DIFFERENTIATED INTRA- AND INTER-AGGREGATE WATER CONTENT MODELS OF MX-80 BENTONITE

Authors’ postprint version of the paper published in *Applied Clay Science*:

doi: 10.1016/j.clay.2015.10.015
DIFFERENTIATED INTRA- AND INTER-AGGREGATE WATER CONTENT MODELS OF MX-80 BENTONITE

Vicente Navarro *a, Laura Asensio a, Gema De la Morena a, Xavier Pintado b and Ángel Yustres a

a Geoenvironmental Group, Civil Engineering Department, University of Castilla-La Mancha, Avda. Camilo José Cela s/n, 13071 Ciudad Real, Spain
b B+Tech Oy, Laukukuja 4, 00420 Helsinki, Finland

*Corresponding author. Email address: vicente.navarro@uclm.es; Tel. +34 926295300 ext. 3264; Fax +34 926295391

ABSTRACT

The current research proposes a method for obtaining the intra-aggregate (microstructural) and inter-aggregate (macrostructural) water content of MX-80 bentonite using data from water retention curves. Data associated with high suction were used to define the microstructural water content model. By extrapolating this model to low suction, microstructural and macrostructural water contents were separated to obtain a macrostructural water content model. Micro- and macrostructural water content models have been used to simulate an isotropic swelling test, thus illustrating the advisability of using a double and differentiated macro/micro description of the water content to characterise the hydro-mechanical behaviour of MX-80 bentonite.

KEYWORDS

Bentonite; double porosity; water content; disaggregated model; microstructure
1. INTRODUCTION

According to experimental observations by various authors who have studied the fabric of compacted expansive clays, the pore-size distribution function of these materials generally displays a distinct bimodal character (see Delage et al., 1996, Romero et al., 1999, Lloret et al., 2003, Delage et al., 2006, Romero et al. 2011 and references therein). As established by Gens and Alonso (1992), Alonso et al. (1999), Sánchez et al. (2005), Musso et al. (2013) and Guimarães et al. (2013), among others, it is advisable to use double porosity models when simulating the thermo-hydro-chemo-mechanical behaviour of these materials. In these works, two structural levels are considered: the macrostructural level, which is composed of global arrangements of clay aggregates with pores between them (Sánchez et al., 2005), and the microstructural level, which corresponds to the intra-aggregate porosity. Gerke and van Genuchten (1993a, b) proposed a similar model to analyse the flow of water and solutes in a structured soil.

In principle, the water located within the pores between aggregates (macrostructural water) might have a chemical potential that differs from that of the water stored inside the aggregates (microstructural water). In such a case, a diffusion-type process of mass exchange (Guimarães et al., 2013) will occur that might not be instantaneous and could play an important role in the time-dependent deformation of soils (see Wilson and Aifantis, 1982; Ghafouri and Lewis, 1996; Alonso et al., 1991; Gens et al. 2011). These transient processes also occur when water retention curves (WRCs) are characterised (Dueck, 2008). However, the water content is usually measured after the transient processes are finished and equilibrium in suction is reached (Delage, 2002).

Still, even under equilibrium conditions, it is advisable to differentiate between the microstructural and macrostructural water content when simulating bentonite behaviour (Alonso et al., 2011; Gens et al., 2011). In this way, it is possible to determine the
macrostructural void ratio and degree of saturation. The macrostructural void ratio
constrains the macrostructural intrinsic permeability, and the macrostructural degree of
saturation is required to obtain the macrostructural relative permeability. Relative and
intrinsic permeabilities define the macrostructural advective flow, which is instrumental
for correctly formulating the water mass balance. Thus, it is worthwhile to define
differentiated hydraulic models of the microstructural and macrostructural water
content.

The following sections discuss a procedure to obtain these models from WRCs. First,
experimental data obtained for high suction values (greater than 20 MPa) are used to
model the microstructural water content and void ratio. Second, this microstructural
model is extrapolated for suctions of less than 20 MPa to differentiate the
microstructural and macrostructural water content. The results obtained in this manner
are used to define the macrostructural water content model. Finally, the parameters
deduced from the application of the model to the WRCs results were used to simulate an
isotropic swelling test illustrating the scope and limitations of the proposed models.

2. MATERIALS, METHODS AND EXPERIMENTAL DATA

The WRCs of different batches of MX-80 bentonite were analysed in this work. First, a
Volclay MX-80 material whose physical properties correspond to those obtained by
Kumpulainen and Kiviranta (2010) (see Table 1) was tested in B+Tech’s laboratory.
The isothermal (25º C) paths in compacted samples under constant volume shown in
Table 2 were used to determine the WRCs in an adapted oedometric cell. The vapour
equilibrium technique was used to control suction during the tests. In this technique,
control of the relative humidity (RH) of the air surrounding the specimen allows
imposition of a total suction (s) because both magnitudes are related by the equation

\[s = \frac{R \cdot T \cdot \rho_w}{M_w} \ln (RH) \]

where R is the universal gas constant, T is the absolute temperature, ρ_w is the water density and M_w is the molar mass of water. Relative humidity is usually applied by varying the salinity of an aqueous solution (see, among others, Yahia-Aïssa, 1999; Dueck, 2004; Delage et al., 2008; Pintado et al., 2009). With this procedure, it is possible to obtain suction values of up to 1000 MPa (Pintado et al., 2009).

Samples of 35 mm in diameter and approximately 16 mm high with different initial dry densities (from some 1400 kg/m3 to almost 1700 kg/m3) and water content values (between 4.6% and 6.2% hygroscopic water content under laboratory conditions) were tested (see Table 2). The total suction s_t was imposed in only one step by pumping relative-humidity-controlled air through an upper porous stone. The bottom porous stone was a no-flow boundary. The sample was assumed to reach a total suction that was close to the imposed suction when the swelling pressure reading (measured with a load cell installed on top of the sample) became stable. Moreover, the steady-state conditions were verified by measuring the RH at the top and bottom of the sample using a capacitive hygrometer. A special piston and bottom plate were used to secure the hygrometer probes. After equilibrium was reached, the samples were extracted from the cell and the water content w_t (Table 2) was determined using the ASTM standard test method D2216-10 (ASTM, 2010). The values of s_t were measured using a chilled-mirror dew-point psychrometer (Gee et al., 1992; Leong et al., 2003). The obtained results are presented in Fig. 1.

In addition, the results from Dueck and Nilsson (2010) plotted in Fig. 2 were also analysed. The properties of the material used (“Wym”) are listed in Table 1 (values
adopted from Karnland et al., 2006). These tests were conducted at 20°C under free
swelling conditions. In all cases, the vapour equilibrium technique was used to impose
the total suction. Figure 2 also includes results from Wadsö et al. (2004) and Kahr et al.
(1990) that were obtained in tests similar to those conducted by Dueck and Nilsson
(2010). The total suction (s) values shown in Fig. 2 were obtained using Eq. 1.
Finally, with respect to experimental work, an isotropic swelling test was performed in
the laboratory at the University of Castilla-La Mancha. A cylindrical sample of the same
MX-80 bentonite employed in the tests in Fig. 1 was uniaxially compacted. The sample
that had a diameter of 50 mm and an initial height of 25 mm. It had an initial bulk
density of 2.03 g/cm³ and an initial water content of 20%. Using these values, and
assuming the grain density of Table 1, the initial dry density ρ₀, total void ratio e (total
volume of voids per volume of mineral) and degree of saturation Sᵣ were computed, as
indicated in Table 3.
The test run for 65 days under isothermal conditions (22°C). The sample was subjected
to a constant cell pressure of 1.1 MPa in a triaxial apparatus with no contact between the
top of the sample and the cell piston. Therefore, the test was performed under spherical
stress conditions. A porous stone in contact with atmospheric conditions was placed on
top of the sample. Free hydration with de-ionised water at atmospheric pressure was
allowed at the bottom of the sample.
An automated system with two pressure/volume controllers was used for the test; one
controller was used for the cell pressure and the other was connected to the bottom of
the sample for the water injection pressure. No local strain transducers were used. The
volume change data from the volume gauge in the cell controller were used to compute
the volumetric strain εᵥ. The cell deformation and the lab temperature variation were
took into consideration to identify the volumetric strain trend of the soil. To this end, a
detrending approach usually used when non-stationary time series are analysed was applied to filter ε_V from the raw data (Salas et al., 1980). Although uniaxially compacted samples tend to swell more in the axial direction, as the sample was held under isotropic conditions, the axial strain ε_Z was assumed to be $\varepsilon_V / 3$. The vertical swelling values plotted in Fig. 3 were derived using this procedure.

3. MODEL DEVELOPMENT

To separate the microstructural water content values from the total water content values shown in Figs. 1 and 2, the total soil water content was assumed as the sum of the water that partially fills the inter-aggregate voids ("macrostructural" water) and the water stored inside the intra-aggregate porosity ("microstructural" water) (see Alonso et al., 2011; Della Vecchia et al., 2012; and Casini et al., 2012, among others). According to Or and Tuller (1999) and Tuller and Or (2005), it was accepted that capillary contributions from the water held in the macropores dominated in the wetter range of the WRC. In addition, the adsorptive contributions were considered dominant in the dryer range of the curve, with the soil water content primarily occurring in the micropores. The results obtained by Or and Tuller (1999) indicate that the capillary contributions become negligible for a wide range of soil textures for suction values greater than 10 MPa. Romero et al. (2011) identified the suction corresponding to empty macropores and fully saturated micropores as 25 MPa for FEBEX bentonite (for a complete description of this material, see Enresa, 2000). Jacinto et al. (2009) found that, for MX-80 bentonite, the dry density influences the water retention capacity for suction less than approximately 30 MPa, which would be the lower limit for a region dominated by adsorptive storage mechanisms (Romero et al., 2011). In the current work, it has been assumed that the water content values from Figs. 1 and 2 are
fundamentally associated with intra-aggregate water for suction values higher than 20 MPa.

Starting from a notably dry condition, the initial stages of hydration are associated with crystalline swelling. Several authors have contributed valuable descriptions of this process (Barshad, 1955; Pusch, 1983; Kahr et al., 1990; Laird, 1996; and Salles et al., 2009), which is characterised in Fig. 4, adapted from Cases et al. (1992). Two possible functional structures were considered for the description of this behaviour. First, the application of the potential law proposed by Tuller and Or (2005) was analysed:

\[w_{mc}^{\text{cr}} = \sqrt[3]{\frac{A}{6\pi s_m}} S \cdot \rho_{wm} \]

where \(w_{mc} \) is the crystalline microstructural water content in percentage, \(A \) is the modulus of the Hamaker constant (6·10\(^{-20}\) J; Tuller and Or, 2005), \(s_m \) is the microstructural suction, \(S \) is the clay specific surface area (in units of m\(^2\)/kg) and the microstructural water density \(\rho_{wm} \) is expressed in kg/m\(^3\). Several works have shown that the density of adsorbed water is greater than that of free water \(\rho_w \) (see, e.g., the review in Hueckel, 1992). More recently, Jacinto et al. (2012) analysed the influence of water density on the water retention properties of expansive clays. According to their work, the density of adsorbed water in MX-80 bentonite at a suction of 100 MPa is close to 1.17 g/cm\(^3\). However, if instead of that density, the density of free water (\(\rho_w = 1 \) g/cm\(^3\)) is taken in the calculations, the volume of microstructural water could then be overestimated by 17%. For this reason, it is advisable to study the sensitivity of the models to the value of \(\rho_{wm} \). The evolution of water density with suction proposed by Jacinto et al. (2012) can be used for this purpose. In such an exercise, it was verified that the error derived from assuming \(\rho_{wm} \) equals \(\rho_w \) does not substantially affect the outcome of the calculations in the current work, and differences of less than 15% were
obtained. Therefore, the free and adsorbed water densities were assumed to be equal for modelling purposes (as in Tournassat and Appelo, 2011).

De-ionised water was used to prepare the samples of the tests in Figs. 1 and 2 (Dueck and Nilsson, 2010; Pintado et al., 2013), and the samples were subsequently hydrated by adding pure water from vapour condensation. This fact does not imply that osmotic suction can be disregarded. The original osmotic suction given by the chemical composition of the material independently of the salinity of the water added does not necessarily have to be zero. Although this original value can be reduced when de-ionised water is added, in many of the analysed cases the samples did not reach a high degree of saturation, and no significant dilution took part. Therefore, the original osmotic suction remained almost constant. However, in bentonite clays the structural component (in the sense of Low, 1987) of suction is so high that the osmotic component can be neglected. Hence, the microstructural suction (given in Pa units in Eq. 2) at equilibrium with the macrostructural water can be calculated as (Navarro et al., 2013):

$$s_m = p + s_M$$

where s_M is the macrostructural matric suction ($s_M = P_G - P_L$, where P_G is the gas pressure and P_L is the pressure of macrostructural liquid) and p is the net mean stress ($p = p_{TOT} - P_G$, where p_{TOT} is the mean stress).

In addition to the potential law of Tuller and Or (2005), the application of a van Genuchten (1980) type curve (VG) was also considered to model w_{mc}. This curve was proposed by Durner (1994) to describe the retention characteristics of soils with heterogeneous pore systems and was adopted by Gerke and van Genuchten (1993a) for dual-porosity soils and Della Vecchia et al. (2014) for compacted clays. Similarly, a VG model was employed to describe the microstructural degree of saturation in an analysis.
of clay soils by Alonso et al. (2011) and in a study of compacted silts by Casini et al. (2012).

Cases et al. (1992) indicated that crystalline swelling is practically complete when the suction reaches approximately 44 MPa (RH of 72% at 20°C). For lower suctions, the hydration dynamics change, and the processes known as “osmotic swelling” (or “double layer swelling”; Laird, 1996) become more relevant. To model the increase in microstructural water caused by this new wetting trend, the logarithmic law “Δw_{mO}”, which is similar to that used by Dueck and Börgesson (2007), was adopted:

$$\Delta w_{mO} = -B \cdot \ln\left(\frac{s_m + P_{ATM}}{s_{mO} + P_{ATM}} \right)$$

(4)

where B is a material parameter and s_{mO} is the microstructural suction at which osmotic swelling begins to play a significant role (a value of 40 MPa has been assumed). Thus, the microstructural water content was calculated as follows:

$$w'_m = w'_m + \Delta w_{mO}$$

(5)

If one assumes that the increase in microstructural void space from the dry state is equal to the increase in microstructural water, then the following relationship holds:

$$e_m = G_S \cdot w_m$$

(6)

where $G_S = \rho_S / \rho_W$ is the specific gravity of the soil particles, ρ_S is the density of mineral particles (see Table 1) and e_m is the microstructural void ratio (volume of voids in the microstructure per volume of clay mineral). Therefore, the definition of the microstructural water content directly implies the definition of a model of microstructural porosity and vice versa. Eq. 5 can be written as follows in terms of the microstructural void ratio:

$$e_m = e'_m + \Delta e_{mO}$$

(7)
The VG model and Eqs. 2 and 4 can also be written using e_m. In particular, if the latter equation is written as a function of e_m, the following equation is obtained for s_m less than 40 MPa:

$$\Delta e_{mO} = -\kappa_m \cdot \ln \left(\frac{s_m + P_{ATM}}{s_{mO} + P_{ATM}} \right)$$

This expression, where κ_m is a microstructural stiffness parameter, was utilised by Sánchez et al. (2005), Alonso and Navarro (2005), Alonso et al. (2011) and Gens et al. (2011) to define the volumetric behaviour of the microstructure.

Once the model for the microstructural water content was defined, it was used to estimate w_m for suctions less than 20 MPa. The obtained values allowed to derive the macrostructural water content (w_M) by subtracting the estimated w_m values from the experimental water content (w) values: $w_M = w - w_m$ (see Della Vecchia et al., 2012, for example). The w_M values obtained in this manner were used to define a model of the macrostructural retention law. A VG model was also applied, and s was used as a state variable.

A double porosity model (Gens and Alonso, 1992; Alonso et al., 1999; Sánchez et al., 2005; Guimarães et al., 2013) was adopted to simulate the swelling test in Fig. 3. In the simulation, equilibrium between macrostructural and microstructural water was not assumed: the water potentials in the two structural levels might be different, which leads to an exchange of water between them (Gens et al., 2011). Therefore, a mass exchange term c_m between the two levels was included when analysing the mass balance of both micro and macrostructural water. Hence, the macrostructural water mass balance was formulated as (Navarro et al., 2008):

$$\frac{\partial m_M}{\partial t} + \nabla \cdot (m_M \cdot \mathbf{q}_M) + c_m = 0$$
where \(m_M = (\rho_W \cdot S_M \cdot e_M) / (1 + e) \) is the mass of macrostructural water per unit volume, \(S_M \) is the macrostructural degree of saturation, \(e_M \) is the macrostructural void ratio, \(q_M \) is the macrostructural water seepage, \(\partial / \partial t \) is the time derivative and \(\nabla \cdot \) is the divergence operator. Although other authors have proposed first-order water transfer models (Gerke and van Genuchten, 1993a, b; Musso et al., 2013), a non-linear formulation was adopted to define \(c_M \) (Navarro et al., 2013):

\[
[10] \quad \frac{c_m}{\rho_W} = H \cdot \left(\frac{p + s_M}{s_m} \right)^c \cdot (s_m - (p + s_M))
\]

where the parameter \(H \) defines the transfer coefficient at the end of the mass exchange process (when \(s_m = s_M + p \)) and parameter \(C \) describes the mass transfer change as \(s_m \) approaches \(s_M \). Consistent with the results obtained by Navarro et al. (2013) after analysing an MX-80 bentonite test by Montes-H et al. (2003), the values \(H = 1.5 \cdot 10^{-8} \) (kPa·s)\(^{-1} \) and \(C = 0.4 \) were assumed.

The macrostructural water seepage \(q_M \) vector was calculated as follows:

\[
[11] \quad q_M = -\frac{k_{rM} \cdot k_{iM}}{\mu_W} \cdot (\nabla P_L + \rho_W \cdot g \cdot \nabla \bar{z})
\]

where \(k_{rM} \) is the relative permeability, \(k_{iM} \) is the isotropic intrinsic permeability, \(\mu_W \) is the dynamic viscosity of water, \(g \) is the gravity constant and \(\bar{z} \) is the vertical coordinate.

The Brooks and Corey (1964) and Burdine (1953) formulation with an exponent value equal to 3 (Börgesson and Hernelin, 1999; Gens et al., 2011) was used to model the relative permeability as a function of the macrostructural degree of saturation:

\[
[12] \quad k_{rM} = (S_M)^3
\]

An intrinsic permeability expressed as a function of the macrostructural porosity \(\phi_M \) = \(e_M / (1 + e) \) was adopted (Gens et al., 2011):

\[
[13] \quad k_{iM} = k_{i_{MO}} \cdot \exp \left(b \left(\phi_M - \phi_{MO} \right) \right)
\]
where b is a material parameter and ϕ_{MO} is a reference macrostructural porosity for
which the intrinsic permeability is k_{MO}. Using the data from Karnland et al. (2006), the
parameters $k_{MO}=9.94 \cdot 10^{-21} \, \text{m}^2$, $b=9.18$ and $\phi_{MO}=0.053$ were identified.
The microstructural water mass balance equation was formulated as follows:

$$
\frac{\partial m_m}{\partial t} - c_m = 0
$$

where $m_m=(\rho_W \cdot e_m)/(1+e)$ is the mass of microstructural water per unit volume. Similar
to the immobile water of van Genuchten and Wierenga (1976), the microstructural
water was considered linked to the soil skeleton.
The above formulation was implemented in the multiphysics partial differential
equations solver COMSOL Multiphysics (Comsol AB, 2011) to simulate the isotropic
swelling test. The numerical strategies described by Navarro et al. (2014b) were
applied. The solution of Eqs. 9 and 14 allows calculation of the state variables P_L and e_m.

4. DETERMINATION OF MODEL PARAMETERS FROM WRCs RESULTS

To analyse the validity of Eq. 2, the product $w_m \cdot s_m^{1/3}$ is represented in Fig. 5a, as
obtained with data from the tests of Fig. 2. Only data from suctions greater than 40 MPa
($w=w_m=w_mC$) were used. As shown, the relationship is not constant. According to Eq.
2 and as highlighted by Cases et al. (1992) and Salles et al. (2009), among others, this
result appears to indicate that the clay specific surface area is not constant throughout
the hydration process. Therefore, the data for s_m and w_m that were used in Fig. 5a are
compared in Fig. 5b with the model of w_m that results from introducing into Eq. 2 the
variation of S obtained by Salles et al. (2009) in their hydration analysis of a Na-
montmorillonite (see Fig. 5c). The fit is not satisfactory.
Indeed, there is no reason to expect that the variation of S from the analysis of Na-
montmorillonite in Salles et al. (2009) should exactly reproduce the variations of
specific surface area in the MX-80 bentonite studied in this work. If all of the values of
w_m and s_m from the tests of Fig. 2 are used, the value of S linked to each $w_m - s_m$ point
can be found through Eq. 2, obtaining the results in Fig. 5c. The identified law is
different from that obtained by Salles et al. (2009). For suction values less than 40 MPa,
the specific surface area begins to show a greater dispersion, which appears to confirm
that a change in the hydration trend is produced near this value.

If reliable information on the evolution of S is not available beforehand, then application
of Eq. 2 to obtain w_mC is not a simple task. Therefore, use of the VG model was
considered because its sigmoidal shape can approximate the characteristic curve shown
in Fig. 4. According to Eq. 6, the VG model was formulated in terms of the
microstructural void ratio as follows:

$$
e_{mC} = \frac{e_{m\text{CMAX}}}{1 + (\alpha_m \cdot s_m)^{n_m}}$$

where $e_{m\text{CMAX}}$ is the microstructural void ratio associated with the crystalline swelling at
saturation, and α_m and l_m are fitting parameters. The relationship $n_m=1/(1-l_m)$ (van
Genuchten, 1980) was assumed to be valid. Using experimental values from Fig. 2
associated with suctions greater than 40 MPa, values of e_m (identified with e_{mC}) were
derived with Eq. 6, and a least-squares method was applied to obtain the parameters of
Eq. 15 included in Table 4. Using these parameters, the fitting represented in Fig. 6 was
obtained, which satisfactorily reproduces the aimed suction range ($s_m>40$MPa).

As illustrated in Fig. 7, the same is not true when tests 3_10_20 and 5_64_10, also
performed by Dueck and Nilsson (2010) under free swelling conditions using the
vapour equilibrium technique, are modelled ("emC" curve). These tests are different
from the 1_0_20 test because their initial bentonite water content was greater than zero
(10% in 3_10_20 and 64% in 5_64_10). An offset occurs between the model and the
experimental values as if an “additional” microstructural void ratio (or microstructural
water content) were present, which is not accounted for in Eq. 15. Thus, as observed in
Fig. 4, a residual water content of 1.8% is identified for the Na-montmorillonite
analysed by Cases et al. (1992) under dry conditions. According to Eq. 6, this result
implies a microstructural void ratio e_{mR} of 0.048. If this value is introduced into the law
for e_{mC} as follows:

$$e_{mC} = e_{mR} + \frac{e_{MAX}}{1 + (e_{m} \cdot s_{m})^{n_{m}}}$$

the fit to the experimental data improves (Fig. 7, “emC+emR(=0.048)” curve). This
improvement is even more noticeable if an identification problem is solved for the value
of e_{mR} that provides a better fitting to the experimental data (Fig. 7, “emC+emR_opt”
curve). An “optimal” value for e_{mR} of 0.093 was obtained (Table 4). Again, only
experimental data from Fig. 2 associated with suctions greater than 40 MPa were used
to solve the identification problem.

Taking $e_{mR} = 0$, the e_{m} data from the tests in Fig. 2 were used once again to identify the
optimal value of the microstructural stiffness parameter κ_{m}. However, in this case,
experimental values corresponding to the range between 20 MPa and 40 MPa were
used, and the satisfactory fit shown in Fig. 8 was obtained for $\kappa_{m} = 0.04$ (Table 4).
However, the quality of this fit has a limited scope because it is a consequence of the
solution to several parameter identification problems.

Conversely, the fit presented in Fig. 9 is more remarkable. In this figure, the model of
e_{m} obtained from the parameters presented in Table 4 is compared with the experimental
results of Fig. 1. Because the parameters are based on the data of Fig. 2, they are
independent of the experimental results of Fig. 1. For this reason, the obtained fit is especially valuable and supports the microstructural model defined by the parameters of Table 4 and Eqs. 7, 8 and 16. Acceptance of this model for both the free swelling tests in Fig. 2 and the constant volume tests in Fig. 1 implies assumption of a one-to-one relationship between s_m and e_m independent of the applied macroscopic strain constraints, as certain authors have observed (see, among others, Villar, 2007; Romero et al., 2011; Jacinto et al., 2012).

When s_m approaches zero, the modelled e_m moves gradually towards the value of 0.8 (Fig. 9). This value is slightly lower than 0.9, the value identified by Pusch et al., (1990) and Bourg et al., (2006) for Na-bentonites and also by Romero et al. (2011) for an MX-80 bentonite. Nevertheless, this value is within the range that would result from assuming that the adsorbed water has an equivalent thickness of two or three water monolayers (see, among others, Sposito and Prost, 1982, and Cases et al., 1992) in a situation of destructuration of bentonite aggregates into nearly individual sheets (Neretnieks et al., 2009). In this case, e_m can be estimated with the ratio t/t_S. If the sheet thickness t_S is given a value of 1 nm, and the thickness of each water layer t is taken as 0.3 nm, the obtained microstructural void ratio values are between 0.6 and 0.9. For this reason, it was admitted as a working hypothesis that the extrapolation of the model of e_m defined by Eqs. 7, 8 and 16 and the parameters in Table 4 is valid for estimation of e_m for suctions less than 20 MPa.

After estimating e_m, w_m was computed, and the macrostructural water content w_M was derived by subtracting w_m from the total water content experimental values. In addition, using the values of the final dry density ρ_0 shown in Table 2, the values of the total void ratio e were obtained, and using the estimated value of e_m, the value of the macrostructural void ratio e_M (volume of voids in the macrostructure per volume of
mineral, $e = e_M + e_m$) was deducted. In this manner, the wetting experimental values of
the macrostructural degree of saturation S_{rM} presented in Fig. 10 (“SrM test data”) were
calculated. The same figure shows the values of the “total” degree of saturation S_r
which were obtained from w and ρ_d by assigning a unique characteristic curve to the
soil without differentiating between the macrostructural and microstructural water. As
expected, if there is no distinction between w_M and w_m, the S_r values are greater than
S_{rM}. The experimental results of Villar (2007) on the main wetting path are also
included in Fig. 10 for comparison purposes.

A VG model was fitted for both S_{rM} and S_r, according to the following laws:

$$S_{rM} = \left(1 + \left(\frac{s}{P_M}\right)\right)^{-l_M}$$

$$S_r = \left(1 + \left(\frac{s}{P}\right)\right)^{-l}$$

where P_M is the macrostructural air-entry pressure value. Parameters P_M, l_M, P and l
were identified using a least-squares fitting procedure and the values indicated in Table
5 were obtained. The relationships $n_M = 1/(1-l_M)$ and $n = 1/(1-l)$ (van Genuchten, 1980)
were assumed. The air-entry pressure values associated with S_{rM} were found to be
approximately 9 MPa, a value considerably closer to those indicated for the
macrostructure by other researchers, e.g., 0.5 MPa by Villar (2002) and 4.15 MPa by
Alonso et al. (2011), than the values of 24-26 MPa identified for the parameter P of S_r
(Table 5).

5. APPLICATION OF THE MODEL TO A SWELLING TEST
Given the relevance of the water flow in a swelling test, the analysis of a test of this

type is a good method for illustrating the sensitivity of a water flow model to the use of
differentiated definitions of water content. Nonetheless, the results of such an exercise
depend not only on the adopted flux model but also on the stress-strain relationship
applied. This influence is reduced by analysing an isotropic swelling test under constant
mean stress, as that described in Section 2 (Fig. 3). In this case, after adopting the model
for \(e_m \) defined by Eqs. 7, 8 and 16 and the parameters shown in Table 4, the deformation
behaviour of the MX-80 in this type of isotropic test is determined by the model
selected to define \(e_M \). In this work, the same formulation as in the Barcelona Basic
Model (Alonso et al., 1990), which is widely accepted for the simulation of the
mechanical behaviour of bentonites (see, for instance, Lloret et al., 2003; Sánchez, et
al., 2005; Gens et al., 2011; Guimarães et al., 2013; Navarro et al., 2014a), was used for
modelling. The mechanical parameters of Table 6 were applied. With the exception of
the initial net mean yield stress \(p_o^* \), these parameters were obtained by fitting
independent oedometric swelling tests performed by Sane et al. (2013) using the same
MX-80 bentonite as that of the tests in Fig. 1. The value of \(p_o^* \), 1800 kPa, was
estimated from the pressure applied during the uniaxial compaction of the sample, 8059
kPa, using the proposal of Alonso et al. (2011).

In the numerical simulations, the gas pressure was assumed constant and equal to the
atmospheric pressure (0.1 MPa) throughout the sample. As done for the microstructural
suction (see Section 3), the osmotic component of the macrostructural suction was not
taken into account, and \(s = s_M \) was assumed. See Sedighi and Thomas, 2014, and
references therein, for examples in which osmotic suction is taken into account. The
lateral and upper surfaces were supposed to be impervious to water, and the liquid
pressure at the base surface was taken as equal to atmospheric pressure. With respect to
the mechanical boundary conditions, a roller was applied to the sample base surface, and a normal pressure of 1.1 MPa was applied to the remaining boundaries, assuming isotropic strains.

Three different approaches were implemented in the partial differential equations solver defined in Section 3 to analyse the sensitivity of the flow model to the proposed water content models. In the first approach, which was adopted as a reference ("REF"), s_M was obtained with P_L, and S_M was calculated using Eq. 17 and the parameters of Table 5. Moreover, Eqs. 7, 8 and 16 and the parameters of Table 4 allowed determination of s_m from e_m. In this analysis, the descriptions of the macrostructural and microstructural water content were considered separately, thus constituting a differentiated analysis.

The modelled vertical swelling values in Fig. 11 and S_M values in Fig. 12a were obtained. Even if available experimental water content values were desirable for a better validation of the model, the fit of the vertical swelling values illustrated in Fig. 11 provides confidence for the first approach implemented ("REF") as well as for the decision of adopting it as a reference. In addition, this satisfactory fit seems to confirm the validity of assuming an isotropic swelling behaviour (last paragraph of Section 3).

Montes-Hernandez et al., 2006, describe a 21 MPa compaction pressure as "moderate", and thus it seems reasonable to use the same adjective to describe the 8059 kPa applied in this case, especially if compared to the compaction pressures of 50-100 MPa applied to MX-80 bentonites in other cases (see, among others, Johannesson and Börgesson, 1998; Johannesson, 2014; Börgesson and Hernelind, 2014). The compaction pressure applied was probably moderate enough to limit the anisotropy of the sample, not being large enough to invalidate the isotropic swelling hypothesis. Nevertheless, this hypothesis might not be valid for cases with a higher compaction pressure.
The "AP1" approach used the same mechanical model of the microstructure as that used in REF (Eqs. 7, 8 and 16 together with the parameters of Table 4). However, instead of using Eq. 17 to compute \(S_{mM} \), its value was calculated from \(s_M \) using Eq. 18 ("mistakenly" identifying \(S_{mM} \) with \(S_r \)). Such calculations are performed when the contribution of the microstructural water content is ignored in the experimental determination of the soil characteristic curve. As a result, it is implicitly assumed that the entire soil water content derives from macrostructural water. Using this retention curve, the macrostructural water content is overestimated. To reduce this effect such that the water mass can be balanced, suction values greater than the real values are introduced in the calculations. Hence, using Eq. 17 in REF, a macrostructural initial suction of 25499 kPa was estimated for the initial conditions shown in Table 3, whereas the initial suction estimated using the AP1 approach and Eq. 18 was 44303 kPa. Because the initial suction is overestimated, a much larger final swelling was obtained (see Fig. 11). To obtain a "correct" swelling (equal to that of REF) from the simulation, an elastic stiffness for changes in suction (parameter \(\kappa_{S_0} \) in Table 6) of 0.01 should be adopted, which is significantly smaller than the reference value (0.05, Table 6). Such corrections could lead to important calculation errors in subsequent simulations with other geometries and boundary/initial conditions. In addition, even in the case under analysis, and although the final swelling is fitted with \(\kappa_{S_0}=0.01 \), the swelling evolution is not satisfactorily reproduced (Fig. 11). These errors can be reduced by considering that \(S_{mM} \) and \(S_r \) are related by the following expression:

\[
S_{mM} = \frac{S_r \cdot (e_M + e_m - e_{nR}) - (e_m - e_{nR})}{e_M}
\]

[19]
The third and last approach considered in this work, known as “AP2,” was conducted in this manner by assuming that only Eq. 18 was determined experimentally. However, a differentiated procedure was adopted because the contribution of w_m in S_r was considered. The S_r was calculated using s_M and Eq. 18, and S_{rM} was subsequently deduced using Eq. 19. According to the data from Table 3, an initial suction value of 24127 kPa was estimated, which is similar to the value obtained in REF (25499 kPa). Therefore, the final swelling obtained with AP2 matches the swelling obtained with REF, which is shown in Fig. 11. Furthermore, the modelled evolutions of the swelling strains are practically identical and obtain overlapping curves (Fig. 11).

However, differences in the macrostructural degree of saturation are observed (Fig. 12a). In Fig. 12b, these differences are shown to be less than 20% and reach a maximum value at the base of the sample during the initial portion of the test; when the macrostructural suction gradients are greater, the advective flux of the macrostructural water is larger, and the time variation of s_M is faster. According to Eq. 3, s_m is equal to $p+s_M$ in the equilibrium; then, the sample experiences a situation farthest from the equilibrium between macrostructural and microstructural water at the base of the sample and at the beginning of the test, as illustrated in Fig. 13. However, the imbalance is practically negligible. It is thus valid to use Eq. 18, which was obtained under equilibrium conditions.

Situations further from equilibrium are produced if the transfer coefficient H increases from $1.5 \cdot 10^{-8}$ (kPa·s)$^{-1}$ to $1.5 \cdot 10^{-11}$ (kPa·s)$^{-1}$, the value identified by Alonso and Navarro (2005) in an analysis of the secondary compression of various clays. In this case, the difference between s_m and $p+s_M$ increases considerably at the base of the sample at the beginning of the test. Nonetheless, even in this case, the differences in the swelling strain between the REF and AP2 approaches are always less than 10% (Fig. 14).
6. CONCLUSIONS

The aim of this work is to define a method for obtaining differentiated hydraulic models of the intra-aggregate (microstructural) and inter-aggregate (macrostructural) water content of MX-80 bentonite using data from water retention curves (WRCs). An additive (crystalline+osmotic swelling) approach is adopted to model the microstructural void ratio (Equation 7), obtaining noteworthy fittings for suctions greater than 20 MPa. For lower suction values, the additive model is extrapolated to estimate the microstructural water content. This way, the macrostructural water content is identified by subtracting the estimated microstructural water from the total water content experimental data. The WRCs obtained in this manner (Fig. 10) could be noticeably different from the total water content curves. If this difference is neglected and the macrostructural water content is modelled using retention curves corresponding to the total water content, excessively large values are obtained for the macrostructural suction. Therefore, to fit the swelling strains obtained experimentally, the soil stiffness for the changes in suction must be excessively reduced, which can lead to significant errors in the subsequent predictions of the bentonite behaviour.

To avoid these errors, it is advisable to separate the macrostructural water content from the total water content using Eq. 17. Nevertheless, it is also possible to use Eqs. 18 and 19 to differentiate the macrostructural degree of saturation. Eq. 18 is obtained under equilibrium conditions between macrostructural and microstructural water. Therefore, the validity of the latter procedure is constrained by the fulfilment of the equilibrium condition. For the analysed material, equilibrium is met, and therefore the two differentiated approaches (separate macro and micro water contents, either using Eq. 17 or using Eqs. 18 and 19 together) produce comparable results (Figs. 11, 12a and 12b).
These results are valid for the MX-80 bentonite analysed, but generalisation to other types of clay is by no means obvious. Note that only wetting paths have been analysed, and the dependence of the macrostructural water retention properties on the void ratio has not been considered (see Della Vecchia et al., 2014, and references therein). In addition, even if the results have shown a reduced sensitivity to the difference in density between free and adsorbed water in the cases analysed in the current work, the same might not apply in other cases (particularly for Ca-bentonites and for constant volume experiments). However, despite these limitations, this analysis illustrates the advisability of using differentiated approaches based on a double porosity retention model to characterise the behaviour of MX-80 bentonites.

ACKNOWLEDGEMENTS

This work was financed in part by B+Tech Oy (Finland) under a POSIVA Oy project. In addition, the authors gratefully acknowledge the financial support provided by the Spanish Ministry of Economy and Competitiveness under the Innocampus Program 2010. The authors also thank Oyinloye Femi Adesola and Oscar Merlo for collaboration in the experimental work conducted to obtain Figs. 1 and 3, respectively.
APPENDIX A. LIST OF SYMBOLS

A Modulus of the Hamaker constant

B Material parameter of the Δw_{mO} model

b Material parameter

C Parameter that describes the mass transfer change as s_m approaches s_M

c_m Mass exchange term between macrostructural and microstructural water

e Total void ratio

e_M Macrostructural void ratio

e_m Microstructural void ratio

e_{mC} Microstructural void ratio associated with crystalline swelling

e_{mCMAX} Microstructural void ratio associated with the crystalline swelling at saturation

e_{mR} Additional microstructural void ratio

G_S Specific gravity of the soil particles

g Gravity constant

H Parameter that defines the transfer coefficient at the end of the mass exchange process

K Increase in cohesion with suction

k_{iM} Isotropic intrinsic permeability

k_{MO} Intrinsic permeability when the macrostructural porosity is ϕ_{MO}

k_{rM} Relative permeability

l Fitting parameter of S_t

l_M Fitting parameter of S_{rM}
1. l_n Fitting parameter of e_{mC}

2. M Slope of the critical state line

3. M_w Molar mass of water

4. m_M Mass of macrostructural water per unit volume

5. m_m Mass of microstructural water per unit volume

6. n Fitting parameter of S_r

7. n_m Fitting parameter of e_{mC}

8. P Total air-entry pressure value

9. P_{ATM} Atmospheric pressure

10. P_G Gas pressure

11. P_L Pressure of macrostructural liquid

12. P_M Macrostructural air-entry pressure value

13. p Net mean stress

14. p_C Reference stress

15. p_{O*} Initial net mean yield stress

16. p_{REF} Material parameter used to define ξ_S

17. p_{TOT} Mean stress

18. q_M Macrostructural water seepage

19. R Universal gas constant

20. RH Relative humidity

21. r Material parameter used to define the macrostructural soil compressibility

22. S Clay specific surface area

23. S_{mO} Microstructural suction at which osmotic swelling begins to play a significant role
S_t Total degree of saturation

S_{tM} Macrostructural degree of saturation

s Total suction

s_f Final total suction

s_{M} Macrostructural matric suction

s_m Microstructural suction

s_o Initial value of total suction

T Absolute temperature

t Approximate thickness of an adsorbed water layer

t_s Approximate thickness of a montmorillonite sheet

w Total water content

w_f Water content at equilibrium with the final total suction s_f

w_{M} Macrostructural water content

w_m Microstructural water content

w_{mC} Crystalline microstructural water content

w_o Initial value of water content

z Vertical coordinate

α_i Material parameter used to define κ

α_m Fitting parameter of e_{mC}

α_{Sp} Material parameter used to define κ_S

α_{SS} Material parameter used to define κ_S

β Material parameter used to define the macrostructural soil compressibility

Δe_{mO} Increase in microstructural void ratio caused by osmotic swelling
Increase in microstructural water content caused by osmotic swelling

\(\varepsilon_v \)
Volumetric strain

\(\varepsilon_z \)
Axial (vertical) strain

\(\kappa_{\text{io}} \)
Material parameter used to define the macrostructural elastic stiffness for changes in net mean stress (\(\kappa \))

\(\kappa_m \)
Microstructural stiffness parameter

\(\kappa_{\text{So}} \)
Material parameter used to define the macrostructural elastic stiffness for changes in suction (\(\kappa_{\text{S}} \))

\(\lambda(0) \)
Slope of the virgin compression curve for saturated conditions

\(\mu W \)
Dynamic viscosity of water

\(\nu \)
Poisson’s ratio

\(\rho_d \)
Dry density

\(\rho_n \)
Bulk density

\(\rho_s \)
Density of mineral particles

\(\rho_W \)
Free water density

\(\rho_{Wm} \)
Microstructural water density

\(\phi_M \)
Macrostructural porosity

\(\phi_{\text{MO}} \)
Reference macrostructural porosity

\(\partial / \partial t \)
Time derivative

\(\nabla \cdot \)
Divergence operator

\(\nabla \)
Gradient operator
REFERENCES

Burdine N.T. (1953). Relative permeability calculations from pore size distribution data. Trans Am Inst Mining Metall Eng 198:71-78

Hilgardia 15(2):31-298

Table 1. Main properties of the MX-80 bentonite batches studied in this work. Data from Kumpulainen and Kiviranta (2010).

<table>
<thead>
<tr>
<th></th>
<th>Volclay MX-80</th>
<th>Wym</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smectite</td>
<td>76.3</td>
<td>81.4</td>
</tr>
<tr>
<td>Illite</td>
<td>1.8</td>
<td>0.8</td>
</tr>
<tr>
<td>Calcite</td>
<td>0.7</td>
<td>0.2</td>
</tr>
<tr>
<td>Cristobalite</td>
<td>0.6</td>
<td>0.2</td>
</tr>
<tr>
<td>Gypsum</td>
<td>1.2</td>
<td>0.9</td>
</tr>
<tr>
<td>Hematite</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Plagioclase</td>
<td>2.3</td>
<td>3.5</td>
</tr>
<tr>
<td>Pyrite</td>
<td>0.8</td>
<td>0.6</td>
</tr>
<tr>
<td>Quartz</td>
<td>4.8</td>
<td>3.0</td>
</tr>
<tr>
<td>CEC (eq/kg)</td>
<td>0.89</td>
<td>0.86</td>
</tr>
<tr>
<td>Na$^+$ / K$^+$ / Ca$^{2+}$ / Mg$^{2+}$ (eq/kg)</td>
<td>0.60 / 0.02 / 0.19 / 0.07</td>
<td>0.74 / 0.02 / 0.18 / 0.07</td>
</tr>
<tr>
<td>Grain density g/cm³</td>
<td>2.78</td>
<td>2.78</td>
</tr>
</tbody>
</table>
Table 2. Tests conducted by B+Tech (Pintado et al., 2013). Symbols \(w_0 \) and \(s_0 \) define the initial water content and total suction values, respectively; \(d \) is the water content and \(w_f \) is the water content at equilibrium with the final total suction \(s_f \).

<table>
<thead>
<tr>
<th>Test ID</th>
<th>(w_0) (%)</th>
<th>(s_0) (MPa)</th>
<th>(d) (kg/m(^3))</th>
<th>(w_f) (%)</th>
<th>(s_f) (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>091218a</td>
<td>6.2</td>
<td>204.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1576</td>
<td>3.0</td>
<td>288.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1682</td>
<td>3.3</td>
<td>287.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1522</td>
<td>10.6</td>
<td>89.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1530</td>
<td>16.0</td>
<td>54.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1529</td>
<td>15.0</td>
<td>60.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1544</td>
<td>24.9</td>
<td>13.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100111b</td>
<td>4.6</td>
<td>263.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1622</td>
<td>3.1</td>
<td>267.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1587</td>
<td>3.6</td>
<td>254.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1543</td>
<td>9.5</td>
<td>95.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1510</td>
<td>12.7</td>
<td>71.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1539</td>
<td>13.3</td>
<td>68.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1472</td>
<td>16.9</td>
<td>44.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100208a</td>
<td>5.1</td>
<td>204.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1655</td>
<td>4.2</td>
<td>270.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1661</td>
<td>6.7</td>
<td>177.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1461</td>
<td>9.6</td>
<td>101.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1446</td>
<td>15.7</td>
<td>56.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1559</td>
<td>11.2</td>
<td>79.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1576</td>
<td>20.8</td>
<td>25.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100222a</td>
<td>5.5</td>
<td>231.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1589</td>
<td>8.6</td>
<td>99.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1638</td>
<td>11.1</td>
<td>80.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1578</td>
<td>13.2</td>
<td>71.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1539</td>
<td>15.1</td>
<td>56.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1580</td>
<td>18.0</td>
<td>40.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1603</td>
<td>19.6</td>
<td>28.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3. Initial conditions of the MX-80 sample used in the isotropic swelling test.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>w (%%)</td>
<td>20</td>
</tr>
<tr>
<td>n (g/cm3)</td>
<td>2.03</td>
</tr>
<tr>
<td>d (g/cm3)</td>
<td>1.692</td>
</tr>
<tr>
<td>e</td>
<td>0.646</td>
</tr>
<tr>
<td>S_r</td>
<td>0.868</td>
</tr>
</tbody>
</table>
Table 4. Parameters identified to characterise the microstructural void ratio using the data of Fig. 2.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϵ_{mR}</td>
<td>0.093</td>
</tr>
<tr>
<td>$\epsilon_{mC_{MAX}}$</td>
<td>0.480</td>
</tr>
<tr>
<td>α_m (MPa$^{-1}$)</td>
<td>0.016</td>
</tr>
<tr>
<td>I_m</td>
<td>0.612</td>
</tr>
<tr>
<td>m</td>
<td>0.04</td>
</tr>
<tr>
<td>s_{mO} (MPa)</td>
<td>40</td>
</tr>
</tbody>
</table>
Table 5. Parameters identified to characterise S_rM and S_r.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_M</td>
<td>8.70</td>
</tr>
<tr>
<td>I_M</td>
<td>0.73</td>
</tr>
<tr>
<td>P</td>
<td>26.58</td>
</tr>
<tr>
<td>I</td>
<td>0.43</td>
</tr>
</tbody>
</table>
Table 6. Parameters of the Barcelona Basic Model for the MX-80 analysed in this work.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>0.1</td>
</tr>
<tr>
<td>io</td>
<td>0.1</td>
</tr>
<tr>
<td>$i_\text{(1/kPa)}$</td>
<td>0</td>
</tr>
<tr>
<td>so</td>
<td>0.05</td>
</tr>
<tr>
<td>sp</td>
<td>0</td>
</tr>
<tr>
<td>ss (1/kPa)</td>
<td>0</td>
</tr>
<tr>
<td>p_{REF} (kPa)</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>0.35</td>
</tr>
<tr>
<td>p_{C} (kPa) (0)</td>
<td>10</td>
</tr>
<tr>
<td>r (1/kPa) $2.0 \cdot 10^{-5}$</td>
<td>0.8</td>
</tr>
<tr>
<td>p_{0}^* (kPa)</td>
<td>1800</td>
</tr>
<tr>
<td>M</td>
<td>1.07</td>
</tr>
</tbody>
</table>
Figure 2

Water content (%) vs. suction (MPa)

- Kahr et al. 1990
- Wadsö et al. 2004
- SB_0_20
- 1_0_20
Figure 3
Figure 4

The graph shows the relationship between water content (%) and RH (Relative Humidity). The data points indicate a linear increase in water content as RH increases from 0 to 1.
Figure 6

- Kahr et al. 1990
- Wadsö et al. 2004
- SB_0_20
- 1_0_20

Experimental e_m, e_{mc}

s_m (MPa)
Figure 7

Experimental e_m, computed values of e_{mC}

- 1_0_20
- 3_10_20
- 5_64_53

- e_{mC}
- $e_{mC}+e_{mR}(=0.048)$
- $e_{mC}+e_{mR_opt}$

s_m (MPa) vs. e_m, showing experimental values and computed curves.
Figure 8

- Kahr et al. 1990
- Wadsö et al. 2004
- SB_0_20
- 1_0_20

Experimental e_m, e_{mc} and Δe_{mo} vs s_m (MPa)

- $e_{mc} + DemO$
- emC

Graph showing the experimental values of e_m, e_{mc}, and Δe_{mo} against stress s_m (MPa) with data points from different sources.
Figure 9

- Test data
- Model
Figure 10

S_r and S_{rM}

suction (MPa)

S_r data
S_r fit
SrM test data
SrM fit
Villar, 2007

1 10 100

1 10 100
Figure 11

vertical swelling (mm)

time (h)

REF
AP1
AP1 ks
AP2
Experimental data
Relative differences in \(S_{rM} : \frac{\text{abs}(S_{rM,AP2} - S_{rM,REF})}{S_{rM,REF}}(\%) \)

Figure 12

Macrostructural degree of saturation, \(S_{rM} \)

dimensionless sample height

0 0.2 0.4 0.6 0.8 1.0

28 h

278 h

1111 h

2778 h

AP2 0 h

27778 h

Macrostructural degree of saturation, \(S_{rM} \)

dimensionless sample height

0 5 10 15 20 25

28 h

278 h

1111 h

2778 h

27778 h
\[
\text{dimensionless sample height} = \frac{\text{abs}(s_m - (p + s_M))}{s_m} \times 100\%
\]
Figure 14

\[\text{abs}(\delta_{AP2} - \delta_{REF}) / \delta_{REF} \ (\%) \]

\[H = 1.5 \cdot 10^{-8} \ (s \cdot kPa)^{-1} \]

\[H = 1.5 \cdot 10^{-11} \ (s \cdot kPa)^{-1} \]
Fig. 1. Results obtained by B+Tech by applying the wetting paths described in Table 2 to the MX-80 characterised in Table 1.

Fig. 2. Results obtained by Dueck and Nilsson (2010) (SB_0_20 and 1_0_20 tests), Wadsö et al. (2004) and Kahr et al. (1990).

Fig. 3. Vertical swelling results of the isotropic swelling test performed at the University of Castilla-La Mancha.

Fig. 4. Retention curve (wetting path) of a Wyoming bentonite, adapted from Cases et al. (1992).

Fig. 5. Data associated with suctions greater than 40 MPa in Fig. 2 are used. (a) Relationship between the ratio $w_m^{1/3}$ and w_m; (b) Comparison between the experimental values of w_m and values of w_{mc} (obtained by using Eq. 2 and the variation of S presented by Salles et al., 2009). (c) Comparison between the experimental values of S obtained from Eq. 2 and the variation of S by Salles et al. (2009).

Fig. 6. Fit of e_{mc} values obtained with Eq. 15 to the experimental data from Fig. 2.

Fig. 7. Fit of the $s_{m}^{-} e_{m}$ values obtained with Eq. 16 to the experimental data from Fig. 2.

Fig. 8. Fit of the $s_{m}^{-} e_{m}$ values obtained with Eqs. 7, 8 and 15 to the experimental data from Fig. 2.

Fig. 9. Model (Eqs. 7, 8 and 16 and Table 4) and experimental $s_{m}^{-} e_{m}$ values from the tests of Fig. 1.

Fig. 10. Test and model values of S_r and S_M from the tests shown in Fig. 1 (dry densities shown in Table 2 were used). Data from Villar (2007) are also included.

Fig. 11. Experimental (Fig. 3) and model vertical swelling results associated with different calculation approaches. The results from the REF and AP2 approaches overlap.

Fig. 12. (a) Comparison of the macrostructural degree of saturation values obtained with the REF and AP2 approaches. (b) Relative difference in the macrostructural degree of saturation values obtained with the REF and AP2 approaches.

Fig. 13. REF approach: difference between s_{m} and p^{s_M}.

Fig 14. Evolution of the differences between the swelling strains obtained with the REF and AP2 approaches for different values of the transfer coefficient H.