A Survey of Artificial Neural Network in Wind Energy Systems
View/ Open
Date
2018-10Author
Pliego Marugán, Alberto
García Márquez, Fausto Pedro
Pinar Pérez, Jesús María
Ruíz-Hernández, Diego
Metadata
Show full item recordAbstract
Wind energy has become one of the most important forms of renewable energy. Wind energy conversion systems are more sophisticated and new approaches are required based on advance analytics. This paper presents an exhaustive review of artificial neural networks used in wind energy systems, identifying the methods most employed for different applications and demonstrating that Artificial Neural Networks can be an alternative to conventional methods in many cases. More than 85% of the 190 references employed in this paper have been published in the last 5 years. The methods are classified and analysed into four groups according to the application: forecasting and predictions; design optimization; fault detection and diagnosis; and optimal control. A statistical analysis of the current state and future trends in this field is carried out. An analysis of each application group about the strengths and weaknesses of each ANN structure is carried out. A quantitative analysis of the main references is carried out showing new statistical results of the current state and future trends of the topic. The paper describes the main challenges and technological gaps concerning the application of ANN to wind turbines, according to the literature review. An overall table is provided to summarize the most important references according to the application groups and case studies.