• español
    • English
  • English 
    • español
    • English
  • Login
View Item 
  •   DSpace Home
  • Investigación
  • Departamento de Administración de Empresas
  • Área de Organización de Empresas
  • View Item
  •   DSpace Home
  • Investigación
  • Departamento de Administración de Empresas
  • Área de Organización de Empresas
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Dirt and Mud Detection and Diagnosis on a Wind Turbine Blade employing Guided Waves and Supervised Learning Classifiers

Thumbnail
View/Open
Artículo principal (1.163Mb)
Date
2018
Author
Arcos Jiménez, Alfredo
Gómez Muñoz, Carlos Quiterio
García Márquez, Fausto Pedro
Metadata
Show full item record
Abstract
Dirt and mud on wind turbine blades (WTB) reduce productivity and can generate stops and downtimes. A condition monitoring system based on non-destructive tests by ultrasonic waves was used to analyse it. This paper employs an approach that considers advanced signal processing and machine learning to determine the thickness of the dirt and mud in a WTB. Firstly, the signal is filtered by Wavelet transform. FE and Feature selection (FS) are employed to remove non-useful data and redundant features. FS selects the number of the most significant terms of the model for fault detection and identification, reducing the dimension of the dataset. Pattern recognition is carried out by the following supervised learning classifiers based on statistical models to calculate and classify the signal depending on the fault: Ensemble Subspace Discriminant; k-Nearest Neighbours; Linear Support Vector Machine; Linear Discriminant Analysis; Decision Trees. Receiver Operating Characteristic analysis is used to evaluate the classifiers. Neighbourhood Component Analysis has been employed in feature selection. Several case studies of mud on the WTB surface have been considered to test and validate the approach. Autoregressive (AR) model and Principal Component Analysis (PCA) have been employed to FE. The results provided by PCA show an improvement on the AR results. The novelty of this work is focused on applying this approach to detect and diagnose mud and dirt in WTB.
URI
http://hdl.handle.net/10578/18937
Collections
  • Área de Organización de Empresas

© Universidad de Castilla-La Mancha
Rectorado
C/ Altagracia, 50 13071
Ciudad Real Tfno. 926 29 53 00
Fax: 926 29 53 01

Copyright | Documentation | Other Resources | Contact Us
Ruidera

¿RUIdeRA?

Federcc
DSpace
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

© Universidad de Castilla-La Mancha
Rectorado
C/ Altagracia, 50 13071
Ciudad Real Tfno. 926 29 53 00
Fax: 926 29 53 01

Copyright | Documentation | Other Resources | Contact Us
Ruidera

¿RUIdeRA?

Federcc
DSpace