• español
    • English
  • English 
    • español
    • English
  • Login
View Item 
  •   DSpace Home
  • Investigación
  • Departamento de Administración de Empresas
  • Área de Organización de Empresas
  • View Item
  •   DSpace Home
  • Investigación
  • Departamento de Administración de Empresas
  • Área de Organización de Empresas
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Identification of critical components of wind turbines using FTA over time

Thumbnail
View/Open
RENE_7148_p.pdf (2.786Mb)
Date
2015-10-14
Author
García Márquez, Fausto Pedro
Pinar Pérez, Jesús María
Pliego Marugán, Alberto
Papaelias, Mayorkinos
Metadata
Show full item record
Abstract
Wind energy is currently the most widely implemented renewable energy source in global scale. Complex industrial multi-MW wind turbines are continuously being installed both onshore and offshore. Projects involving utility-scale wind turbines require optimisation of reliability, availability, maintainability and safety, in order to guarantee the financial viability of large scale wind energy projects, particularly offshore, in the forthcoming years. For this reason, critical wind turbine components must be identified and monito red as cost-effectively, reliably and efficiently as possible. The condition of industrial wind turbines can be qualitatively evaluated through the Fault Tree Analysis (FTA). The quantitative analysis requires high computational cost. In this paper, the Binary Decision Diagram (BDD) method is proposed for reducing this computational cost. In order to optimise the BDD a set of ranking methods of events has been considered; Level, Top-Down-Left-Right, AND, Depth First Search and Breadth-First Search. A quantitative analysis approach in order to find a general solution of a Fault Tree (FT) is presented. An illustrative case study of a FT of a wind turbine based on different research studies has been developed. Finally, this FT has been solved dynamically through the BDD approach in order to highlight the identification of the critical components of the wind turbine under different conditions, employing the following heuristic methods: Birnbaum, Criticality, Structural and Fussell-Vesely. The results provided by this methodology allow the performance of novel maintenance planning from a quantitative point of view.
URI
http://hdl.handle.net/10578/12098
Collections
  • Área de Organización de Empresas

© Universidad de Castilla-La Mancha
Rectorado
C/ Altagracia, 50 13071
Ciudad Real Tfno. 926 29 53 00
Fax: 926 29 53 01

Copyright | Documentation | Other Resources | Contact Us
Ruidera

¿RUIdeRA?

Federcc
DSpace
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

© Universidad de Castilla-La Mancha
Rectorado
C/ Altagracia, 50 13071
Ciudad Real Tfno. 926 29 53 00
Fax: 926 29 53 01

Copyright | Documentation | Other Resources | Contact Us
Ruidera

¿RUIdeRA?

Federcc
DSpace