto para mitigar los ruidos, han supuesto una ventaja en términos de tiempo para la interpretación de los datos. Se ha obtenido así una alta calidad y definición de los mismos.

Las secciones de tomografía que se han generado muestran la presencia de anomalías, pero, en general, no definen completamente sus bordes, difuminando la geometría real de las estructuras. Los métodos de filtrado matemático de los datos no han permitido mejorar significativamente el conjunto, pese a la alta calidad de los datos obtenidos. Este mismo efecto se ha observado en las imágenes tridimensionales obtenidas a partir de los dispositivos de medición 3D.

El empleo de colores asociados a las distintas resistividades de los materiales que componen el subsuelo ha posibilitado una mejor comprensión e interpretación de los estratos y de las unidades anómalas detectadas.

Los perfiles 2D se han unido entre sí para generar bloques 3D. En este proceso de combinación de perfiles, se genera una serie de soluciones matemáticas de las cuales el programa selecciona la que considera mejor para la representación gráfica 3D. En medios como en los que se ha trabajado, donde los materiales geológicos y antrópicos se sitúan en unos valores de resistividad muy parejos, los datos interpolados pueden generar bloques 3D de resultado matemático correcto, y con distinta apariencia de las imágenes 2D en las que se fundamentan.

3. La geofísica aplicada ha demostrado tener una gran utilidad en la detección de anomalías y obtención de registros arqueológicos en las zonas analizadas. Sobre la base de estos datos se han elaborado planimetrías georreferenciadas y mapas
de anomalías, los cuales permiten tener una visión clara del conjunto del subsuelo examinado. En todas las zonas de exploración propuestas se han obtenido resultados relevantes.

4. Mediante la excavación arqueológica en las áreas objeto de estudio se ha podido comprobar tanto el grado de acierto como las limitaciones de la interpretación de los datos geofísicos, la relación entre los registros obtenidos y los vestigios arqueológicos subyacentes y la adecuación de las configuraciones de los equipos para los distintos tipos de suelo investigados.

Sobre la base de los resultados y conclusiones obtenidos se puede desarrollar una línea de trabajo con la que continuar la investigación iniciada. Los objetivos de esta línea serían los siguientes:

1. Contribuir con los registros obtenidos mediante la exploración geofísica a la planificación de futuras intervenciones arqueológicas en los distintos enclaves. Se trataría, a partir de los mapas de anomalías generados, de discriminar zonas, y descartar unas en favor de otras con mayor potencia arqueológica. Las futuras excavaciones arqueológicas permitirían contrastar los datos recogidos.

2. Continuar con los ensayos de la técnica electromagnética nanoTEM, tanto en campo como en laboratorio, para poder encontrar un modelo que permita establecer una metodología de aplicación viable en el campo de la investigación arqueológica y patrimonial.

Con apoyo en la presente experiencia investigadora, en la que los métodos geofísicos demostraron su utilidad a la hora de detectar anomalías de origen antropico, y su beneficio como herramienta no destructiva del registro arqueológico, se podrían planear nuevas campañas de prospección en otros yacimientos arqueológicos. Se podría así disponer de una visión global del subsuelo de estos enclaves.
BIBLIOGRAFÍA

prospection in the archaeological site of El Pahñú, Hidalgo State, Central México”,

DELGADO, L. (1907): Historia documentada de Ciudad Real. La Judería, la Inquisición y la Santa Hermandad, Ciudad Real.

Bibliografía

Charisteon, Francisco Martín García oblatum, Ediciones de la Universidad de Castilla-La Mancha, Cuenca: 115-130.

Archaeological Prospection, 23(2): 105-123.

ÍNDICE DE FIGURAS

Figura 1. (A) Definición de resistividad a lo largo de un bloque homogéneo de longitud L cuando es atravesado por una corriente I y presenta una diferencia de potencial V entre las caras opuestas. (B) El circuito eléctrico equivalente, donde R es una resistencia.................................31

Figura 2. Valores de resistividad de diferentes rocas o materiales geológicos. Modificado de González de Vallejo et al., 2002 ..32

Figura 3. Configuraciones electródicas en el dispositivo dipolo-dipolo (arriba) y Wenner-Schlumberger (abajo) ...34

Figura 4. Sección trasversal de las líneas de transmisión en un campo electromagnético ..40

Figura 5. Detalle del equipo de tomografía eléctrica SuperSting R8 PI.........43

Figura 6. Detalle del georradar NOGGIN 250 ...49

Figura 7. Ilustración simplificada con el manejo del NOGGIN 250..........49

Figura 8. Ejemplo de medición con GPR ...50

Figura 9. Detalle del procesador de datos GDP-32II ..51

Figura 10. Configuración básica del sistema nanoTEM (GDP-32, NT-20, y Batería NT)...53

Figura 11. Localización general de las diferentes zonas de trabajo en la provincia de Ciudad Real. (A) Parque Arqueológico de Alarcos (Ciudad Real). (B) Yacimiento de Piédrola (Alcázar de San Juan). (C) Yacimiento Cerro de las Cabezas (Valdepeñas). (D) Monumento Histórico-Artístico Nacional de Las Virtudes (Santa Cruz de Mudela). (E) Conjunto Arqueológico Castillo de La Estrella (Montiel) ...56

Figura 12. Labores de preparación y acondicionamiento de los perfiles de georradar. Cerro de las Cabezas, zona urbana ..61
Figura 13. Patrón de desarrollo del recorrido del GPR en una cuadrícula de investigación ... 62

Figuras 14 y 15. Ejecución de la medición de un perfil con georradar. Conjunto Patrimonial de Las Virtudes. Izquierda, zona plaza de toros. Derecha, muro exterior norte del Santuario ... 62

Figura 16. Realización de tomografía eléctrica. Yacimiento de Piédrola 63

Figura 17. Exploración con nanoTEM. Las Virtudes, zona plaza de toros 63

Figura 18. Perfil de tomografía L-B interpretado cambiando el número de colores de los gráficos. Obsérvese que al disminuir el número de colores las anomalías superficiales se muestran con mayor nitidez ... 67

Figura 19. Perfil de tomografía 3D a partir de los perfiles L-1, L-2, L-3, L-4, L-5 y L-6. Las Virtudes ... 68

Figura 21. Ejemplo de radargrama con anomalía de tipo I. Las Virtudes, zona galería porticada. Perfil A-3-A. Abajo detalle del mismo entre los metros 10 al 20 ... 70

Figura 22. Ejemplo de radargrama con anomalía de tipo II. Las Virtudes, zona jardines. Perfil G-2-A. Abajo detalle del mismo entre los metros 0 al 3 71

Figura 23. Ejemplo de radargrama con anomalía de tipo III. Parque Arqueológico de Alarcos, zona necrópolis islámica. Perfil B-4-A. Abajo detalle del mismo entre los metros 11 al 17 .. 71

Figura 24. Localización y vista general del yacimiento Cerro de las Cabezas en el término municipal de Valdepeñas (Ciudad Real). © Instituto Geográfico Nacional de España ... 75
Figura 25. Localización general de las diferentes zonas de trabajo en el yacimiento del Cerro de las Cabezas. PNOA © Instituto Geográfico Nacional de España - (Castilla-La Mancha) ... 81

Figura 26. Vista del lugar elegido para realizar la exploración geofísica A....... 82

Figura 27. Vista del lugar elegido para realizar la exploración geofísica B....... 82

Figura 28. Vista general de las zonas en las que se realizaron las investigaciones sistemáticas con GPR. (A) Zona fosomuralla. (B) Zona urbana. PNOA © Instituto Geográfico Nacional de España - (Castilla-La Mancha) ... 83

Figura 29. Situación de los perfiles de georradar realizados en la zona A-zona urbana (rojo). SIGPAC © Ministerio de Agricultura - (Castilla-La Mancha) ... 84

Figura 30. Situación de los perfiles de georradar realizados en la zona de exploración B-foso muralla. Rojo: zona B-I. Verde: zona B-II. SIGPAC © Ministerio de Agricultura - (Castilla-La Mancha) ... 85

Figura 32. Vista general de las zonas en las que se realizaron las investigaciones con tomografía eléctrica. (A) Zona fosomuralla. (B) Zona urbana... 86

Figura 33. Situación sobre mapa topográfico de los perfiles de tomografía eléctrica realizados sobre el Cerro de las Cabezas. Rojo: zona urbana. Magenta: zona fosomuralla ... 86

Figura 34. Distribución de los perfiles de tomografía eléctrica situados en la zona fosomuralla ... 87

Figura 35. Distribución de los perfiles de tomografía eléctrica situados en la zona urbana ... 87
Figura 36. Ejemplo de radargrama con anomalías. Zona urbana. Perfil A-3-A. Abajo detalle del mismo entre los metros 19 al 25 ... 90

Figura 37. Situación de las anomalías detectadas con GPR en la zona urbana ... 90

Figura 38. Distribución preliminar de las estructuras subsuperficiales de la zona urbana ... 91

Figura 43. Posición georreferenciada de las posibles estructuras detectadas en la zona de exploración urbana ... 95

Figura 44. Situación de las anomalías detectadas con GPR en la zona fosomuralla B-I (arriba) y B-II (abajo). Rojo: tipo I. Verde: tipo III .. 96

Figura 45. Ejemplo de radargrama con anomalías. Zona fosomuralla B. Perfil B-II-1-A. Abajo detalle del mismo entre los metros 17 al 23 .. 97

Figura 46. Radargrama obtenido en la zona sur del área de trabajo con la anomalía señalada en rojo que indica la señal generada por la estructura lineal. Perfil B-I-3-A. Abajo detalle del mismo entre los metros 0 al 5 98
Figura 47. Registro de GPR. En rojo se señala la anomalía producida por posible muro ubicado a 0,35 m de profundidad. Perfil B-I -4-A. Abajo detalle del mismo entre los metros 8 al 13 ... 98

Figura 48. Perfil B-I-1-A. Abajo detalle del mismo entre los metros 19 al 25. En rojo se señala la anomalía producida por la cara exterior de la muralla. Obsérvese en color magenta la tenue señal reflejada por la posible cara interna de la muralla ... 99

Figura 49. Radargrama del perfil B-II-1-A. El rectángulo rojo indica la ubicación y desarrollo de la potente anomalía en el registro ... 100

Figura 50. Situación de la anomalía alineada tipo I detectada en la zona de exploración B-II. Perfiles B-II-1-A (arriba) y B-II-2-A (abajo). Sección de los radargramas entre los metros 7 a 14. Obsérvese la disminución en la calidad de la señal obtenida con la configuración de la antena de 250 MHz en modo Drysoil para el mismo reflector, en la misma dirección de medida.......... 101

Figura 52. Posición georreferenciada de las posibles estructuras detectadas en la zonas de exploración foso-muralla B-I y B-II ... 103

Figura 53. Perfil de tomografía eléctrica CC7 ... 104

Figura 54. Perfil de tomografía eléctrica CC8 .. 105

Figura 55. Perfil de tomografía eléctrica CC9 .. 105

Figura 56. Perfil de tomografía eléctrica CC10 ... 106

Figura 57. Perfil de tomografía eléctrica CC11 ... 106

Figura 58. Perfil de tomografía eléctrica CC12 ... 107
Figura 59. Perfil de tomografía eléctrica CC13

Figura 60. Perfil de tomografía eléctrica CC14

Figura 61. Zona urbana. Secuencia con los perfiles 2D de tomografía eléctrica. Orientación NO-SE. Perfiles CC7, CC8, CC9, CC10, CC11, CC12, CC13 y CC14. Las anomalías aparecen inscritas en el interior de recuadros de color negro

Figura 62. Bloque 3D de resistividad invertida realizado a partir de la interpolación de los registros CC7 a CC14. Las anomalías antrópicas se resaltan en colores verdosos, amarillos y anaranjados. Los estratos geológicos se representan de color azul

Figura 63. Secciones longitudinales de resistividad a partir del bloque 3D interpolado con mediciones dipolo-dipolo y Wenner-Schlumberger. Obsérvese la ausencia de anomalías de alta resistividad en la zona comprendida en el espacio interior delimitado por los trazos rojos

Figura 64. Vista general de las anomalías detectadas en la zona A a partir de un bloque 3D generado por la interpolación de los ocho perfiles ejecutados en dirección sur-norte. Las anomalías se destacan en recuadros de diversos colores. Rojo: anomalía H. Magenta: zonas de baja resistividad. Posible área abierta. Azul: espacios ocupados por posibles estructuras antrópicas

Figura 65. Perfil de tomografía eléctrica CC1

Figura 66. Perfil de tomografía eléctrica CC2

Figura 67. Zona foso-muralla B-I. Secuencia con los perfiles 2D de tomografía eléctrica. Perfiles CC1 y CC2. Las anomalías principales se señalan mediante recuadros de color negro

Figura 69. Perfil de tomografía eléctrica CC3

Figura 70. Perfil de tomografía eléctrica CC4

Figura 71. Zona foso-muralla B-II. Secuencia con los perfiles 2D de tomografía eléctrica. Perfiles CC3 y CC4. Las anomalías principales se señalan en color negro

Figura 73. Perfil de tomografía eléctrica CC5

Figura 74. Perfil de tomografía eléctrica CC6

Figura 75. Zona foso-muralla B-III. Secuencia con los perfiles 2D de tomografía eléctrica. Perfiles CC5 y CC6. Las anomalías principales se señalan mediante recuadros de color negro

Figura 78. Detalle perfil estratigráfico zona de exploración B-I

Figura 79. Descripción de las características físicas y emplazamiento de las estructuras arqueológicas en la zona B-I

Figura 80. Vista general de la zona de exploración B-I sobre ortofoto obtenida mediante vuelo con dron, concluidos los trabajos de excavación arqueológica. Cian: zanja colmatada. Magenta: muros I, II y III.

Figura 84. Correspondencia entre las unidades constructivas excavadas respecto a los registros obtenidos mediante georradar. Arriba, sección perfil B-I-4-A, entre los metros 8 a 18. Abajo, perfil B-I-8-B. Azul: pavimento. Cian: muro III. Magenta: muro IV. En color verde y rojo, detalle de los perfiles GPR posicionados sobre la excavación. Nótese en el perfil inferior la ausencia de señal reflectora procedente del muro IV135

Figura 85. Relación espacial entre las unidades constructivas exhumadas con las anomalías electromagnéticas. Vista sobre ortofoto. Arriba, segmentos de los perfiles P2 (B-I-2-A), P3 (B-I-3-A), y P4 (B-I-4-A) entre los
metros 5 a 15. (A) Rojo: muro I. (B) Azul: muro III. (C) Magenta: muro IV.
Verde: proyección georreferenciada de los perfiles de GPR P2, P3 y P4...........137

Figura 90. Perfiles de tomografía CC1 y CC2. Se han señalado en rojo sobre los perfiles las cotas reales inferior (CIR) y superior (CSR) de las estructuras arqueológicas exhumadas. En negro se señala las cotas inferior (CIP) y superior (CSP) de las anomalías en los perfiles. Las anomalías estructurales (B, D y E), y las estructuras negativas (A y C) aparecen inscritas en el interior de recuadros de color azul ..142

Figura 91. Vista de la excavación desde el lado sur. En magenta se señala el buzamiento ascendente del encamisado desde su borde inicial hasta el adosamiento al paño de la muralla. Abajo, sección del perfil CC1 entre

Figura 92. Zona B-II durante el proceso de excavación. Detalle perfil estratigráfico. (Fotografía cedida equipo científico Cerro de las Cabezas)........145

Figura 97. Arriba, planta de la excavación. Ubicación zona arenosa y muros I-II. Abajo, bloque 3D realizado a partir de las secciones CC3 y CC4 sobre el que se señalan las posiciones reales de las estructuras arqueológicas en la excavación. Rojo: muro I. Azul: estrato arenoso. Magenta: muro II. Línea verde: perfil CC4 ..149

Fig. 99. Localización y vista general del paraje de Las Virtudes en el término municipal de Santa Cruz de Mudela (Ciudad Real). © Instituto Geográfico Nacional de España 153

Figura 100. Localización general de las diferentes zonas de trabajo en el conjunto de Las Virtudes. PNOA © Instituto Geográfico Nacional de España - (Castilla-La Mancha) 159

Figura 101. Vista del lugar elegido para ubicar la zona de exploración geofísica A. 159

Figura 102. Vista del lugar elegido para localizar la zona de exploración geofísica B. 160

Figura 103. Detalle del lugar elegido para ejecutar la exploración geofísica C. 160

Figura 104. Detalle del lugar elegido para situar la zona de exploración geofísica D. 161

Figura 105. Vista del lugar elegido para realizar la exploración geofísica E. 161

Figura 106. Vista del lugar elegido para situar la zona de exploración geofísica F. 162

Figura 107. Detalle del lugar elegido para realizar la exploración geofísica G. 162

Figura 108. Vista general de las zonas en las que se realizaron las investigaciones sistemáticas con GPR. (A) Zona de exploración A. (B) Zona de exploración B. (F) Zona de exploración F. (G) Zona de exploración G. 163
Figura 109. Situación de los perfiles de georradar realizados en la zona A-galería porticada (verde) y zona B-plaza de toros (rojo).. 164

Figura 110. Vista general de las zonas en las que se realizaron las investigaciones sistemáticas con GPR. (C) Zona de exploración C. (D) Zona de exploración D. (E1) Zona de exploración E. Exterior. (E2) Zona de exploración E. Interior .. 166

Figura 111. Ubicación y orientación de los perfiles sistemáticos de GPR desarrollados en la zona G-jardines .. 167

Figura 112. Distribución de los perfiles de tomografía eléctrica en la zona de exploración A-galería porticada y zona de exploración B-plaza de toros............. 168

Figura 113. Distribución de los perfiles de tomografía eléctrica en la zona de los jardines ... 168

Figura 114. Vista general de las zonas en las que se realizaron las investigaciones sistemáticas con tomografía eléctrica (magenta) y nanoTEM (azul). (A) Zona de exploración A. (B) Zona de exploración B. (F) Zona de exploración F. (G) Zona de exploración G .. 169

Figura 115. Disposición emisor-receptor con las configuraciones utilizadas in-loop y fixed-loop ... 170

Figura 116. Situación de las diferentes anomalías detectadas en la zona de la galería porticada. Rojo: tipo I. Verde: tipo III ... 172

Figura 119. Zona plaza de toros. Perfiles B-1-A y B-2-A. Abajo los recuadros en rojo sobre cada sección de radargrama indican la posición de los posibles muros ... 175

Figura 120. Zona plaza de toros. Perfiles B-2-B, B-3-B, B-4-B, B-5-B, B-6-B, B-7-B, B-8-B y B-9-B. A la izquierda, radargramas obtenidos al sur de la zona de exploración. Los recuadros en rojo sobre cada radargrama indican la posición de la anomalía analizada. En la fotografía inferior aparece, en color rojo, la interpretación georreferenciada de los posibles muros detectados a partir de los registros de georradar ... 177

Figura 121. Posición georreferenciada de las posibles estructuras detectadas en las zonas de exploración A y B ... 179

Figura 122. Situación de las diferentes anomalías detectadas en la zona del pulvino. Rojo: tipo I. Verde: tipo III ... 181

Figura 123. Situación de la anomalía tipo I detectada en la zona de exploración D. A la derecha, radargramas obtenidos en el presbiterio con la anomalía señaladas en rojo y azul. Perfiles D-1-A y D-2-A 182

Figura 124. Detalle del emplazamiento de la posible estructura funeraria en la zona del presbiterio ... 182

Figuras 125 y 126. Fotografías con la disposición de los perfiles en la zona de exploración E. En rojo se indica la misma anomalía detectada en la zona interior y exterior del área de examen ... 183

Figura 127. Radargrama del perfil de la zona exterior E-2-A. El recuadro rojo indica la posible cámara de aire. Las líneas azules señalan el límite de los muros que la contienen. ... 184

Figuras 128 y 129. Fotografías con la disposición de los perfiles ejecutados en la zona de exploración F. Abajo radargrama del perfil F-3-A de la fachada sur plaza de toros - puerta cegada este ... 185

Figura 131. Zona de exploración G. En rojo se señala sobre el radargrama el posible reflejo lateral del humilladero de la Virgen. Profile G-2-A188

Figura 132. Perfil de tomografía eléctrica L-A .. 190

Figura 133. Perfil de tomografía eléctrica L-B .. 190

Figura 134. Perfil de tomografía eléctrica L-C .. 191

Figura 135. Perfil de tomografía eléctrica L-D .. 191

Figura 136. Zona soportales-plaza de toros. Secuencia con los perfiles 2D de tomografía eléctrica. Perfiles L-A, L-B, L-C y L-D. Las anomalías principales se señalan en recuadros de color negro ... 192

Figura 137. Bloque diagrama 3D construido a partir de los Perfiles L-A y L-B. Destaca, en colores verdesos, una zona de anomalía superficial situada entre los metros 13-22. Obsérvese la falsa anomalía, colores amarillos y verde, en el extremo del bloque producida por la ausencia de datos .. 193

Figura 138. Bloque diagrama 3D construido a partir de los Perfiles L-C y L-D en el que se aislan (en color amarillo) y modelizan alguno de los elementos (restos) que han generado las anomalías de resistividad194

Figura 140. Secciones obtenidas a partir del bloque 3D de los perfiles medidos con el dispositivo $mixed-gradient$... 197

Figura 141. Secciones obtenidas a partir del bloque 3D de los perfiles medidos con el dispositivo dipolo-dipolo ... 198

Figura 142. Perfil de tomografía eléctrica L-1 .. 199

508
Índice de figuras

Figura 143. Perfil de tomografía eléctrica L-2.. 199
Figura 144. Perfil de tomografía eléctrica L-3.. 199
Figura 145. Perfil de tomografía eléctrica L-4.. 200
Figura 146. Perfil de tomografía eléctrica L-6.. 200
Figura 147. Zona jardines. Secuencia con los perfiles 2D de tomografía eléctrica. Perfiles L-1, L-2, L-3, L-4 y L-6. Las anomalías principales se señalan con recuadros en color negro .. 201
Figura 148. Sondeo electromagnético en dominio de tiempo (sedt) realizado con configuración emisor/antena de 2 x 2 m – 1 x 1 m. Nota: la profundidad está multiplicada por 10.. 204
Figura 149. Localización de los sondeos arqueológicos sobre planta del santuario de Las Virtudes. Zona B-plaza de toros: sondeos 1 y 2. Zona C-pulvino: sondeo 3.. 205
Figura 150. Detalle corte estratigráfico zona de exploración B 208
Figura 154. Relación espacial entre las unidades constructivas exhumadas con las anomalías electromagnéticas. Vista sobre ortofoto 3D. Arriba, segmento del perfil P1 (B-1-A) entre los metros 8 a 15. Debajo, segmento del perfil P2 (B-2-A) entre los metros 19 a 27. (A) Rojo: muro oeste. (B) Azul: muro este. Verde: proyección georreferenciada de los perfiles de GPR P7 y P8 ...213

Figura 157. Bloque 3D realizado a partir de las secciones L-A, L-B, L-C y L-D en el que se aíslan (en color verde) los materiales con baja resistividad. Con un recuadro en color rojo se señala la zona correspondiente a la sección sur del muro este excavado en el sondeo 1..............216

Figura 159. Arriba, perfil de tomografía L-B. Abajo, detalle del mismo metro 13 a 20. Se han señalado en rojo sobre el perfil las cotas reales inferior (CIR) y superior (CSR) de las estructuras arqueológicas exhumadas. En negro se señala las cotas inferior (CIP) y superior (CSP) de las anomalías en el perfil. En azul se encuadran las anomalías murarias (A y C), y el enterramiento (B) ...218
Figura 160. Bloque 3D realizado a partir de configuración mixed gradient. Secciones L-A y L-B. En amarillo y rojo se aíslan los materiales con alta resistividad. En azul se señala la zona oeste del sondeo 1. Obsérvese en magenta la disposición real de los muros documentados (A: oeste. B: este) y el desplazamiento lateral hacia el este de la anomalía correspondiente 219

Figura 161. Detalle corte estratigráfico zona pulvino 221

Figura 162. Correspondencia entre las unidades estratigráficas excavadas respecto a los registros obtenidos mediante georadar. Arriba, perfil C-10-B. Recuadro azul: elemento reflector. Magenta: nivel geológico. Debajo, detalle de los perfiles GPR posicionados sobre la excavación de la zona norte del pulvino. Obsérvese señalado en azul el elemento reflector calizo sobre la roca madre 222

Figura 163. Detalle corte estratigráfico zona de exploración G 225

señalado en rojo el pavimento, y en magenta la prolongación hacia el sur de la zanja para el cableado eléctrico que corta el suelo de piedras

Figura 169. Posición del perfil GPR G-3-A y la sección de tomografía L-4 en relación a la zona excavada. Rojo: pavimento empedrado. Magenta: canalización eléctrica

Figura 171. Arriba, perfil de tomografía L-2. Abajo, detalle metros 1 a 7. Se han marcado en rojo sobre el perfil las cotas reales inferior (CIR) y superior (CSR) de las estructuras arqueológicas excavadas. En negro se señala las cotas inferior (CIP) y superior (CSP) de las anomalías en el perfil. En recuadros de color azul se señalan el pavimento empedrado (A), la zanja (B) y el suelo de arena (C)

Figura. 172. Localización y vista general del Conjunto Arqueológico Castillo de La Estrella en el término municipal de Montiel (Ciudad Real). © Instituto Geográfico Nacional de España
Figura 173. Localización general de las diferentes zonas de trabajo en el conjunto arqueológico castillo de La Estrella. PNOA © Instituto Geográfico Nacional de España – (Castilla-La Mancha).................................243

Figura 174. Vista del lugar elegido para ubicar la zona de exploración geofísica A...244

Figura 175. Vista del lugar elegido para localizar la zona de exploración geofísica B...244

Figura 176. Detalle del lugar elegido para ejecutar la exploración geofísica C..245

Figura 177. Detalle del lugar elegido para situar la zona de exploración geofísica D..246

Figura 178. Vista general de las zonas en las que se realizaron las investigaciones sistemáticas con GPR. (A) Zona de exploración A. (B) Zona de exploración B. (C) Zona de exploración C. (D) Zona de exploración D...........246

Figura 179. Situación de los perfiles de georradar realizados en las zonas de exploración A-torre del homenaje y B-puerta de hierro. Rojo: zona A. Verde: zona B. SIGPAC © Consejería de Agricultura, Medio Ambiente y Desarrollo Rural (Castilla-La Mancha) ...247

Figura 180. Ubicación y orientación de los perfiles sistemáticos de GPR desarrollados al sur de la zona C-Iglesia de Nuestra Señora de La Estrella248

Figura 181. Situación de los perfiles de georradar realizados en la zona de exploración D-antiguo camino. (A) Vista general. (B) Detalle. SIGPAC © Consejería de Agricultura, Medio Ambiente y Desarrollo Rural (Castilla-La Mancha) ...249

Figura 182. Vista general de las zonas en las que se realizaron las investigaciones sistemáticas con tomografía eléctrica (rojo). (A) Zona de exploración A. (B) Zona de exploración B. (C) Zona de exploración C. (D) Zona de exploración D...250
Figura 183. Distribución de los perfiles de tomografía eléctrica en la zona de exploración A-torre del homenaje ...251

Figura 184. Distribución de los perfiles de tomografía eléctrica en la zona de la puerta de hierro ...252

Figura 185. Distribución de los perfiles de tomografía eléctrica en la zona de antiguo camino de acceso al castillo ..185

Figura 189. Detalle de las anomalías tipo II detectadas en el relleno arqueológico de la torre del homenaje dentro del perfil A-1´-B258

Figura 190. Anomalías tipo II. Posible cámara de aire en el subsuelo. Perfiles A-6-B y A-7-B ...259

Figura 191. Zona norte torre del homenaje. Perfil A-12-B. Abajo el recuadro en rojo sobre la sección de radargrama indica la posición de la anomalía cóncava ...269

Figura 192. Posición georreferenciada de las posibles estructuras detectadas en la zona de exploración torre del homenaje ...261

Figura 193. Situación de las diferentes anomalías detectadas en la puerta de hierro. Rojo: tipo I. Verde: tipo III ...263

Figura 196. Zona de exploración B. En rojo se señalan sobre los radargramas los posibles muros de la pequeña estancia situada en el sector noreste de la cuadrícula de trabajo. Perfiles B-7-A y B-11-B..........................266

Figura 197. Representación en planta de las posibles estructuras arquitectónicas conservadas en el subsuelo, a partir de la interpretación de las anomalías tipo I de la zona de exploración B ...267

Figura 198. Posición georreferenciada en ortofoto de las posibles construcciones detectadas en la zona de exploración B-puerta de hierro........268

Figura 199. Situación de las anomalías detectadas con GPR en la zona sur de la iglesia (izquierda) y a los pies del templo (derecha).................................269

Figura 201. Radargrama obtenido junto al muro sur de la iglesia, con la anomalía señalada en rojo que indica la señal generada por un posible enterramiento. Perfil C-1-1-A..272

Figura 202. Zona exterior oeste de la iglesia. En rojo, detalle de la alteración en la continuidad de la señal de onda a partir de la detección de una posible tumba. Perfil C-2-10-B...273

Figura 204. Ubicación de las anomalías detectadas con GPR en la zona del antiguo camino de la villa medieval...275
Figura 205. Radargramas de los perfiles D-5-A y D-6-A del la zona de exploración D. El recuadro rojo indica la posible fractura sobre la estructura horizontal del camino ... 276

Figura 206. Zona camino medieval. Perfil D-8-B. En rojo se indican la posición de los posibles hoyos colmatados en los metros 0 y 5 277

Figura 206. Perfil de tomografía eléctrica MO10 .. 279

Figura 207. Perfil de tomografía eléctrica MO11 .. 279

Figura 208. Perfil de tomografía eléctrica MO12 .. 279

Figura 209. Perfil de tomografía eléctrica MO13.. 280

Figura 211. Subsuelo oriental zona A. Simetría axial a partir del bloque 3D MO53D. Recuadro azul: posible muro este de la torre. Recuadro magenta: derrumbes asociados ... 282

Figura 212. Bloque 3D a partir de la interpolación de los perfiles MO10, MO11, MO12 y MO13. Recuadro magenta: anomalía A. Recuadro rojo: anomalía B. Recuadro azul: anomalía E. Obsérvese en colores verde y azul la distribución de los niveles de derrumbe que envuelven las posibles estructuras arqueológicas ... 283

Figura 213. Perfil de tomografía eléctrica MO1 .. 284

Figura 214. Perfil de tomografía eléctrica MO2 .. 284

Figura 215. Perfil de tomografía eléctrica MO3 .. 285

Figura 216. Perfil de tomografía eléctrica MO4 .. 286

Figura 217. Zona puerta de Hierro. Secuencia con los perfiles 2D de tomografía eléctrica. Perfiles MO1, MO2, MO3 y MO4. Las anomalías se remarcan en color negro ... 287
Índice de figuras

Figura 218. Vista general de las anomalías detectadas al sur de la zona B a partir de un bloque 3D medido mediante configuración radial gradient. Recuadro rojo: posible muro. Obsérvese los derrumbes asociados a su alrededor. La anomalía azul en el extremo sureste de la imagen se relaciona con el inicio de un talud arcilloso en esta zona del yacimiento .. 288

Figura 219. Perfil de tomografía eléctrica MO5... 289

Figura 220. Perfil de tomografía eléctrica MO6... 291

Figura 221. Perfil de tomografía eléctrica MO7... 291

Figura 222. Perfil de tomografía eléctrica MO8... 291

Figura 223. Perfil de tomografía eléctrica MO9... 292

Figura 224. Zona camino medieval. Secuencia con los perfiles 2D de tomografía eléctrica. Perfiles MO6, MO7, MO8 y MO9. Las anomalías principales se inscriben en recuadros de color negro ... 293

Figura 225. Subsuelo zona camino primitivo medieval a partir de un bloque 3D medido mediante configuración dipolo-dipolo 3D. Recuadro rojo: posible muro o refuerzo lateral del camino. Recuadro magenta: posible camino.. 294

Figura 229. Detalle corte estratigráfico. Zapata de la antena. En rojo se señalan sus cotas de inicio y final ... 299

Figura 231. Vista general de la excavación arqueológica. En negro se observa la disposición espacial de los perfiles GPR A-6-A y A-12-A. En magenta se señalan los muros detectados en la exploración geofísica. A y C: muro de cerramiento del recinto. B: muro este de la torre del homenaje (ver figura 230) ... 301

Figura 232. Arriba en azul el muro arqueológico de la torre del homenaje ©, y muro oriental del recinto (A). Abajo perfil de tomografía MO13. Se han señalado en negro sobre el perfil las cotas reales inferior (CIR) y superior (CSR) de las estructuras arqueológicas exhumadas. En verde se señala las cotas inferior (CIP) y superior (CSP) de las anomalías en el perfil. En azul se encuadran las anomalías estructurales (A y C), y el derrumbe de sillarejo de arenisca y mortero de cal disgregado (B) 302

Figura 233. Bloque 3D MO53D medido con las configuraciones dipolo-dipolo 3D (izquierda) y radial gradient 3D (derecha). En magenta se recuadra la cota base Z en la que se representan las anomalías en el software de inversión de tomografía ... 303

Figura 234. Detalle cortes estratigráficos zona de exploración C. (A) Lado sur de la iglesia. (B) Zona oeste del templo ... 305

Figura 236. Detalle de las dos estructuras paralelas fabricadas mediante hiladas de mampostería y mortero de barro. Nótese su arruinado estado de conservación ...306

Figura 238. Detalle de los perfiles GPR posicionados sobre la tumba de mampostería registrada al oeste de la iglesia. Izquierda, tumba delimitada y sin excavar. Obsérvese la composición de los materiales que la colmatan y el relleno que la envuelve. Derecha, tumba excavada con fábrica de sillares en posición primaria ..308

Figura 240. Detalle de la excavación arqueológica. En azul se señala la disposición espacial georreferenciada de los perfiles de georradar C-B-5-A y C-B-6-B. En magenta se señalan los reflectores de las tumbas detectadas con correspondencia anómala en los radargramas (ver figura 239)...310

Figura 241. Ubicación de los perfiles GPR C-A-3-A y C-A-8-B y la sección de tomografía MO5 respecto a la zona excavada. Azul: nivel geológico. Magenta: (A) tumba. (B) muro sur de la iglesia311

Figura 242. Arriba el muro sur de la iglesia excavado. Abajo perfil de tomografía MO5. Se han señalado en negro sobre el perfil las cotas reales inferior (CIR) y superior (CSR) de la estructura arqueológica exhumada. Con una flecha negra sobre la fotografía se indica la altura conservada del muro ..312
Figura 243. (Izquierda) Detalle corte estratigráfico zona de exploración D. (Derecha) Estructura doble con adosamiento lateral.................................314

Figura 245. Posición de los perfiles GPR D-11-B y D-12-B y las secciones de tomografía MO8 y MO09 respecto a la zona excavada. Azul: estructura adosada norte. Magenta: estructura adosada sur316

Figura 246. Bloque 3D MO43D medido con la configuraciones mixed gradient 3D. Enmarcado en color rojo se señalan las dos estructuras alineadas adosadas. Con un recuadro de color magenta se destaca la zona central menos resistiva entre ambas estructuras...317

Figura 247. Localización y vista general del paraje de Piédrola en el término municipal de Alcázar de San Juan (Ciudad Real). © Instituto Geográfico Nacional de España ...319

Figura 248. Localización general de la zona de trabajo en el yacimiento de Piédrola. PNOA © Instituto Geográfico Nacional de España - (Castilla-La Mancha) ..325

Figura 249. Vista del lugar seleccionado para realizar la exploración geofísica A...326

Figura 250. Vista general de la zona en la que se realizó la investigación sistemática con GPR (rojo). (A) Zona de exploración A ..327

Figura 251. Posición de los perfiles de georradar realizados en la zona de exploración A-poblado. SIGPAC © Consejería de Agricultura, Medio Ambiente y Desarrollo Rural (Castilla-La Mancha).........................327

Figura 252. Vista general de la zona en la que se ejecutó la investigación con tomografía eléctrica (rojo). (A) Zona de exploración A328
Figura 253. Situación sobre ortofoto de los perfiles de tomografía eléctrica
realizados sobre el yacimiento de Piédrola..329

Figura 254. Distribución de los perfiles de tomografía eléctrica situados en
la zona de exploración A...329

Figura 255. Situación de las diferentes anomalías detectadas. Rojo: tipo I.
Azul: tipo II. Verde: tipo III ..332

A-4-A, A-5-A y A-6-A. Radargramas registrados mediante configuración
Dry Soil. Verde: posible muro I. Magenta: posible muro II. Rojo: posible
muro III. Azul: posible muro IV ..333

Figura 257. Arriba, perfil A-1-A (P1). Abajo, sección del radargrama entre
los metros 7 a 13. El recuadro en rojo indica la posición de una posible
estructura adosada en el lado oeste de la anomalía lineal III, definida en
color verde..334

Figura 258. Sector noroeste zona A. Arriba, sección perfil A-1-A (P1) entre
los metros 0 a 5. Abajo, detalle del perfil A-2-A (P2) entre los metros 15 al
20. En rojo sobre los radargramas se indica la posición de las anomalías tipo
II ...335

Figura 259. Ejemplo de radargrama con anomalía de tipo III en la zona de
exploración A. Perfil A-4-A. La zona anómala se señala con un recuadro de
color verde..336

Figura 260. Anomalía generada a partir de un objeto metálico somero.
Obsérvese la propagación del eco hasta la profundidad máxima de
exploración con la antena de 250 MHz en modo Dry Soil. Sección del perfil
A-5-A (P5) entre los metros 11 a 19 ..336

Figura 261. Posición georreferenciada de las posibles estructuras detectadas
en la zona de exploración A-poblado...338

Figura 262. Perfil de tomografía eléctrica PI1 ..340

Figura 263. Perfil de tomografía eléctrica PI2 ..340
Figura 264. Perfil de tomografía eléctrica PI3...341

Figura 265. Perfil de tomografía eléctrica PI4...342

Figura 266. Zona poblado. Secuencia con los perfiles 2D de tomografía eléctrica. Orientación O-E. Perfiles PI1, PI2, PI3 y PI4. Las anomalías se resaltan con un recuadro en color negro ...343

Figura 267. Bloque 3D de resistividad invertida realizado a partir de la interpolación de los registros PI1 a PI4. Las anomalías antrópicas se resaltan en colores amarillos, anaranjados y rojizos. Los estratos geológicos se representan en colores verde y azul ...344

Figura 268. Localización de los sondeos arqueológicos. Rojo: sondeo I. Azul: sondeo II...348

Figura 269. Detalle cortes estratigráficos zona de exploración A. (A) Sondeo I. (B) Sondeo II ..349

Figura 277. Bloque 3D realizado a partir de de las secciones PI1, PI2, PI3 y PI4 con cortes longitudinales sobre el eje Y, en el que señala con un recuadro de color rojo la anomalía perteneciente al muro III. En azul se indica la proyección del muro en la excavación. Obsérvese la ausencia de anomalías estructurales en el entorno del muro III correspondiente al sondeo I.

Figura 278. Sondeo I. Planta general de la excavación arqueológica. En verde se observa la disposición espacial de los perfiles tomográficos PI2 y PI3. Inscritas en un recuadro azul se señalan las estructuras detectadas.

Figura 280. Vista comparada bloques 3D. Izquierda, configuración radial gradient 3D. Derecha, configuración dipolo-dipolo 3D. En azul se aísla la planta del sondeo I. Obsérvese cómo la anomalía de alta resistividad generada en la imagen izquierda ocupa artificialmente la totalidad del espacio excavado. En el modelo dipolo-dipolo 3D se marca en color rojo la posición de la anomalía equivalente al muro III, idéntica a la posición del muro tras la excavación.

Figura 282. Posición combinada del perfil GPR A-6-A (rojo) y la sección de tomografía P14 (azul) respecto a la zona excavada. Recuadro rojo: mampuesto de caliza. Recuadro magenta: hoyos I y II.

excavadas. En negro se señala las cotas inferior (CIP) y superior (CSP) de las anomalías en el perfil. En azul se señalan bloque de piedra caliza (A), el hoyo I (B) y el hoyo II (C)..367

Figura 285. Bloque 3D realizado a partir de de las secciones PI1, PI2, PI3 y PI4 con cortes longitudinales sobre el eje Y, en el que señala en color rojo la anomalía elíptica perteneciente a la zona en la que se localizan el bloque de piedra, hoyo I y hoyo II ..368

Figura 286. Localización y vista general del Parque Arqueológico de Alarcos en los términos municipales de Poblete y Ciudad Real (Ciudad Real). © Instituto Geográfico Nacional de España..371

Figura 287. Localización general de las diferentes zonas de trabajo en el Parque Arqueológico de Alarcos. PNOA © Instituto Geográfico Nacional de España - (Castilla-La Mancha) ..378

Figura 288. Vista del lugar elegido para realizar la exploración geofísica A ...379

Figura 289. Vista del lugar elegido para localizar la zona de exploración geofísica B...380

Figura 290. Detalle del lugar elegido para situar la zona de exploración geofísica C...381

Figura 291. Vista general de las zonas en las que se realizaron las investigaciones sistemáticas con GPR. (A) Zona de exploración A. (B) Zona de exploración B. (C) Zona de exploración C ..382

Figura 292. Posición de los perfiles de georadar desarrollados en la zona A-necrópolis ibérica ...383

Figura 293. Situación de los perfiles de georadar realizados en la zona de exploración B-necrópolis almohade. (A) Vista general. (B) Detalle. SIGPAC © Consejería de Agricultura, Medio Ambiente y Desarrollo Rural (Castilla-La Mancha) ...383
Figura 294. Posición de los perfiles de georadar realizados en la zona de exploración C-Sector III. (A) Vista general. (B) Detalle. SIGPAC © Consejería de Agricultura, Medio Ambiente y Desarrollo Rural (Castilla-La Mancha) .. 384

Figura 295. Vista general de las zonas en las que se realizaron las investigaciones con tomografía eléctrica (rojo). (A) Zona de exploración A. (B) Zona de exploración B. (C) Zona de exploración C ... 385

Figura 296. Distribución de los perfiles de tomografía eléctrica en la zona de exploración A .. 386

Figura 297. Distribución de los perfiles de tomografía eléctrica en la zona del cementerio islámico .. 387

Figura 298. Distribución de los perfiles de tomografía eléctrica en el Sector III .. 388

Figura 300. Ejemplo de radargramas con anomalías integradas en agrupamientos. Zona de exploración A. Perfiles A-I-1-A y A-II-6-B 393

Figura 303. Zona necrópolis ibérica. Anomalías tipo I independientes. Arriba, perfil A-II-3-A (P3). Abajo, corte del mismo entre los metros 28 a 36 396

Figura 304. Detalle de las señales de onda relacionadas con el colector de abastecimiento urbano. Arriba, entre los metros 43 a 50 del perfil A-II-3-A se señala con trazo discontinuo la base de la conducción. Abajo, el recuadro
en rojo sobre el perfil A-I-6-B indica la posición de la tubería y su recubrimiento...397

Figura 305. Ejemplo de radargrama con anomalías. Zona de exploración B. Perfil B-3-A. Abajo detalle del mismo entre los metros 20 al 26.................................398

Figura 306. Situación de las diferentes anomalías detectadas en la maqbara almohade. Rojo: tipo I. Verde: tipo III. ...399

Figura 307. Maqbara, zona oeste y central. Arriba, perfil B-7-B (P7). Abajo, metros 4 a 8 del perfil B-16-B (P16). En rojo sobre los radargramas se indica la posición de las anomalías tipo I_b. Posibles tumbas400

Figura 309. Zona sur necrópolis islámica. Arriba, perfil B-13-B (P13). Abajo detalle del mismo entre los metros 0 al 3. En rojo sobre los radargramas se indica la posición de una anomalía tipo I_A. Posible muro.................................402

Figura 311. Zona cementerio almohade. Perfiles B-1-B, B-2-B, B-3-B, B-4-B y B-5-B. A la izquierda, radargramas obtenidos al este de la zona de exploración. Los recuadros en rojo y magenta sobre cada radargrama indican la posición de las anomalías analizadas. En la fotografía aparece, en colores rojo y magenta, la interpretación georreferenciada de los posibles muros detectados a partir de los registros de georradar..404

Figura 312. Radargrama del perfil B-6-B. El rectángulo verde indica la ubicación y desarrollo de la anomalía tipo I_C en el registro405

Figura 313. Ejemplo de radargrama con anomalía de tipo III en la zona de exploración B. Perfil B-1-A. Abajo detalle del mismo entre los metros 9 al 16.....406
Figura 314. Representación georreferenciada en planta sobre ortofoto obtenida mediante vuelo con dron de las posibles estructuras arquitectónicas conservadas en el subsuelo, a partir de la interpretación de las anomalías tipo I. Rojo: enterramientos. Azul: muros. (Fotografía cedida por Diego Lucendo) ..407

Figura 315. Situación de las diferentes anomalías detectadas en el Sector III. Rojo: tipo I. Verde: tipo III ..409

Figura 316. Zona Sector III. Perfiles C-10-B, C-11-B, C-12-B y C-13-B. Los recuadros en rojo y azul sobre los radargramas indican la posición de las dos líneas de anomalías paralelas pertenecientes a los cierres norte y sur de la estancia I ..410

Figura 317. Perfiles C-9-B y C-14-B. En rojo se indica la anomalía generada por los muros oblicuos del edificio ibérico. Arriba, muro superior. Abajo, muro inferior. Obsérvese la enérgica señal reflectada por ambas estructuras en forma de dos hipérbolas de difracción ..411

Figura 318. Perfil C-4-A. Abajo, segmento del perfil entre los metros 11 a 13. En magenta detalle de reflexión longitudinal a partir de un elemento reflector subsuperficial oblicuo ..413

Figura 319. Planta de las posibles estructuras arquitectónicas conservadas en el subsuelo sobre ortofoto obtenida mediante vuelo con dron, a partir de la interpretación de las anomalías tipo I de la zona de exploración C. (Fotografía cedida por Tomás Torres) ..414

Figura 320. Perfil de tomografía eléctrica ALA1 ..415

Figura 321. Perfil de tomografía eléctrica ALA2 ..416

Figura 322. Perfil de tomografía eléctrica ALA3 ..416

Figura 323. Zona A. Secuencia con los perfiles 2D de tomografía eléctrica. Perfiles ALA1, ALA2 y ALA3. Las anomalías se resaltan en recuadros de color negro ..417
Figura 324. Bloque diagrama 3D construido a partir de los perfiles ALA1, ALA2, y ALA3. En colores amarillentos y anaranjados destacan las anomalías antrópicas superficiales. Obsérvese en los dos extremos del bloque las falsas anomalías resistivas de 1660 Ω.m producidas por la ausencia de datos en las zonas de sombra de las secciones419

Figura 325. Perfil de tomografía eléctrica ALA8 ..420

Figura 326. Perfil de tomografía eléctrica ALA9 ..420

Figura 327. Perfil de tomografía eléctrica ALA10421

Figura 328. Perfil de tomografía eléctrica ALA11422

Figura 329. Zona maqbara. Secuencia con los perfiles 2D de tomografía eléctrica. Orientación S-N. Perfiles ALA8, ALA9, ALA10 y ALA11. Las anomalías se inscriben recuadros de en color negro ...422

Figura 332. Perfil de tomografía eléctrica ALA12425

Figura 333. Perfil de tomografía eléctrica ALA13426

Figura 334. Perfil de tomografía eléctrica ALA14426

Figura 335. Perfil de tomografía eléctrica ALA15427
Figura 336. Zona maqbara. Secuencia con los perfiles 2D de tomografía eléctrica. Orientación O-E. Perfiles ALA12, ALA13, ALA14 y ALA15. Las anomalías se resaltan con recuadros de color negro ... 428

Figura 337. Secciones longitudinales en profundidad a partir del bloque 3D interpolado con mediciones dipolo-dipolo y Wenner-Schlumberger. El metro 27 se corresponde con el lado este de la zona de exploración. Mediante un rectángulo rojo se resalta la anomalía B. Nótese cómo el grosor de la anomalía varía de sur (menor) a norte (mayor) .. 429

Figura 338. Vista general del subsuelo. Bloque 3D a partir de la interpolación de los perfiles ALA12, ALA13, ALA14 y ALA15. Obsérvese entre los metros 20 y 27, en color amarillo, las posibles estructuras arqueológicas correspondientes a las anomalías E y F, muy solapadas. En verde se representa la distribución de los rellenos constructivos 430

Figura 339. Perfil de tomografía eléctrica ALA4 ... 432

Figura 340. Perfil de tomografía eléctrica ALA5 ... 432

Figura 341. Perfil de tomografía eléctrica ALA6 ... 433

Figura 342. Perfil de tomografía eléctrica ALA7 ... 433

Figura 343. Zona Sector III. Secuencia con los perfiles 2D de tomografía eléctrica. Perfiles ALA4, ALA5, ALA6 y ALA7. Las anomalías se resaltan en recuadros de color negro .. 434

Figura 344. Diferentes visualizaciones del bloque 3D ALA13D realizado a partir del arreglo Dipolo-Dipolo 3D. (A) Imagen completa de resistividad invertida. (B) Secciones estáticas de resistividad invertida. (C) Secciones dinámicas de resistividad invertida sobre la anomalía A, B, D, E y F . (D) Gráfico de contorno de resistividad sobre las anomalías A y B. Las anomalías antropicas se resaltan en colores amarillos y anaranjados 435

Figura 345. Secciones longitudinales de resistividad a partir del bloque 3D AL13D medido mediante configuración radial gradient 3D. Círculo rojo: muro ibérico norte. Círculo magenta: muro ibérico sur ... 436

Figura 347. Detalle perfil estratigráfico zona de exploración A. (Fotografía cedida por Antonio J. Gómez Laguna).

Figura 349. Descripción de las características físicas y emplazamiento de las estructuras arqueológicas en la necrópolis ibérica.

Figura 352. Detalle de los perfiles GPR proyectados sobre las estructuras de mampostería documentadas al sur de la necrópolis. Arriba, correlación de las anomalías estructurales sobre segmentos de los perfiles P1 (A-II-1-A) entre los metros 0 a 7, P2 (A-II-2-A) entre los metros 43 a 50, y P3 (A-II-3-A) entre los metros 0 a 7. Debajo en verde, en relación espacial entre las unidades constructivas exhumadas con las anomalías electromagnéticas. Azul: tumboló A. Rojo: tumboló B. Magenta: tumboló C. Las anomalías...
hiperbólicas situadas al inicio de los perfiles se analizaron en el subcapítulo 9.5.1.1., figura 301.............................445

Figura 353. Perfiles proyectados sobre las estructuras funerarias en proceso de excavación al norte de la necrópolis. Arriba, correlación de las anomalías estructurales sobre segmentos de los perfiles P2 (A-II-2-A) entre los metros 27 a 34, y P3 (A-II-3-A) entre los metros 18 a 25. Debajo en verde, en relación espacial entre las unidades constructivas exhumadas con las anomalías electromagnéticas. Azul: estructura G. Rojo: túmulo H.............447

Figura 354. Vista general combinada de los perfiles A-II-1-A, A-II-2-A y A-II-3-A, y las secciones de tomografía ALA1, ALA2 y ALA3 (electrodos a 1 m), en relación a la zona excavada..448

Figura 355. Secuencia comparativa perfil 2D de tomografía eléctrica ALA1 con las configuraciones electródicas a 0,5, 1 y 1,5 m...449

Figura 356. Arriba, perfil de tomografía ALA1 con distancia interelectródica 0,5 m. Abajo, detalle metros 3 a 26. Se marca en negro sobre el perfil la zona excavada. En recuadros de color azul se indican las estructuras funerarias ...450

Figura 357. Detalle perfil estratigráfico zona de exploración B................453

Figura 360. Detalle de los perfiles GPR proyectados sobre las estructuras de mampostería documentadas al noreste de maqbara.........................455

Figura 361. Correspondencia entre las unidades estratigráficas excavadas respecto a los registros obtenidos mediante georradar. Arriba, segmento del perfil B-4-A entre los metros 1 a 4. Debajo, sondeo arqueológico manual

Figura 362. Relación espacial entre las unidades constructivas exhumadas con las anomalías electromagnéticas. Vista sobre ortofoto 3D. Arriba, segmento del perfil P4 (B-4-A) entre los metros 0,5 a 5. Debajo, segmento del perfil P5 (B-5-A) entre los metros 22 a 26,5. (A) Rojo: muro este. (B) Cian: enterramiento. (C) Azul oscuro: muro oeste. (D) Magenta: suelo. Verde: proyección georreferenciada de los perfiles de GPR P4 y P5...

Figura 363. Correspondencia espacial entre las estructuras culturales excavadas con los elementos anómalos detectados. Vista sobre ortofoto 3D. Arriba, segmento del perfil P17 (B-17-B) entre los metros 4 a 8. Debajo, perfil P18 (B-18-B) entre los metros 0 a 4. Imagen central, (A) Rojo: tumba. (B) Azul: suelo. Verde: representación georreferenciada de las líneas P17 y P18...

Figura 364. Posición de los perfiles GPR B-4-A y B-5-A y las secciones de tomografía ALA14 y ALA15 en relación a la zona excavada. Magenta: muro oeste. Azul: muro este y tumba...

Figura 365. Correspondencia lateral de un derrumbe constructivo excavado, respecto a un perfil eléctrico adyacente. Arriba, perfil 2D ALA14. Metros 9 a 13. Centro, materiales de relleno. Zona norte maqbara. Abajo, bloque 3D interpolado. En magenta se señala en los registros tomográficos y fotográfico la zona equivalente que corresponde a la capa estratigráfica documentada...

Figura 366. Bloque 3D modelado a partir de las secciones ALA12, ALA13, ALA14 y ALA15. Mediante un círculo de color rojo se indica la anomalía correspondiente a las estructuras documentadas en el sondeo arqueológico. (Izquierda) Cortes longitudinales sobre el eje Y. (Derecha) Sección diagonal...

Figura 367. Arriba, perfil de tomografía ALA15. Abajo, detalle metros 17 a 26,5. Se ha marcado en rojo sobre el perfil la cota superior real
(CSR) de las estructuras arqueológicas excavadas. En negro se señala la cota superior (CSP) de las anomalías en el perfil. Mediante recuadros de color azul se indican la tumba oeste (A), el enterramiento (B) y el muro este (C) ..463

Figura 368. Secuencia comparativa perfiles 2D de tomografía eléctrica ALA14 y ALA15 con las configuraciones electródicas a 0,5 y 1 m.........................464

Figura 369. Detalle perfil estratigráfico zona de exploración466
