• español
    • English
  • English 
    • español
    • English
  • Login
View Item 
  •   DSpace Home
  • Investigación
  • Departamento de Administración de Empresas
  • Área de Organización de Empresas
  • View Item
  •   DSpace Home
  • Investigación
  • Departamento de Administración de Empresas
  • Área de Organización de Empresas
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Linear and Nonlinear Features and Machine Learning for Wind Turbine Blade Ice Detection and Diagnosis

Thumbnail
View/Open
Linear.pdf (1.877Mb)
Date
2018-08
Author
Arcos Jiménez, Alfredo
García Márquez, Fausto Pedro
Borja Moraleda, Victoria
Gómez Muñoz, Carlos Quiterio
Metadata
Show full item record
Abstract
The mass of ice on wind turbines blades is one of the main problems that energy companies have in cold climates. This paper presents a novel approach to detect and classify ice thickness based on pattern recognition through guided ultrasonic waves and Machine Learning. To successfully achieve a supervised classification, it is necessary to employ a method that allows the correct extraction and selection of features of the ultrasonic signal. The main novelty in this work is that the approach considers four feature extraction methods to validate the results, grouped by linear (AutoRegressive (AR) and Principal Component Analysis) and nonlinear (nonlinear-AR eXogenous and Hierarchical Non-Linear Principal Component Analysis), and feature selection is done by Neighbourhood Component Analysis. A supervised classification was performed through Machine Learning with twenty classifiers such as Decision tree, Discriminant Analysis. Support Vector Machines, K-Nearest Neighbours, and Ensemble Classifiers. Finally, an evaluation of the classifiers was done in single frequency and multi-frequency modes, obtaining accurate results.
URI
http://hdl.handle.net/10578/20134
Collections
  • Área de Organización de Empresas

© Universidad de Castilla-La Mancha
Rectorado
C/ Altagracia, 50 13071
Ciudad Real Tfno. 926 29 53 00
Fax: 926 29 53 01

Copyright | Documentation | Other Resources | Contact Us
Ruidera

¿RUIdeRA?

Federcc
DSpace
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

© Universidad de Castilla-La Mancha
Rectorado
C/ Altagracia, 50 13071
Ciudad Real Tfno. 926 29 53 00
Fax: 926 29 53 01

Copyright | Documentation | Other Resources | Contact Us
Ruidera

¿RUIdeRA?

Federcc
DSpace