DNA status on thawed semen from fighting bull: A comparison between the SCD and the SCSA tests

ARTICLE in REPRODUCTION IN DOMESTIC ANIMALS · NOVEMBER 2008
Impact Factor: 1.52 · DOI: 10.1111/j.1439-0531.2008.01098.x · Source: PubMed

5 AUTHORS, INCLUDING:

Felipe Martínez-Pastor
Universidad de León
145 PUBLICATIONS 1,395 CITATIONS

Maria ROCIO Fernández-Santos
University of Castilla-La Mancha
79 PUBLICATIONS 891 CITATIONS

Milagros C Esteso
Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria
74 PUBLICATIONS 841 CITATIONS

Julian Garde
University of Castilla-La Mancha
153 PUBLICATIONS 2,394 CITATIONS

Available from: Felipe Martinez-Pastor
Retrieved on: 21 October 2015
DNA status on thawed semen from fighting bull: a comparison between the SCD and the SCSA tests

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Reproduction in Domestic Animals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>RDA-OA-Dec-2007-0329.R1</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Original Article</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>30-Jan-2008</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Martinez-Pastor, Felipe; National Wildlife Research Institute (IREC) (UCLM-CSIC-JCCM), Biology of Reproduction; Game Research Institute (IDR) (UCLM), Section of Cynegetics and Cattle Resources Fernandez-Santos, M. del Rocio; National Wildlife Research Institute (IREC) (UCLM-CSIC-JCCM), Biology of Reproduction; Game Research Institute (IDR) (UCLM), Section of Cynegetics and Cattle Resources Dominguez-Rebolledo, Alvaro; National Wildlife Research Institute (IREC) (UCLM-CSIC-JCCM), Biology of Reproduction; Game Research Institute (IDR) (UCLM), Section of Cynegetics and Cattle Resources Esteso, Milagros; National Wildlife Research Institute (IREC) (UCLM-CSIC-JCCM), Biology of Reproduction; Game Research Institute (IDR) (UCLM), Section of Cynegetics and Cattle Resources Garde, J. Julian; National Wildlife Research Institute (IREC) (UCLM-CSIC-JCCM), Biology of Reproduction; Game Research Institute (IDR) (UCLM), Section of Cynegetics and Cattle Resources</td>
</tr>
<tr>
<td>Subject Area:</td>
<td>Andrology < General reproduction, cattle < Species:, Toxicology < General reproduction</td>
</tr>
</tbody>
</table>
Title: DNA status on thawed semen from fighting bull: a comparison between the SCD and the SCSA tests

Felipe Martínez-Pastor, M. del Rocío Fernández-Santos, Álvaro E. Domínguez-Rebolledo, Milagros C. Esteso, J. Julián Garde

Biology of Reproduction Group. National Wildlife Research Institute (IREC) (UCLM-CSIC-JCCM) and Institute of Regional Development (IDR), Section of Cyngetics and Cattle Resources, University of Castilla-La Mancha, 02071, Albacete, Spain.

Abridged title: SCD and SCSA on fighting bull sperm
Abstract

The assessment of sperm chromatin status is compulsory in a complete spermiogram. Here we applied the Sperm Chromatin Structure Assay (SCSA) and the Sperm Chromatin Dispersion test (SCD) to assess the chromatin status of three fighting bulls. Cryopreserved semen (two straws/bull) were analyzed by duplicate after thawing and after 6 h at 37 °C with and without oxidative stress (1 mM Fe^{2+}). Results (SCD: % of spermatozoa with halo; SCSA: SD-DFI, %DFI and HDS) were analyzed for differences between bulls and treatments, sensitivity and specificity (Receiver Operating Characteristics curves; ROC) and repeatability (repeatability coefficients as 2SD of duplicate differences). %DFI for the three bulls was below 2% at 0 h, indicating no risk for fertility according to previous reports. It increased slightly for two of the bulls after Fe^{2+} treatment (%DFI<5%) and more pronouncedly for the other bull (C, %DFI~10%), which merit further investigation. SCD rendered higher % of halos for bull C, but could not discriminate between samples with and without oxidizing treatment (AUC: 0.52). SCSA (%DFI) showed a high discriminating ability between treatments (AUC: 0.96). The repeatability coefficient was also higher for SCD (5.9) than for %DFI (1.8), indicating lower repeatability for SCD. Overall, %DFI might be the most useful parameter to assess sperm chromatin on fighting bull. SCD might yield different information than SCSA, needing further research to establish its meaning.

Keywords: bull, sperm chromatin, oxidative stress, SCSA, SCD, repeatability, ROC curves

Introduction

Among the huge choice of tests for semen analysis developed in the last years, DNA assessment has gained an increasing attention. Indeed, DNA defects are recognized as one factor responsible for uncompensable defects, meaning that the fertility of the given sample cannot be improved by increasing the number of spermatozoa for insemination (Evenson, 1999; Saacke et al., 2000). These defects also reduce the success rates of IVF or ICSI. Taking into account the great number of factors that can impair the DNA integrity of the spermatozoa, either during spermatogenesis (male genetics, health, environment) or afterwards (infections, oxidative damage,
For Peer Review

manipulation), an effective and affordable test to assess the sperm DNA integrity should be considered as a requirement for a complete spermiogram (Agarwal and Allamaneni, 2005).

The evaluation of sperm DNA has been based on many strategies: direct study of DNA breaks (TUNEL, DBD-FISH, in situ nick translation, Comet assay), chromatin affinity to staining (toluidine blue, chromomycin A3), in situ acid-induced DNA denaturation (SCSA), DNA dispersion after using low pH and reducing agents (Sperm Chromatin Dispersion test) and many others (Agarwal and Allamaneni, 2005; Erenpreiss et al., 2006). There is ample literature on these techniques, with many interpretations of the results and, very often, disagreement on its effectivity and clinical value (Agarwal and Allamaneni, 2005; Agarwal and Said, 2003). In this article we present a study in which two techniques for assessing sperm DNA integrity on frozen/thawed bull spermatozoa were tested. The golden standard in this study was the SCSA™ (Sperm Chromatin Structure Assay), currently the only technique that has been extensively tested and whose clinical value seems to be sufficiently contrasted (Erenpreiss et al., 2006). The other technique tested was the Sperm Chromatin Dispersion test (SCD), a recently developed technique for assessing sperm chromatin, which is relatively simple and inexpensive.

SCSA™ is based on the in situ acid-induced DNA denaturation, followed by staining the sample with the metachromatic stain acridine orange (Evenson et al., 2002). This stain intercalates in the DNA, giving green fluorescence if the intercalating site is double-strand DNA (native), and red fluorescence if the site is single-strand DNA (denatured). The cells are run through a flow cytometer, and the fluorescence values of each cell are used for obtaining a DNA Fragmentation Index (DFI), which is the relation between red and total fluorescence. DNA regions with breaks are highly susceptible to denature during the acid treatment, and thus cells with damaged DNA have a higher DFI. Then, spermatozoa are classified considering if their DFI is low, moderate or high (typically, DFI is considered moderate when it is between 20–25 and 75, or high if it is above 75). The percentage of spermatozoa with moderate or high DFI (also called DFI) is then used to determine the DNA integrity of the sample. SCSA™ has been extensively used for human semen and is considered as reliable and repeatable (Evenson et al., 2002). Indeed, there are prognostic cut off values for the DFI of a human semen sample. Thus, when DFI is higher than 30% it is considered that the fertility of the sample will
be greatly compromised (Bungum et al., 2007). The technique has been successfully tested in other mammals, such as boar (De Ambrogi et al., 2006; Hernandez et al., 2006), ram (Garcia-Macias et al., 2006b,c; Kasimanickam et al., 2006b; Martínez-Pastor et al., 2004), stallion (Dias et al., 2006; Lo et al., 2002), dog (Garcia-Macias et al., 2006c; Nunez-Martinez et al., 2005) and several wild species (Fernandez-Santos et al., 2007; Garcia-Macias et al., 2006b,c). Domestic cattle has received much more attention than any other species, apart from human. In fact, it has been known for 20 years that bull fertility is related to SCSA results (Ballachey et al., 1987). Subsequent studies have confirmed the relationship of SCSA not only with field fertility, but also with other physiological and morphological characteristics of bull spermatozoa (Bochenek et al., 2001; Evenson, 1999; Garcia-Macias et al., 2006a; Januskauskas et al., 2003; Kasimanickam et al., 2006a; Ostermeier et al., 2001; Waterhouse et al., 2006), and it has been suggested that values of DFI ≥ 20% might announce lower fertility (Evenson, 1999). Nevertheless, clear DFI cut off values for fertility prognosis have not been defined, neither for cattle nor for other non-human species, although there are some efforts in this sense (Love, 2005).

In contrast, the SCD has been in use for less than five years (Fernandez et al., 2003). This technique is based on the inclusion of spermatozoa in a gel matrix, applying a high-salt low-pH treatment (including reducing agents to break disulphdryl bonds in the chromatin). After this treatment, the sample is analyzed by brightfield or fluorescence microscopy, obtaining the percentage of sperm heads with a halo. Depending on the commercial kit used (presence or not of a denaturation treatment in order to optimize the test for different species, according to the authors), the halos indicate either good or bad condition of the sperm DNA (Fernandez et al., 2003; Perez-Llano et al., 2006). The SCD is relatively easy to perform and does not require expensive equipment. However, it is recommended to count at least 500 spermatozoa, which can be very time-consuming if analyzing many samples. The technique has been used to evaluate semen samples from human, boar and bull (Enciso et al., 2006; Fernandez et al., 2005a; Garcia-Macias et al., 2006a; Muriel et al., 2007; Perez-Llano et al., 2006). However, due to the short time this technique has been on use, it is not sure if it has a relationship to fertility (Muriel et al., 2006b), although some studies indicate that relation indeed may exist (Muriel et al., 2006a), and that it may have a performance comparable to SCSA or TUNEL (Chohan et al., 2006).
et al., 2006). Nevertheless, this test has yet to be fully validated for its clinical use. Its usefulness is still subjected to strong controversy, especially due to its high variability, which may hamper its diagnostic and prognostic use (Evenson and Wixon, 2005a; Schlegel and Paduch, 2005).

In this study we show the results of the first chromatin assessment of fighting bull spermatozoa. This breed is highly valued in Spain and many South American countries, being sensible to establish germplasm banks for the conservation of its genetic resources (Blackburn, 2004). However, these animals are reared following traditional and extensive procedures, and males are frequently are sacrificed before having tested its fertility or assessed their seminal characteristics. Thus, the use of seminal doses from males sacrificed in bullfighting (epididymal sperm) or kept as breeders (electroejaculation) would have to rely on the assessment of the cryopreserved semen prior to its use. In this context, the application of sensitive analysis for assessing sperm DNA integrity would be especially interesting, in order to discard samples with bad fertility prognosis. The aim of the present study was to determine the potential of SCSA and SCD for evaluating cryopreserved fighting bull doses. To achieve this objective, we aimed at detecting between bull differences. Since these differences are usually small and the number of different doses from this breed is scarce, we submitted the samples to oxidative stress, thus inducing alterations on the DNA. Having set up this positive treatment, we tested the repeatability and sensitivity (ability to correctly discriminate samples treated with the oxidant from those untreated) of each test.

Materials and methods

Experimental design

All chemicals were at least of Reagent grade, and acquired from Sigma (Madrid, Spain).

Sperm-Bos-Halomax® (for fluorescence microscopy) was acquired from ChromaCell SL (Madrid, Spain).

For the experiment, we collected and froze samples from three fighting bulls (from now on, termed bulls A, B and C) from the germplasm bank we maintain in our laboratory for this breed. We thawed two straws from each bull, which were processed separately.

Semen was diluted in PBS and split between a Control and an Oxidant treatment. For the Oxidant
treatment, we added FeSO$_4$ (100 μM) and sodium ascorbate (1 mM). Fe$^{2+}$ oxidizes to Fe$^{3+}$, which is recycled by the ascorbate, producing the highly reactive hydroxyl radical (HO). Samples were incubated for six hours, in order to induce oxidative stress. It has been previously demonstrated that this kind of treatment causes sperm DNA damage, including strand breaks (Chen et al., 1997; Lloyd and Phillips, 1999).

The samples were kept in a 37 °C water bath. We analyzed DNA integrity at 0 h and at 6 h, by using SCSA (Evenson and Wixon, 2005b) and SCD (Halomax®).

Animals, electroejaculation and semen cryopreservation

Animal manipulations were performed in accordance with the Spanish Animal Protection Regulation, RD223/1988, which conforms to European Union Regulation 86/609.

The males were selected fighting bulls used for breeding. They were kept isolated in individual enclosures and were healthy and reproductively mature at the time of the collection of the study. Previously to electroejaculation, bulls were anesthetized using Xylazine (0.1 mg/kg Rompun 2%, Bayer, Germany) and Mepivacaine (0.16 mg/kg Mepivacaine HCl 2%, Braun, Germany) (Álvarez et al., 2006). Semen was collected by electroejaculation using a sine-wave stimulator (P. T. Electronics, Boring, OR, USA). The stimulator was capable of monitoring voltage and amperage and used an AC current of 220 V/60 Hz, with a transformer producing a maximum of 55 V and 1.5 A. The stimulating voltage was delivered using rectal probes with three longitudinal surface-mounted electrodes. Probe diameter, probe length, and electrode length were 4.5, 37.5 and 8.5 cm, respectively. The probe was lubricated and gently inserted into the rectum, and orientated so that the electrodes were positioned ventrally. The penis was prolapsed beyond the prepuce and semen collected using a 30-mL sterile plastic container, which was kept warm by covering it with the hand. The electroejaculation regime used was based on that employed previously for ungulates (Howard et al., 1981; Roth et al., 1998) with various modifications. It consisted of consecutive series of 5-s pulses of similar voltage, each separated by a 5-s break. Each series consisted of a total of 4 pulses (Garde et al., 2003). Semen was placed at 30 °C in a water bath until processed.

For freezing, we supplemented Biladyl (Fraction A and B; IMV, L’Aigle, France) with 20% egg yolk.
Semen was diluted down in glass tubes to 100×10^6 cells/mL with Biladyl Fraction A at 30 °C. The tubes were put into beakers with 100 mL of water at the same temperature, and the beakers were placed into a walk-in fridge at 5 °C (slow cooling). When water temperature reached 5 °C, Biladyl Fraction B (12% glycerol) was added 1:1 (final concentration of glycerol: 6%). The samples were left to equilibrate for 4 h, and then packed in 0.5-mL straws (50×10^6 cells/straw). Freezing was carried out in liquid nitrogen vapors (4.5 cm above liquid nitrogen level; -20 °C). Straws were stored in liquid nitrogen for a year.

Thawing and sample processing

Thawing was carried out by dropping the straws into a water bath at 37 °C for 30 s. Semen was diluted in PBS (10^7 spz./mL), from which we took 1 mL as a Control and 1 mL as the Oxidant treatment. To the Oxidant tube, we added 10 μL of a 10 mM FeSO$_4$ and 100 mM sodium ascorbate in water (final: 100 μM Fe$^{2+}$ and 1 mM ascorbate). Both tubes were put in a water bath at 37 °C.

Sperm Chromatin Dispersion test

For carrying out the Sperm Chromatin Dispersion test (SCD), samples were treated with the commercial kit Sperm-Bos-Halomax®, following the protocol included with the kit. Twenty-five microlitres of sperm sample was added to a vial containing 50 μL of liquid low-melting agarose at 37 °C. Then, 25 μL of the solution ($\sim 3\times 10^6$ spz./mL) were placed on an agarose pre-treated slide provided with the kit and cooled at 4 °C. The drop was covered with a coverslip (22×22 mm) and the slide was placed at 4 °C for 5 min. Then, the coverslip was carefully removed and the slide was immediately put into lysing solution at ambient temperature. After 4 min the slide was washed for 5 min in distilled water and sequentially dehydrated in ethanol (70%, 90%, 100%). After dehydration, slides were examined in a few hours by fluorescence microscopy, staining for 10 min with 5 μL of staining solution (provided with the kit) mixed with 10 μL of 1 mM of 1,4-diazabicyclo[2,2,2]octane (DABCO) in 30% glycerol in water (antifade solution). Fluorescence was observed using a 510–560 nm excitation filter and a 590 nm emission filter, at ×400 magnification. Spermatozoa were classified as having a halo (damaged DNA) or not, recording the % of spermatozoa with
halo. The same observer, trained on the technique, performed all analysis.

SCSA

The SCSA technique (Evenson et al., 2002) is based on the metachromatic stain acridine orange, which fluoresces green when combined with double stranded DNA, and red when combined with single stranded DNA (denatured). Spermatozoa were diluted in TNE buffer (0.15 M NaCl, 0.01 M Tris HCl, 1 mM EDTA; pH 7.4) to 2×10^6 mL$^{-1}$. Samples were flash frozen in LN2 and stored at -80 °C until analysis. For the analysis, the samples were thawed on crushed ice and 200 µL were put on a cytometry tube. Then, we added 400 µL of an acid-detergent solution (0.08 M HCl, 0.15 M NaCl, 0.1% Triton X-100, pH 1.2). Exactly 30 s after adding the acid-detergent solution, we added 1.2 mL of staining solution (6 µg/mL of acridine orange in a buffer containing 37 mM citric acid, 126 mM Na$_2$HPO$_4$, 1.1 mM disodium EDTA and 150 mM NaCl; pH 6). We left the sample staining for 3 min, and then we run it through a Becton Dickinson LSR-1 flow cytometer. We excited the acridine orange using an argon laser providing 488 nm light. The red fluorescence was detected using a long pass (670LP) filter (FL-3) and the green one using a band pass (530/28BP) filter (FL-1). Both photodetectors were adjusted using linear scales. Sample acquisition was carried out with the CellQuest v. 3 software. Flow Cytometry data (FCS files) were processed and saved as tabbed text using WinMDI v. 2.8 (The Scripps Research Institute, La Jolla, California). We calculated the DNA Fragmentation Index (DFI) for each spermatozoa as the ratio of red fluorescence respect to total fluorescence (red+green), expressed as a percentage. The processing of DFI data was performed using the R statistical environment (R Development Core Team, 2007). From the DFI values we obtained the standard deviation of DFI (SD-DFI). The percentage of spermatozoa with high fragmentation index (%DFI) was calculated as the percentage events with DFI > 25% (Fig. 1). We also obtained the High DNA Stainability index (HDS) as the percentage of spermatozoa with green fluorescence intensity above channel 600 (0–1023 channels).
Statistical analyses were carried out using the R statistical environment (R Development Core Team, 2007).

Firstly, we carried out a general analysis on the effect of treatment on the DNA data. The effect of the treatments was analyzed by linear mixed-effects models (male as a random factor). Since males seemed to respond differently to some parameters, we also carried out an ANOVA and Tukey test for assessing differences between males within each of the three treatments (0 h, 6 h Control and 6 h Oxidant).

The repeatability of each parameter was assessed by using the test described by Bland and Altman (1986), calculating the repeatability coefficient as twice the standard deviation of the differences between the replicates. We used the Wilcoxon signed rank test for checking if the differences differed significantly from 0. The discriminating ability of each parameter to distinguish between the Control and Oxidant treatment at 6 h was estimated by using Receiver Operating Characteristics (ROC) curves (Nunez-Martinez et al., 2007). They are based in the calculation of the sensitivity (true positive rate) and specificity (true negative rate) of each parameter for different threshold values, plotting them as a ROC curve. Then, we calculated AUC (Area Under Curve) using the integrate method. AUC varies from 0.5 (test with no discriminatory ability) to 1 (perfect discriminatory ability).

Results

The analysis of male data showed that bull C differed significantly from the other two bulls because of lower DNA integrity, both for SCD and SCSA (Figure 2). Nevertheless, the %DFI for that bull was still below the values considered problematic for fertility (Evenson, 1999). Considering the response to the Oxidant treatment, SCD failed in detecting any difference with the Control (both at 0 and 6 h). However, only in bull C, the SCD showed an increase in the percentage of spermatozoa with halo after the incubation at 37 °C (P<0.001), both for Control and Oxidant treatments. In this case, the Oxidant treatment yielded a slightly higher percentage of halos than the Control (P<0.05).

Contrarily, %DFI did not show differences between Control at 0 and Control at 6 h, but increased
significantly in the Oxidant treatment for the three bulls (Figure 2), indicating a decrease of DNA integrity (higher %DFI). Although this increase was observed in the three bulls, was more marked for bull C. SD-DFI increased in the Oxidant treatment too (P<0.05), but a more detailed analysis indicated that this increase was only significant for bull C. HDS showed a very high dispersion in the 0 h analysis, being much more homogeneous within and between bulls at 6 h. At that time and only for the Oxidant treatment, the three bulls differed significantly following B<A<C.

The results for repeatability and discriminating ability (ROC test) of SCD and SCSA are shown in Table 1. Differences between replicates were small, and not different from 0 (P>0.05). Repeatability was relatively high for all techniques (low repeatability coefficients). However, SCD, being based in subjective microscopy assessment, had a lower repeatability. Figure 3 displays a graphical depiction of the test, showing the differences between the repeatability coefficient intervals of SCD and %DFI for SCSA, showing the higher dispersion of the differences for the former.

The analysis of the discriminating ability of each parameter, according to the treatment (Control or Oxidant), showed important differences between techniques (Table 1 and Figure 3). The discriminating ability of SCD according to this criteria was almost null (AUC: 0.517). In the case of SCSA, %DFI had an AUC of 0.956, meaning a very good discriminating ability for this parameter. SD-DFI and HDS showed a low discriminating ability, as expected considering that these parameters only showed differences for bull C between Control and Oxidant.

Discussion

The assessment of semen doses from fighting bulls showed that %DFI results were below 2% overall. Taking the information published about the SCSA test on bull semen, we would identify all these doses as not having its fertility compromised because of chromatin defects. Indeed, it has been suggested that bull samples with %DFI≥20% might have lower fertility (Evenson, 1999). Nevertheless, submitting the samples to oxidative stress increased the %DFI of bull C to around 10%, while the other two samples still remained below 5%. The reasons behind that difference merit further study, and highlight the importance of supplementary tests to
assess the resistance of semen samples to stressing conditions. At this point, our study must be considered
preliminary. Because of how fighting cattle are reared, there was no fertility data available. Moreover, the
number of cryopreserved doses from fighting bull is still very limited, being our germplasm bank one of the
few containing such samples, and only a reduced number of males are represented there.

The SCD test did not show any discriminating power for detecting oxidative damage caused by Fe²⁺ on
bull sperm, contrarily to the SCSA results. This contrasts with previous studies on this technique on human
sperm, which suggested that SCD might be related to DNA damage as measured with DBD-FISH (Fernandez
et al., 2003), SCSA (Fernandez et al., 2005b) and other tests (Chohan et al., 2006). We have to consider,
though, that the SCD test for human sperm (Halosperm®) has a different lysis solution and a different
interpretation than the Halomax® kit for bovine sperm. Halosperm® produces a halo when the spermatozoa
has intact DNA, whereas Halomax® (and the variant for boar sperm) produces a halo when the spermatozoa
has damaged DNA. This may difficult the comparison between the human and the bull kits.

There is only one previous reference to the Halomax® kit for bull sperm (Garcia-Macias et al., 2006a).
In that study, the authors found negative correlations between 90-day non-return rates and both the percentage
of halos (SCD) and several SCSA parameters. They also combined the percentage of halos with other sperm
parameters and SD-DFI from SCSA into a multiple regression formula for predicting the non-return rate,
although the predictive value was not high ($r^2=0.34$). They concluded that SCSA and SCD explained different
aspects of sperm DNA damage, being both techniques useful for studying it and even complementary.
Unfortunately, these authors did not use other statistical techniques, such as ROC curves or odd ratio
calculation, which possibly had improved the comparison between SCSA and SCD for bull sperm.

Considering both the results of Garcia-Macias et al. and ours, it seems that, at least for the commercial kit
Sperm-Bos-Halomax®, the SCD render different information that the SCSA. This may be a difference with
the Halosperm®, for human sperm, which was criticized for not providing additional information that previous
tests (Evenson and Wixon, 2005a; Schlegel and Paduch, 2005). The SCD test might detect some kind of sperm
chromatin alterations, which may eventually affect sperm fertility, thus the relations found by Garcia-Macias
et al. (2006a) and other authors. In our opinion, it is necessary to study the SCD kits for different species, and
verify if the information delivered is the same in all cases. In our experiment, the SCD test discriminated bull C at 0 h and indicated changes in the sperm of bull C after the incubation at 37 °C, but apparently not related to the oxidative stress. Thus, it seems that SCD detected a kind of chromatin alteration different to those detected by the SCSA. de la Torre et al. (2007), using SCD on boar sperm, could find increased DNA damage after applying an oxidative stress. However, that stress was much higher (15 mM H2O2 for 48 h) than the one used in our study, which might have had introduced artifacts in the analysis. Further research is necessary on this relatively new test, to assess its validity on detecting DNA damage and to determine if the interpretation of the data is the same in different species.

Considering the SCSA, %DFI was the most informative parameter. HDS had a totally different behavior that the rest of parameters, as it showed a broad dispersion at 0 h, which disappeared after the incubation period. Evenson and Wixon (2006) proposed that HDS would indicate the proportion of immature sperm in a sample, thus rendering a different kind of information that SD-DFI or %DFI. In our experiment, the reduction of HDS after the six hours of incubation may indicate changes during the incubation affecting the organization of sperm chromatin. In fact, other authors have reported changes in the degree of chromatin condensation after incubating spermatozoa in different media (Corcuera et al., 2007).

In conclusion, the SCD test for bull sperm did not discriminate among untreated and oxidized samples and it had a lower repeatability than the SCSA. Nevertheless, it discriminated between bull C and the others. The SCSA allowed to discriminating between the oxidized and untreated samples and also between bulls. We propose that both tests may be identifying different features of sperm chromatin. In the study of de la Torre et al. (2007), the SCD was performed simultaneously to an analysis of protein loss from the sperm nucleus. Although limited, the results showed a relation between nuclear protein alteration and DNA damage (formation of halos). In fact, the authors indicated that the lysis solution used in the SCD test alters the chromatin in a different manner than the acid-detergent used in SCSA, causing a disintegration of the protein scaffold, which may explain the differences between both techniques. The SCD is a potentially useful technique, but it must be further studied. The higher subjectivity of this technique is a major drawback, which might be overcome with the development of automated systems to detect halo sizes. Nevertheless, the lack of
responsiveness discriminating among control or oxidized samples raises questions on the interpretation of this
test, which must be solved before approaching the extensive use of this test.

Acknowledgements

This study has been supported by the Spanish Ministry of Education and Science (AGL2004-05904GAN) and
by the Council for Education and Science of Junta de Castilla-La Mancha (PAC-06-047). Felipe
Martínez-Pastor was supported by the “Juan de la Cierva” program (Spanish Ministry of Education and
Science).

References

84, 850–853.

Agarwal A, Said TM, 2003: Role of sperm chromatin abnormalities and DNA damage in male infertility. Hum
Reprod Update 9, 331–345.

Effect of two anesthetization protocols in blood cortisol levels of electroejaculated bulls. In: Reprod Domest
Anim, volume 41 Suppl. 2, p. 118, 8th International Congress of the Spanish Association of Animal
Reproduction, La Manga del Mar Menor, Spain.

Ballachey BE, Hohenboken WD, Evenson DP, 1987: Heterogeneity of sperm nuclear chromatin structure and

Blackburn HD, 2004: Development of national animal genetic resource programs. Reprod Fertil Dev 16,
27–32.

Lloyd DR, Phillips DH, 1999: Oxidative DNA damage mediated by copper(II), iron(II) and nickel(II) Fenton reactions: evidence for site-specific mechanisms in the formation of double-strand breaks, 8-hydroxydeoxyguanosine and putative intrastrand cross-links; Mutat Res 424, 23–36.

Author’s address (for correspondence): Dr. Felipe Martínez-Pastor, Grupo de Biología de la Reproducción, IREC. ETSIA, Campus Universitario s/n, 02071. Albacete, Spain. E-mail: Felipe.Martínez@uclm.es
Figure captions

Figure 1. Example of dot plot for %DFI vs. Total fluorescence. This kind of graph allows to interpreting %DFI data (each dot represents data from one spermatozoon), defining a main population with low %DFI and a cut-off value for medium and high %DFI values. In this study, this cut-off value was set at 25% (vertical line).

Figure 2. Scatter plot showing the distribution of results for each bull and treatment for SCD and SCSA. Bull A: △; Bull B: ○; Bull C: ▽. Lowercase Latin letters indicate significant differences between treatments (Control at 0 h, Control at 6 h, and Oxidant at 6 h); lowercase Greek letters indicate significant differences between bulls within each treatment: α: A≠C, B≠C; β: B≠C; γ: A≠B, A≠C, B≠C. Notice the different vertical scales used for each parameter.

Figure 3. Bland-Altman plots for repeatability (top) and ROC curves (bottom) for SCD and %DFI (SCSA). Repeatability plots show the mean of the replicates against their difference (overplotted lines represent the mean of the differences and the coefficient of repeatability, 2×SD of the differences). ROC curves (1-specificity vs. sensitivity) show the discriminating ability of each test between Control and Oxidant treatments. SCD had low repeatability (2SD = 5.9) and no predictive ability (AUC~0.5), whereas %DFI had better repeatability (2SD = 1.764) and a very good predictive ability (AUC~1).
Table 1. Summary of the results obtained from the repeatability (RPT) and ROC tests. The data showed for RPT are the mean of the differences between replicates, and the repeatability coefficients (2SD of the differences). For the ROC test, data are the AUC (Area Under the Curve) and the optimal cut off point (OCP) for each curve (the value providing the higher number of true positives and the lower number of false negatives). A higher repeatability coefficient indicates lower repeatability, whereas a higher AUC indicates higher discriminating ability between samples submitted and not submitted to the Oxidant treatment.

<table>
<thead>
<tr>
<th></th>
<th>SCSA</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SCD</td>
<td>SD-DFI</td>
<td>%DFI</td>
<td>HDS</td>
</tr>
<tr>
<td>RPT</td>
<td>Mean</td>
<td>0.306</td>
<td>0.004</td>
<td>0.138</td>
</tr>
<tr>
<td></td>
<td>2SD</td>
<td>5.900</td>
<td>0.648</td>
<td>1.764</td>
</tr>
<tr>
<td>ROC</td>
<td>AUC</td>
<td>0.517</td>
<td>0.706</td>
<td>0.956</td>
</tr>
<tr>
<td></td>
<td>OCP</td>
<td>11.05</td>
<td>2.32</td>
<td>1.83</td>
</tr>
</tbody>
</table>
FIGURE 2

SCD

% halos
Control
0 h
Control
6 h
Oxidant
6 h

SD DFI

%DFI
Control
0 h
Control
6 h
Oxidant
6 h

HDS

% HDS
Control
0 h
Control
6 h
Oxidant
6 h

RDA Manuscript Proof
FIGURE 3

- **SCD**
 - Mean: 0.306
 - 2SD: 5.900
 - AUC: 0.517

- **%DFI**
 - Mean: 0.138
 - 2SD: 1.764
 - AUC: 0.956