A microfluidic flow-through electrochemical reactor for wastewater treatment: a proof-of-concept

Chemical Engineering Department, Facultad de Ciencias y Tecnologías Químicas.
University of Castilla-La Mancha, Edificio Enrique Costa Novella. Av. Camilo José
Cela nº 12, 13071 Ciudad Real, Spain

*Corresponding author: Cristina.saez@uclm.es

Abstract

In this work, a microfluidic flow-through electrochemical reactor for wastewater treatment is presented which simultaneously minimizes ohmic drop and mass transfer limitations, two of the most important bottlenecks in electrochemical wastewater treatment. A proof-of-concept comparison versus a state-of-the-art flow-by commercial reactor revealed that the proposed reactor greatly outperforms the commercial system. The novel system requires only 2.4 Ah dm⁻³ (vs. 11.4 Ah dm⁻³) and 12.5 kWh m⁻³ (vs. 75.0 kWh m⁻³) to completely mineralize 100 mg dm⁻³ of clopyralid spiked in a low-conductive (1 mS cm⁻¹) matrix with both systems using diamond anodes. The microfluidic flow-through configuration represents a promising approach to the development of cost-effective electrochemical technologies for wastewater treatment.

Keywords: electrochemical processes, reactor design, microfluidic, flow-through, 3D electrodes, diamond anodes
1. Introduction

Over recent decades, electrochemical advanced oxidation processes (EAOPs) have demonstrated great potential for the treatment of wastewater polluted with refractory organic compounds in laboratory studies [1, 2]. However, they have not yet been implemented on a large scale and there is an urgent need to develop of EAOPs able to compete with current commercial technologies [3]. Two of the most important problems in scaling up EAOPs are energy consumption and mass transfer limitations [3].

Energy consumption is directly proportional to the cell voltage. Of the three terms contributing to the cell voltage (thermodynamic potential, overpotential and ohmic resistance) the last always represents a loss of efficiency and should therefore be minimized. Most of the electrical resistance (R_{ohm}) occurs in the electrolyte (i.e. the wastewater) since its conductivity is several orders of magnitude lower than that of the other components of the system [4]. The conductivity of the wastewater can be increased by the addition of salts (i.e. a background electrolyte), a common practice in laboratory studies [3, 5]. However, this implies an increase in the operating costs and, more importantly, secondary pollution of the effluent with inorganic compounds [6], which may be more persistent although less hazardous than the original organic waste.

An interesting alternative is the reduction of the inter-electrode (IE) gap to the order of micro-meters, as in microfluidic (MF) reactors [7]. Scialdone et al. have reported the use of different EAOPs (anodic oxidation-BDD and electro-Fenton) in flow-by MF reactors, achieving interesting results even in the absence of supporting electrolyte [8-13]. As an example, the complete removal of 5mM of chloroacetic acid at 5 mA cm$^{-2}$ has been reported using a microfluidic reactor with BDD as the anode and compact graphite as the cathode, in a medium without supporting electrolyte containing 0.5 mM FeSO$_4$ at pH 3 [10]. However, we believe that this reactor design may suffer from important pressure drops due to the extremely narrow IE gap, although to the best of our knowledge this has not yet been systematically studied. Another important issue is the partial clogging of the channel when gas-evolving electrodes are used [14, 15]. These drawbacks compromise the treatment capacity of MF reactors and limit their usefulness for large-scale applications.
Mass transport is a key aspect in electrochemical reactor design given that the charge transfer between the electrode and the species present in solution is, by definition, a heterogeneous process [16]. Thus the rate of EAOPs is often determined by the rate at which the electro-active species arrives at the electrode. An interesting alternative is the pre-concentration of the pollutant e.g. in a coupled electrodialysis/electro-oxidation reactor for soluble pollutants [17] or electrocoagulation/electro-oxidation reactor for colloids [18]. For a given concentration of pollutant, mass transfer can also be improved by increasing the mass transport coefficient \(k_m\) and electrode area \(A\).

It is known that \(k_m\) is strongly dependent on the fluid dynamics within the system. In particular, the special hydrodynamic conditions established in flow-through (FT) electrodes create favourable mass transport conditions and the resulting \(k_m\) may be around 5 to 6 times greater than for a flow-by parallel plate reactor at similar linear empty tube velocities [16]. In recent years, a number of authors have exploited the superior performance of this configuration for the design of efficient electrochemical reactors [19-21]. In a comparison of a flow-by vs. flow-through EF reactors for the degradation of methylene blue, Ma et al. obtained a considerably higher TOC removal efficiency (57.9% vs 39.1%) in the flow-through system [19]. In addition, the 3D electrodes (porous, bed or mesh) required for the construction of FT reactors offer a considerable increase in specific surface area in comparison with plate electrodes [22].

With this background in mind, a design to combine the low ohmic resistance of MF reactors with the high mass transfer of FT systems is proposed in this work. The performance of the MF-FT reactor is compared with a commercial Diacell® 101 (WaterDiam, Switzerland) flow-by reactor for the treatment of a low-conductive soil-washing effluent polluted with clopyralid as the model refractory organic pollutant.

2. Materials and methods

2.1 Experimental set-up

Figure 1 represents schematically the set-up used during this work. The tank, equipped with a cooling jacket to control the temperature, feeds a Heidolph KrP25/4 centrifugal pump which circulates the electrolyte through the electrochemical cell.
Figure 1. Experimental set up used in this work. (a) Flow diagram, (b) electrochemical cell (c) comparison of flow-by and flow-through configurations.

The electrochemical cell is a home-made filter press fabricated in optically-transparent and chemically-resistant polycarbonate plates. The inter-electrode spacer was a plastic film (300 µm) and current collectors were fabricated using aluminium thin foils (50 µm each), producing 400 µm of IE gap. The cross section of the fluid is 33 cm². The anode used in the degradation of clopyralid is a 3D-mesh Diachem® diamond electrode supported on niobium supplied by Condias GmbH (Germany) together with a home-made perforated-plate stainless steel cathode.

As mentioned in the introduction, the reduction of the IE gap is an interesting approach to reducing the IR drop. In the case of flow-by reactor geometries, the reduction of the IE gap also implies a reduction in the channel size, an increase in frictional forces and, concomitantly, a higher pressure drop. However, it is important to note that in the case of the FT configuration a reduction of the IE gap does not affect the cross section. In other words, if the electrolyte is fed perpendicularly, the electrodes can be placed as close as required while keeping the cross-sectional area of the fluid and, thus, the pressure drop, constant (see Figure 1c). This design therefore allows the use of
high flow rates and multi-pass configurations, in contrast with flow-by MF reactors (which are normally operated at mL min\(^{-1}\) in single pass [10, 12, 23]). The fast circulation of the fluid through the IE gap also promotes the stripping of evolved gases in such a way that it is no longer an operational problem. A detailed schematic picture of the reactor can be found in Figure 1b.

2.2 Electroanalytical measurements

The electro-analytical techniques were carried out by means of a Potentiostat-Galvanostat Autolab 302N controlled with NOVA 2.1 software. The electrical resistance \((R_{\text{ohm}})\) was calculated by means of electrochemical impedance spectroscopy (EIS) using a sinusoidal perturbation with an amplitude of 0.01 V\(_{\text{RMS}}\) – between \(1 \cdot 10^5\) and 0.01 Hz and 0.5 g dm\(^{-3}\) Na\(_2\)SO\(_4\) as electrolyte. The value of \(k_m\) was evaluated by means of the limiting-current technique using hexacyanoferrate (II)/(III) as redox pair according to a procedure described previously [24]. The external area of the mesh electrode was calculated using a Rexcon DS3 silver 3D scanner equipped with EZScan 8 and the Geomagic Wrap 2015 software.

2.3 Electrooxidation test

Electrolysis was carried out at 10 mA cm\(^{-2}\) in a soil-washing effluent (SWE) prepared according to the literature [5, 25]. It contains clopyralid as a model organic pollutant and has a salt concentration typical of brackish natural water from our local region (Castilla-La Mancha, Spain). The composition is shown in Table 1.

Table 1. Ionic composition of the synthetic brackish natural water

<table>
<thead>
<tr>
<th>Ion</th>
<th>Concentration (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl(^-)</td>
<td>79.9</td>
</tr>
<tr>
<td>NO(_3^-)</td>
<td>94.9</td>
</tr>
<tr>
<td>SO(_4^{2-})</td>
<td>259.8</td>
</tr>
<tr>
<td>CO(_3^{2-})</td>
<td>174.8</td>
</tr>
<tr>
<td>I(^-)</td>
<td>19.5</td>
</tr>
<tr>
<td>Na(^+)</td>
<td>87.1</td>
</tr>
<tr>
<td>K(^+)</td>
<td>6.0</td>
</tr>
<tr>
<td>Mg(^{2+})</td>
<td>65.8</td>
</tr>
</tbody>
</table>
3. Results

3.1 Evaluation of R_{ohm} and k_m

The ohmic resistance of the flow-through microfluidic reactor was evaluated at different electrode distances using a fixed concentration of electrolyte (0.5 g dm$^{-3}$ Na$_2$SO$_4$). As expected, the ohmic resistance decreased sharply with the inter-electrode gap and no additional pressure drop was observed. Values of 36, 11 and 6 Ω were measured for IE gaps of 6000, 1000 and 400 µm, respectively. It is important to highlight that a low ohmic resistance was measured at 400 µm using a low-conductive medium (0.7 mS cm$^{-1}$).

The mass transfer coefficient was evaluated at different inlet flow velocities. This varied linearly from 0.72×10^{-5} to 1.43×10^{-5} m s$^{-1}$ for velocities from 0.27×10^{-2} to 0.98×10^{-2} m s$^{-1}$. Compared with values of this parameter evaluated systematically in a previous work [24] using a flow-by reactor, the k_m in the FT-MF is 70% higher at 0.8×10^{-2} m s$^{-1}$ and differences are increasingly important at higher velocities, which implies faster mass transfer in the case of our novel configuration.

Therefore, in our design a low ohmic resistance, the key feature of a MF reactor, is combined with high mass transport properties, thanks to the FT configuration, thus producing an electrochemical reactor with excellent characteristics.

3.2 Comparison with a commercial flow-by reactor

The performance of the MF-FT reactor for the treatment of a wastewater polluted with refractory organic compounds using boron-doped diamond as anode was compared with a commercial state-of-the-art flow-by electrochemical cell. A water matrix with an ionic content typical of tap water (slightly brackish groundwater) in some areas of our region (Castilla-La Mancha, Spain) with a total conductivity of 1 mS cm$^{-1}$ was spiked with 100 mg of clopyralid, a hard-to-degrade pesticide, to simulate a soil-washing effluent. The detailed composition of the wastewater and the full set of data obtained using the commercial cell can be found elsewhere [5].
Figure 2. Comparison of a commercial flow-by cell vs. the microfluidic flow-through reactor (a) Flow-by cell (Diacell® 101)(b) MF-FT reactor. ○ Clopyralid ; ● TOC. j = 10 mA cm\(^{-2}\); [Clopyralid] = 100 mg dm\(^{-3}\); Conductivity = 1 mS cm\(^{-1}\); T = 25 ºC; Volume = 1 dm\(^3\). MF-FT: flow = 100 dm\(^3\) h\(^{-1}\) – Electrode geometric area = 33 cm\(^2\) - IE gap: 400 µm - U = 0.88 \(\times 10^{-2}\) m s\(^{-1}\). Commercial-FB: flow = 50 dm\(^3\) h\(^{-1}\) – Electrode area = 78 cm\(^2\) - 3000 µm - IE gap - U = 5.80 \(\times 10^{-2}\) m s\(^{-1}\).

Figure 2 shows that both clopyralid concentration and total organic carbon (TOC) decrease with the specific electric charge. The MF-FT follows a quasi-linear decreasing tendency and only requires 2.4 Ah dm\(^{-3}\) for complete mineralization, whereas the clopyralid and TOC removal rate decreases more slowly with the applied electric charge in the commercial FB cell and needs as much as 11.4 Ah dm\(^{-3}\) to achieve the same mineralization, a value more than four times higher. Under the same operating conditions (current density, electrode size and wastewater volume), this implies that the treatment time in the commercial FB cell should be multiplied by the same factor compared with the MF-FT. The reason behind this superior performance is thought to be the enhanced mass transport conditions (high \(k_m\) and specific surface area) thanks to the FT configuration and the use of a 3D electrode.

Furthermore, the specific energy consumption (Figure 2 – secondary X axis) of the MF-FT is clearly smaller than that of the commercial FB cell. It is worth mentioning that the average cell voltage in the former is as low as 5.2 V whereas it increases up to 8.0 V in the latter, thanks to the small IE gap of the MF-FT. This fact, coupled with higher efficiency as explained previously, leads to an astonishing difference in energy consumption of 12.5 kWh m\(^{-3}\) vs. 75.0 kWh m\(^{-3}\).
As a general conclusion, all of the data reported here suggest that the performance of the MF-FT configuration is considerably superior to that of the conventional FB in terms of degradation efficiency and energy consumption. We therefore believe that this reactor design is quite promising and it will be a subject of study for the successful development of EAOPs in future work.

4. Conclusions

The following conclusions can be drawn from the present work:

- This reactor design allows the construction of a microfluidic reactor with a moderate pressure drop.
- The MF-FT has higher efficiency for degradation of organics as it only takes 2.3 Ah dm\(^{-3}\) for the total mineralization of 100 mg dm\(^{-3}\) of clopyralid, compared with 11.4 Ah dm\(^{-3}\) in the commercial FB.
- For the same mineralization percentage, the specific energy consumption is 6 times smaller (12.5 vs 75 kWh m\(^{-3}\)) due to the faster degradation and the lower energy consumption.
- The MF-FT represents a promising approach to the development of EAOPs.

Acknowledgements

The authors wish to express their gratitude to the financial support from the Spanish Ministry of Economy, Industry and Competitiveness and European Union through project CTM2016-76197-R (AEI/FEDER, UE) and to the University of Castilla-La Mancha for the pre-doctoral contract of José Fernando Pérez within the framework of the Plan Propio I+D. The technical advice of UCLM mechanical technicians Pedro Giménez, Miguel Ángel Romero and Arcadio Nielfa for the assistance in the assembly of the electrochemical cell is also gratefully acknowledged.

References

